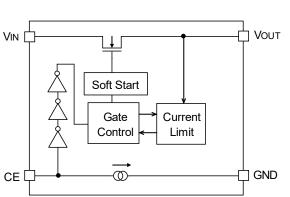


R5540K SERIES

N-channel Load Switch IC

No. EA-268-210705

OUTLINE

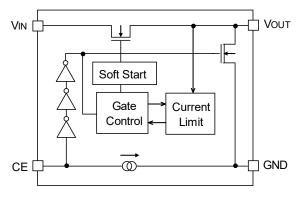

The R5540 series are N-channel Load Switch ICs with the low supply current, Typ. 9µA. By using an Nch transistor as a driver transistor, the features of low on resistance and the reverse current protection at off state are realized in these ICs. The gate voltage of the N-channel transistor is supplied from the internal step-up circuit. The R5540 is an ideal switch to supply the power from the secondary power source such as the output of a step-down DC/DC to the load circuit. Since the package for the R5540 is the ultra small-sized DFN(PLP)1010-4F, high density mounting on board is possible.

FEATURES

APPLICATION

• For secondary power source for electrical appliances such as mobile communication equipments, cameras, VCRs and Camcorders.

BLOCK DIAGRAMS

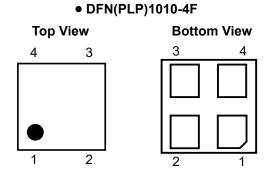


R5540KxxxB

VIN VOUT Soft Start Gate CE CE Gate Control GND

R5540KxxxC

R5540KxxxD



SELECTION GUIDE

The output current value, the auto-discharge function and the polarity of CE pin from "L" active, "H" active are selectable at the user's request.

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
R5540Kxxx*-TR	DFN(PLP)1010-4F	10,000pcs	Yes	Yes
	rent (200mA) rent (450mA) on at off state and the p hout auto-discharge function	polarity of CE pin are o nction at off state ion at off state		

PIN CONFIGULATIONS

RICOH

PIN DESCRIPTION

• R5540K : DFN(PLP)1010-4F

Pin No	Symbol	Pin Description	
1	GND	Ground Pin	
2	CE / CE	Chip Enable Pin ("L" Active / "H" Active)	
3	VIN	Input Pin	
4	Vout	Output Pin	

ABSOLUTE MAXIMUM RATINGS

Symbol	Item	Rating	Unit
V _{IN}	Input Voltage	-0.3 to 5.0	V
VCE	Input Voltage (CE / CE Pin)	-0.3 to 5.0	V
Vout	Output Voltage	-0.3 to 5.0	V
Ιουτ	Output Current	Internally limited	mA
PD	Power Dissipation (Standard Test Land Pattern)*	300	mW
Та	Ambient Tmeprature	-40 to 85	°C
Tstg	Storage Temerature	-55 to 125	°C

*) For Power Dissipation, please refer to Power Dissipation to be described.

ABSOLUTE MAXIMUM RATINGS

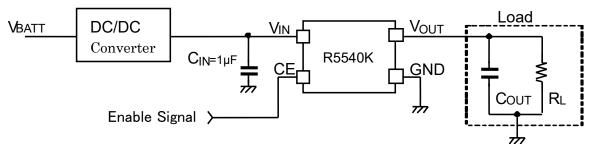
Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

ELECTRICAL CHARACTERISTICS

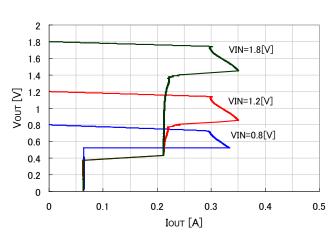
 $V_{IN} = 0.75$ to 3.60V(Code 002), 0.80 to 3.60V(Code 004), $C_{IN} = 1\mu F$, $C_{OUT} = None$, unless otherwise noted. The specification in surrounded by is guaranteed by design at all temperature range, $-40^{\circ}C \le Ta \le 85^{\circ}C$.

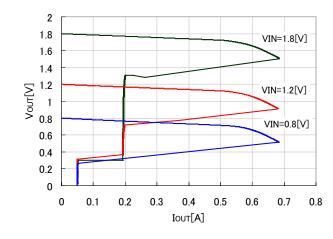

Symbol	Item	Conditio	ns	Min.	Тур.	Max.	Unit
Vin	Input Voltage	Code 002		0.75		3.60	V
		Code 004		0.80		3.60	V
D	Switch ON Resistance	Code 002 V _{IN} =1.2V	, I _{оит} =200mA		120	180	
Ron		Code 004 VIN=1.2V, IOUT=450mA			120	100	mΩ
Іоит	Output Current	Code 002		200			mA
I _{OUT}	Output Current	Code 004		450			
lss	Supply Current	Iouτ=0mA *Note1			9	40	μA
Istandby	Standby Current	V _{OUT} =GND V _{IN} =1.8V *Note2	Ta=25°C		0.1		μA
			Ta=85°C		5		
LIM	Current Limit	Code 002	,	200	350	500	
ILIM	Current Limit	Code 004 VIN=1.2V	/	450	700	1000	- mA
Isc	Short Current Limit	VIN=1.2V, VOUT=0V			50	100	mA
I _{CE}	CE Input Current	C version			0.4		μA
ICEPD	CE Pull-down Current	B, D version			0.7		μA
		V _{IN} =2.5V to 3.6V		1.0			
VCEH	CE Input Voltage "H"	V _{IN} =1.0V to 2.5V		0.9			V
		V _{IN} =0.75V to 1.0V		V _{IN} x 0.9			
VCEL	CE Input Voltage "L"	V _{IN} =0.75V to 3.6V				0.4	V
RLOW	Auto-discharge Nch Tr. ON Resistance (Version. C, D)	V _{IN} =1.2V *Note2			100		Ω
tr	Output Rise Time	V _{IN} =1.2V, V _{OUT} =10% ~ 90% C _{OUT} =0.1µF			73		μs
t _{sc}	Short Current Response Time	V _{OUT} =0V			30		μs

All test categories were tested on the units under the pulse load condition (Tj≈Ta=25°C) except Short Current Response Time.

*Note1 \overline{CE} =L for "L" active, CE=H for "H" active

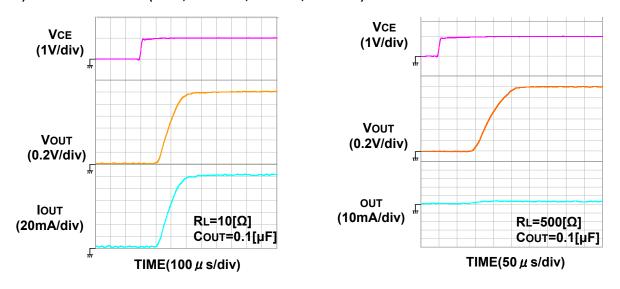
*Note2 \overline{CE} =H for "L" active, CE=L for "H" active

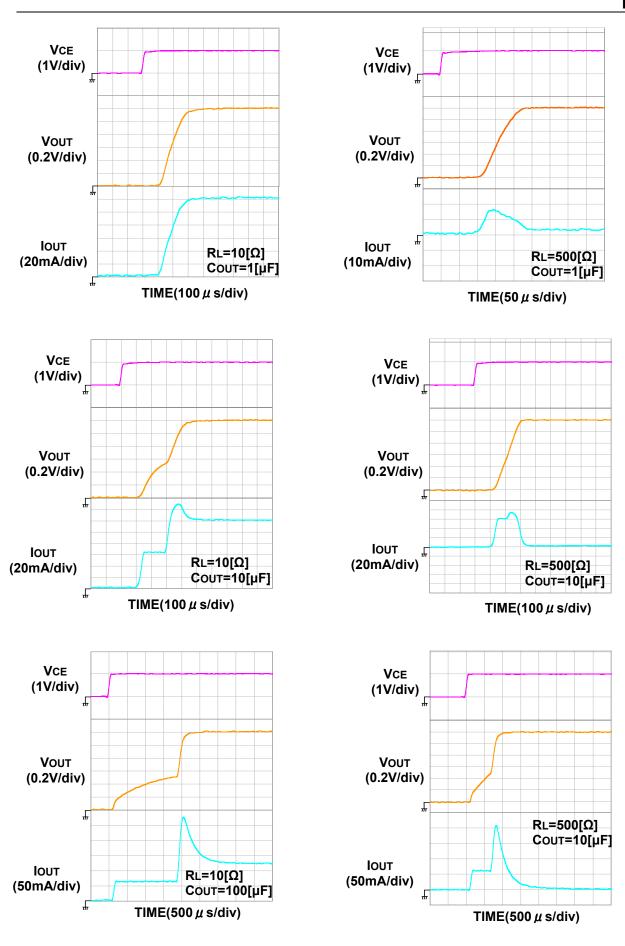

TYPICAL APPLICATION

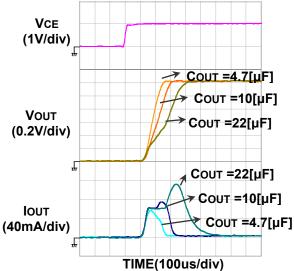

Basically, the R5540K series do not require a bypass capacitor between V_{IN} and GND, however, considering the spike noise caused by the high side inductor at current limit, use 0.1uF or more capacitor as a bypass capacitor. More capacitance is also acceptable depending on the application.

TYPICAL CHARACTERISTIC

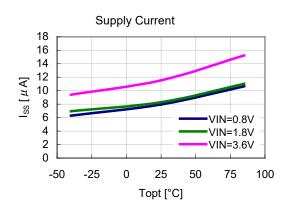
1) Output Voltage vs. Output Current C_{IN} =1uF, C_{OUT} =1uF

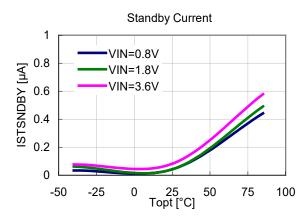


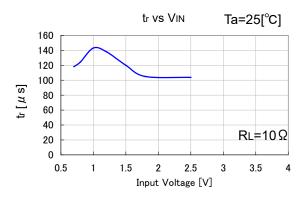

R5540K002x

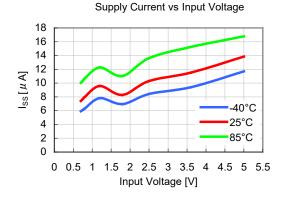

R5540K004x

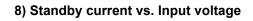
2) Turn on waveform (002x, V_{IN}=1. 2V, C_{IN}=1uF, Ta=25°C)

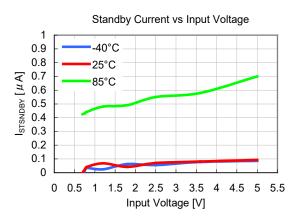


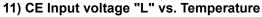

3) Inrush current vs. output capacitor (002x)

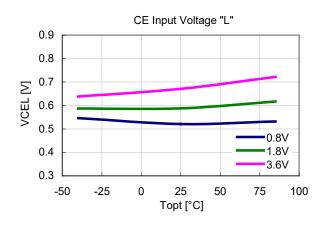

5) Supply current vs. Temperature

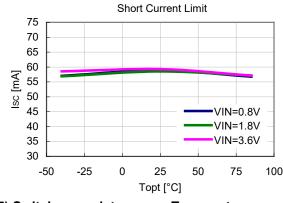

7) Standby Current vs. Temperature



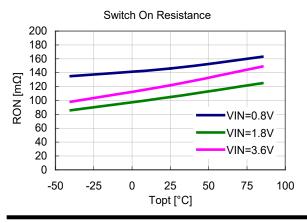

4) Input voltage vs. Turn-on speed

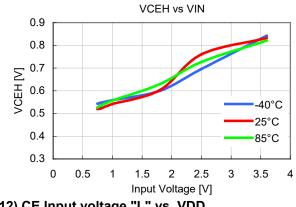

6) Standby current vs. Input voltage

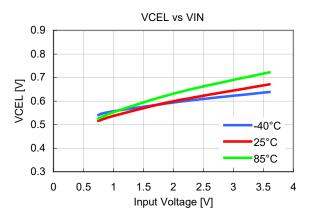


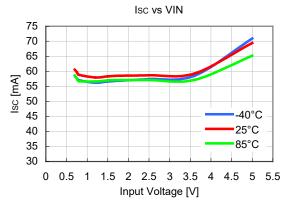


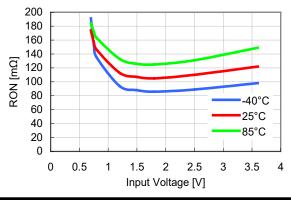
9) CE Input voltage "H" vs. Temperature CE Input Voltage "H" 0.9 0.8 0.7 VCEH [V] 0.6 0.5 0.8V 1.8V 0.4 3.6V 0.3 -50 -25 0 25 50 75 100 Topt [°C]



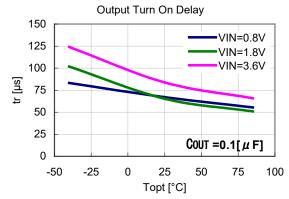

13) Short current limit vs. Temperature

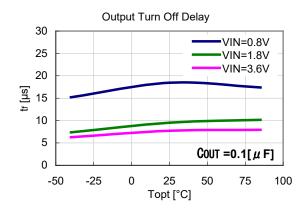


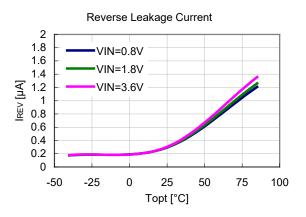

10) CE Input voltage "H" vs. VDD

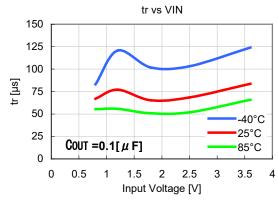


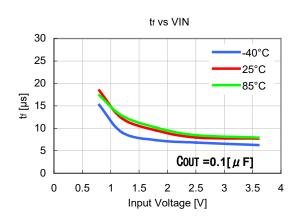
14) Short current limit vs. Input voltage

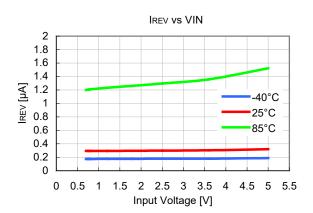


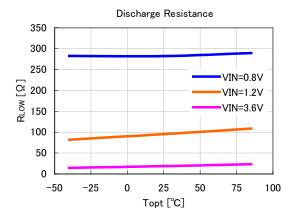


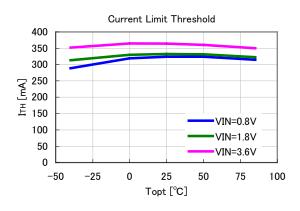

17) Output Rise time vs. Temperature

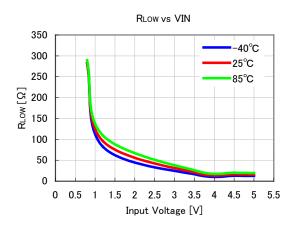

19) Output Fall time vs. Temperature

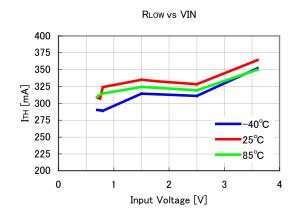

21) Reverse leakage current vs. Temperature

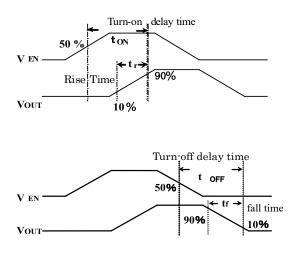

18) Output Rise time vs. Input voltage

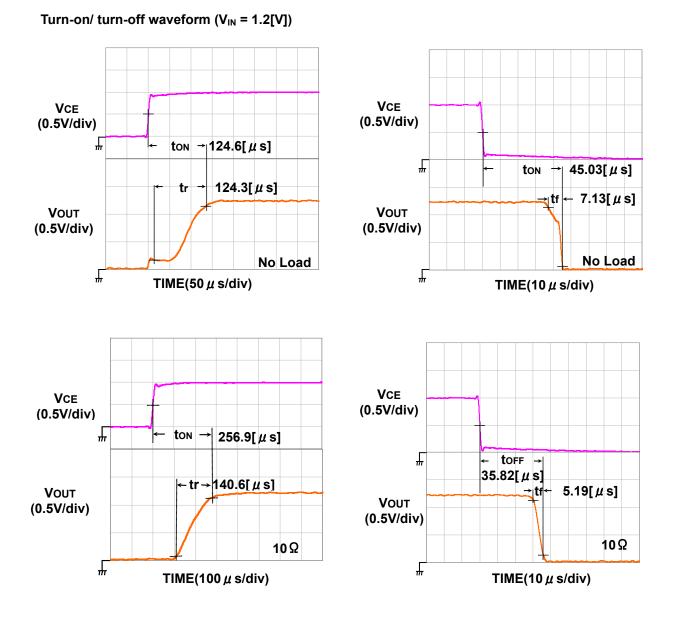

20) Output Fall time vs. Input voltage


22) Reverse leakage current vs. Input voltage


23) Discharge resistance vs. Temperature


25) Current limit vs. Temperature (002x)


24) Discharge resistance vs. Input voltage



26) Current limit vs. Input voltage (002x)

TIMING CHART

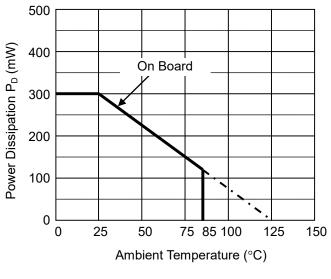
Rev.1.3

RICOH

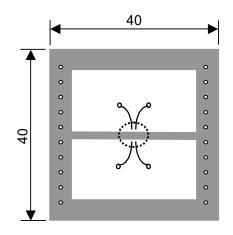
13

POWER DISSIPATION (DFN(PLP)1010-4F)

Power Dissipation (P_D) depends on conditions of mounting on board. This specification is based on the measurement at the condition below:


Measurement Conditions

	Standard Land Pattern	
Environment	Mounting on Board (Wind velocity=0m/s)	
Board Material	Glass cloth epoxy plastic (Double sided)	
Board Dimensions	40mm×40mm×1.6mm	
Copper Ratio	Top side: Approx. 50%, Back side: Approx. 50%	
Through-holes	φ 0.54mm×24pcs	


Measurement Result

(Ta=25°C, Tjmax=125°C)

	Standard Land Pattern		
Power Dissipation	300mW		
Thermal Desistance	θja=(125-25°C)/0.3W=330 °C/W		
Thermal Resistance	θjc=48 °C/W		

Power Dissipation

Measurement Board Pattern

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOI.
- 11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment. Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

RICOH RICOH ELECTRONIC DEVICES CO., LTD.

Official website https://www.n-redc.co.jp/en/ Contact us https://www.n-redc.co.jp/en/buy/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Switch ICs - Power Distribution category:

Click to view products by Nisshinbo manufacturer:

Other Similar products are found below :

TCK111G,LF(S_FPF1018_DS1222_TCK2065G,LF_SZNCP3712ASNT3G_MIC2033-05BYMT-T5_MIC2033-12AYMT-T5_MIC2033-05BYM6-T5_SLG5NT1437VTR_SZNCP3712ASNT1G_DML1008LDS-7_KTS1670EDA-TR_KTS1640QGDV-TR_KTS1641QGDV-TR NCV459MNWTBG_FPF2260ATMX_U6513A_U6119S_NCP45780IMN24RTWG_MAX14919ATP+_MC33882PEP_TPS2021IDRQ1 TPS2104DBVR_MIC2098-1YMT-TR_MIC94062YMT_TR_MP6231DN-LF_MIC2075-2YM_MIC94068YML-TR_SIP32461DB-T2-GE1 NCP335FCT2G_TCK105G,LF(S_AP2151DSG-13_MIC94094YC6-TR_MIC94064YC6-TR_MIC2505-1YM_MIC94042YFL-TR_ MIC94041YFL-TR_MIC2005-1.2YM6-TR_TPS2032QDRQ1_SIP32510DT-T1-GE3_NCP333FCT2G_NCP331SNT1G_TPS2092DR TPS2063DR_TPS2042P_MIC2008YML-TR_MIC2040-1YMM_TPS22810DRVR_MIC2043-2YTS_MIC2041-2YMM