\* RP106N (SOT-23-5) is the discontinued product as of March 2020.



# **RP106x SERIES**

# 0.8% ACCURACY 0.7V OUTPUT 400mA LDO REGULATOR

NO.EA-180-200325

# OUTLINE

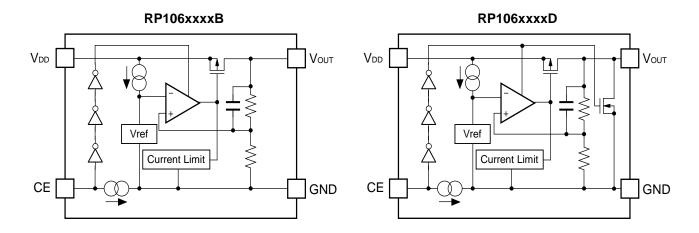
The RP106x Series are low voltage 400mA voltage regulator. These ICs had been further improved of low-voltage capability compared with previous low-voltage product.

The input voltage is as low as Min. 1.0V and the output voltage can be set from 0.7V. The output voltage accuracy has been improved to  $\pm 0.8\%$  and due to a built-in transistor with low on-resistance of 0.55 $\Omega$  (at Vout=1.5V).

Each of these ICs consists of a voltage reference unit, an error amplifier, a resistor-net for voltage setting, and a current limit circuits for over-current for the destruction prevention by the over-current.

The CE pin can switch the regulator to standby mode. In addition to SOT-23-5 and SC-88A packages, a 0.69mm square WLCSP-4-P5 package and a 1.2mm square DFN(PL)1212-6 are also available.

# FEATURES


- Supply Current ......Typ. 48μA
- Supply Current (Standby).....Typ. 0.1µA
- Ripple Rejection ...... Typ. 60dB (f=10kHz)
- Input Voltage Range ......1.0V to 3.6V
- Output Voltage Range......0.7V to 1.8V (0.1V steps)
  - (For other voltages, please refer to MARK INFORMATIONS.)
- Output Voltage Accuracy......±0.8% (Vout≥1.0V, Topt=25°C)
- Temperature-Drift Coefficient of Output Voltage ... Typ. ±60ppm/°C
- Dropout Voltage ......Typ. 0.22V (Vout=1.5V)
- Line Regulation ......Typ. 0.10%/V
- Packages ......WLCSP-4-P5, DFN(PL)1212-6, SC-88A, SOT-23-5
- Built-in Fold Back Protection Circuit ......Typ. 110mA (Current at short mode)
- Built-in Constant Slope Circuit
- Ceramic capacitors are recommended to be used with this IC .....1.0 $\mu F$  or more

# **APPLICATIONS**

- Power source for portable communication equipment.
- Power source for electrical appliances such as cameras, VCRs and camcorders.
- Power source for battery-powered equipment.

NO.EA-180-200325

# **BLOCK DIAGRAMS**



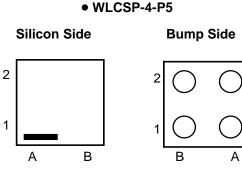
# **SELECTION GUIDE**

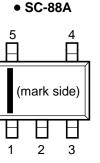
The output voltage, auto discharge function, package, and the taping type, etc. for the ICs can be selected at the user's request.

| Product Name     | Package       | Quantity per Reel | Pb Free | Halogen Free |
|------------------|---------------|-------------------|---------|--------------|
| RP106Zxx1*-TR-F  | WLCSP-4-P5    | 5,000 pcs         | Yes     | Yes          |
| RP106Kxx1*-TR    | DFN(PL)1212-6 | 5,000 pcs         | Yes     | Yes          |
| RP106Qxx2*-TR-FE | SC-88A        | 3,000 pcs         | Yes     | Yes          |
| RP106Nxx1*-TR-FE | SOT-23-5      | 3,000 pcs         | Yes     | Yes          |

xx : Setting Output Voltage (Vour) :

Fixed Type: 07 to 18 Stepwise setting with 0.1V increment in the range from 0.7V to 1.8V Exception: 1.25V=RP106x12x\*5-xx 1.85V=RP106x18x\*5-xx


\* : Designation of Active Type:


B:"H" Active, without auto discharge function at off state.

D:"H" Active, with auto discharge function at off state.

NO.EA-180-200325

# **PIN CONFIGURATIONS**





# **PIN DESCRIPTIONS**

• WLCSP-4-P5

| Pin No. | Symbol | Description                  |
|---------|--------|------------------------------|
| A1      | Vdd    | Input Pin                    |
| A2      | Vout   | Output Pin                   |
| B1      | CE     | Chip Enable Pin ("H" Active) |
| B2      | GND    | Ground Pin                   |

#### • SC-88A

| Pin No. | Symbol | Description                  |
|---------|--------|------------------------------|
| 1       | CE     | Chip Enable Pin ("H" Active) |
| 2 *     | NC     | No Connection                |
| 3       | GND    | Ground Pin                   |
| 4       | Vout   | Output Pin                   |
| 5       | Vdd    | Input Pin                    |

\* Pin No. 2 is connected to the bottom of the IC. It is recommended that the pin be connected to the ground plane on the board, or otherwise be left floating so that there is no contact with other potentials.

### • DFN(PL)1212-6

| Pin No. | Symbol | Description                  |
|---------|--------|------------------------------|
| 1       | NC     | No Connection                |
| 2       | GND    | Ground Pin                   |
| 3       | CE     | Chip Enable Pin ("H" Active) |
| 4       | Vdd    | Input Pin                    |
| 5       | NC     | No Connection                |
| 6       | Vout   | Output Pin                   |

### • SOT-23-5

| Pin No. | Symbol | Description                  |
|---------|--------|------------------------------|
| 1       | Vdd    | Input Pin                    |
| 2       | GND    | Ground Pin                   |
| 3       | CE     | Chip Enable Pin ("H" Active) |
| 4       | NC     | No Connection                |
| 5       | Vout   | Output Pin                   |

# • DFN(PL)1212-6

NO.EA-180-200325

# **ABSOLUTE MAXIMUM RATINGS**

| Symbol | Item                                   | Rating          | Unit  |
|--------|----------------------------------------|-----------------|-------|
| VIN    | Input Voltage                          | 4.0             | V     |
| Vce    | Input Voltage (CE Pin)                 | -0.3 to 4.0     | V     |
| Vout   | Output Voltage                         | -0.3 to VIN+0.3 | V     |
| Іоит   | Output Current                         | 500             | mA    |
|        | Power Dissipation (WLCSP-4-P5)*        | 278             |       |
| Po     | Power Dissipation (DFN(PL)1212-6)*     | 400             | mW    |
| FD     | Power Dissipation (SC-88A)*            | 380             | TIIVV |
|        | Power Dissipation (SOT-23-5)*          |                 |       |
| Topt   | Operating Temperature Range            | -40 to 85       | °C    |
| Tstg   | Storage Temperature Range -55 to 125 ° |                 | °C    |

\*) For Power Dissipation, please refer to PACKAGE INFORMATION.

### ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause permanent damage and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

<u>RP106x</u>

NO.EA-180-200325

# **ELECTRICAL CHARACTERISTICS**

#### • RP106x

 $V_{\text{IN}} = Set \text{ V}_{\text{OUT}} + 1V, \text{ I}_{\text{OUT}} = 1mA, \text{ C}_{\text{IN}} = C_{\text{OUT}} = 1\mu F, \text{ unless otherwise noted}.$ 

The specifications surrounded by are guaranteed by Design Engineering at  $-40^{\circ}C \le T_{opt} \le 85^{\circ}C$ .

|                                |                                                       |                                                                                                                                                                      |                  |            |      | т      | opt=25°C   |
|--------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------|------|--------|------------|
| Symbol                         | ltem                                                  | Conditior                                                                                                                                                            | IS               | Min.       | Тур. | Max.   | Unit       |
|                                |                                                       | Tent 25%                                                                                                                                                             | Vou⊤ ≥ 1.0V      | ×0.992     |      | ×1.008 | V          |
| V                              |                                                       | Topt=25°C                                                                                                                                                            | Vout < 1.0V      | -8         |      | 8      | mV         |
| Vout                           | Output Voltage                                        | –40°C ≤ Topt ≤ 85°C                                                                                                                                                  | Vout ≥ 1.0V      | ×0.983     |      | ×1.017 | V          |
|                                |                                                       | $-40$ C $\leq$ Topt $\leq$ 05 C                                                                                                                                      | Vout < 1.0V      | -17        |      | 17     | mV         |
| Ιουτ                           | Output Current                                        |                                                                                                                                                                      |                  | 400        |      |        | mA         |
| $\Delta V$ out/ $\Delta I$ out | Load Regulation                                       | $1mA \leq I_{\text{OUT}} \leq 400mA$                                                                                                                                 |                  |            | 25   | 45     | mV         |
| Vdif                           | Dropout Voltage                                       |                                                                                                                                                                      | Refer to the fol | lowing tal | ole  |        |            |
| lss                            | Supply Current                                        | Iout=0mA                                                                                                                                                             |                  |            | 48   | 75     | μA         |
| Istandby                       | Supply Current (Standby)                              | Vce=0V                                                                                                                                                               |                  |            | 0.1  | 8.0    | μA         |
| $\Delta V$ out/ $\Delta V$ in  | Line Regulation                                       | $\begin{array}{l} Set \ V_{\text{OUT}} + 0.5V \leq V_{\text{IN}} \leq \\ \text{In case that Set } V_{\text{OUT}} < \\ 1.3V \leq V_{\text{IN}} \leq 3.6V \end{array}$ |                  |            | 0.10 | 0.25   | %/V        |
| RR                             | Ripple Rejection                                      | f=10kHz, Ripple 0.2Vp<br>VIN=Set Vout+1V, Iout=                                                                                                                      | •                |            | 60   |        | dB         |
| Vin                            | Input Voltage                                         |                                                                                                                                                                      |                  | 1.0        |      | 3.6    | V          |
| $\Delta V$ out/ $\Delta T$ opt | Output Voltage<br>Temperature Coefficient             | $-40^{\circ}C \le T_{opt} \le 85^{\circ}C$                                                                                                                           |                  |            | ±60  |        | ppm<br>/°C |
| lsc                            | Short Current Limit                                   | Vout=0V                                                                                                                                                              |                  |            | 110  |        | mA         |
| IPD                            | CE Pull-down Current                                  |                                                                                                                                                                      |                  |            | 0.38 | 0.7    | μA         |
| VCEH                           | CE Input Voltage "H"                                  |                                                                                                                                                                      |                  | 0.9        |      |        | V          |
| VCEL                           | CE Input Voltage "L"                                  |                                                                                                                                                                      |                  |            |      | 0.4    | V          |
| en                             | Output Noise                                          | BW=10Hz to 100kHz<br>lout=30mA, Vout=0.7V                                                                                                                            |                  |            | 30   |        | μVrms      |
| RLow                           | Low Output Nch Tr.<br>ON Resistance<br>(of D version) | Vin=2.0V, Vce=0V                                                                                                                                                     |                  |            | 43   |        | Ω          |

All test items listed under Electrical Characteristics are done under the pulse load condition (Tj≈Ta=25°C) except Output Noise, Ripple Rejection and Output Voltage Temperature Coefficient items.

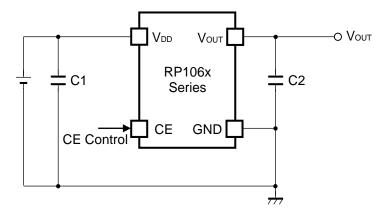
Topt=25°C

### **RP106x**

NO.EA-180-200325

The specifications surrounded by are guaranteed by Design Engineering at  $-40^{\circ}C \le T_{opt} \le 85^{\circ}C$ .

#### • Dropout Voltage by Output Voltage


| Output Voltage                  | Dropout   | Dropout Voltage VDIF (V) |      |  |  |
|---------------------------------|-----------|--------------------------|------|--|--|
| Vout (V)                        | Condition | Тур.                     | Max. |  |  |
| $0.7 \leq V_{\text{OUT}} < 0.8$ |           | 0.48                     | 0.62 |  |  |
| $0.8 \leq V_{\text{OUT}} < 0.9$ |           | 0.40                     | 0.54 |  |  |
| $0.9 \leq V_{\text{OUT}} < 1.0$ | 1         | 0.36                     | 0.47 |  |  |
| 1.0 ≤ Vout < 1.2                |           | 0.32                     | 0.45 |  |  |
| 1.2 ≤ Vout < 1.5                |           | 0.28                     | 0.38 |  |  |
| <b>1.5</b> ≤ Vout               |           | 0.22                     | 0.31 |  |  |

#### RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

NO.EA-180-200325

# **TYPICAL APPLICATION**





MURATA: GRM155B31A105KE15

# **TECHNICAL NOTES**

When using these ICs, consider the following points:

#### **Phase Compensation**

In these ICs, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, use a capacitor C2 with  $1.0\mu F$  or more.

If a tantalum capacitor is used, and its ESR (Equivalent Series Resistance) of C2 is large, the loop oscillation may result. Because of this, select C2 carefully considering its frequency characteristics.

#### **PCB** Layout

Make V<sub>DD</sub> and GND lines sufficient. If their impedance is high, noise pickup or unstable operation may result. Connect a capacitor C1 with a capacitance value as much as  $1.0\mu$ F or more between V<sub>DD</sub> and GND pin, and as close as possible to the pins.

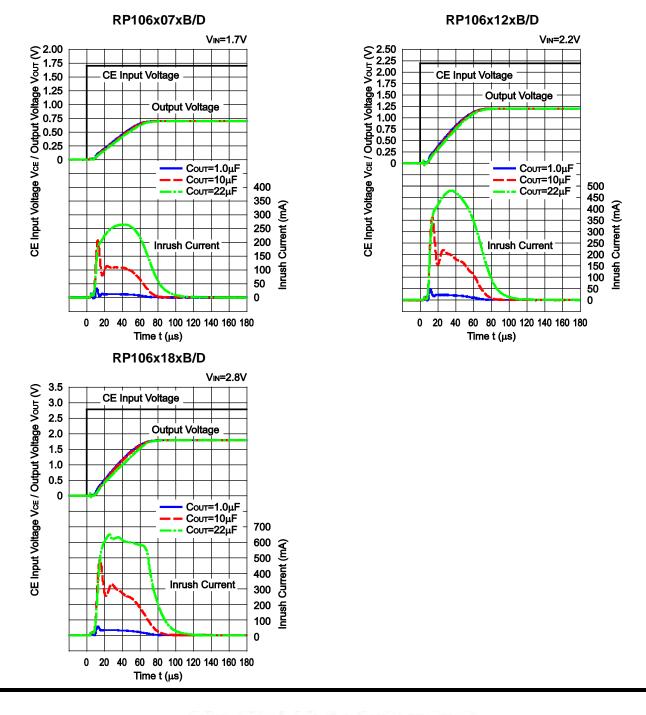
Set external components, especially the output capacitor C2, as close as possible to the ICs, and make wiring as short as possible.

#### Impedance of Input pin

CE pull-down constant current circuit is built in the RP106x.

However, if the CE pin is floating and the wiring is long, the malfunction may occur by noise. Therefore, fully evaluation on the actual PCB is necessary.

NO.EA-180-200325


# **CONSTANT SLOPE CIRCUITS**

The RP106x Series is equipped with a constant slope circuit as a soft-start circuit, which allows the output voltage to start up gradually when the CE is turned on.

The constant slope circuit minimizes the inrush current at the start-up and also prevents the overshoot of the output voltage.

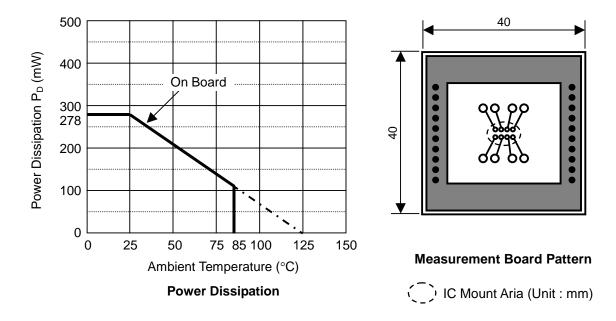
The capacitor to create the start-up slope is built in the IC that does not require any external components. The start-up time and the start-up slope angle are fixed inside the IC. For more details, please refer to the graph 15 of "Inrush Current Characteristics Example".



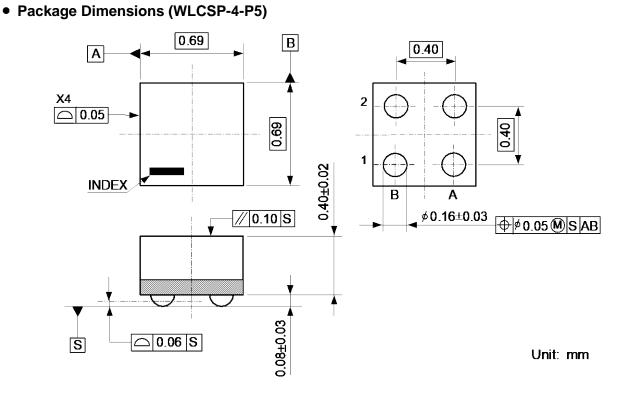


NO.EA-180-200325

# PACKAGE INFORMATION

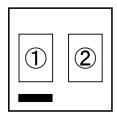

#### • Power Dissipation (WLCSP-4-P5)

Power Dissipation ( $P_{\text{D}}$ ) depends on conditions of mounting on board. This specification is based on the measurement at the condition below:


\* Measurement Conditions

|                  | Standard Land Pattern                            |  |
|------------------|--------------------------------------------------|--|
| Environment      | Mounting on Board (Wind velocity=0m/s)           |  |
| Board Material   | Glass cloth epoxy plastic (Double sided)         |  |
| Board Dimensions | $40$ mm $\times$ $40$ mm $\times$ $1.6$ mm       |  |
| Copper Ratio     | Top side : Approx. 50% , Back side : Approx. 50% |  |
| Through-hole     | $\phi$ 0.5mm $	imes$ 28pcs                       |  |

| * Measurement Result | (Ta=25°C, Tjmax=125°C)            |
|----------------------|-----------------------------------|
|                      | Standard Land Pattern             |
| Power Dissipation    | 278mW                             |
| Thermal Resistance   | θja = (125–25°C)/0.278W = 360°C/W |
|                      | $\theta$ jc = 46°C/W              |




NO.EA-180-200325



• Mark Specification (WLCSP-4-P5)

0 0 : Lot No. ..... Alphanumeric serial number.



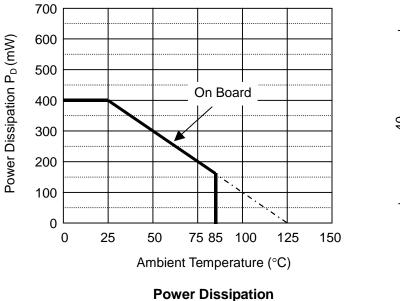
NO.EA-180-200325

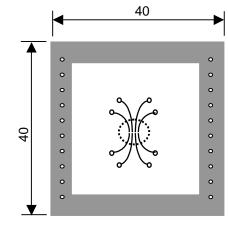
### • RP106Z Series marking list table (WLCSP-4-P5)

| RP106ZxxxB   |       |
|--------------|-------|
| Product Name | Vset  |
| RP106Z071B   | 0.7V  |
| RP106Z081B   | 0.8V  |
| RP106Z091B   | 0.9V  |
| RP106Z101B   | 1.0V  |
| RP106Z111B   | 1.1V  |
| RP106Z121B   | 1.2V  |
| RP106Z131B   | 1.3V  |
| RP106Z141B   | 1.4V  |
| RP106Z151B   | 1.5V  |
| RP106Z161B   | 1.6V  |
| RP106Z171B   | 1.7V  |
| RP106Z181B   | 1.8V  |
| RP106Z121B5  | 1.25V |
| RP106Z181B5  | 1.85V |

RP106ZxxxD **Product Name** VSET 0.7V RP106Z071D RP106Z081D 0.8V RP106Z091D 0.9V RP106Z101D 1.0V RP106Z111D 1.1V RP106Z121D 1.2V RP106Z131D 1.3V RP106Z141D 1.4V RP106Z151D 1.5V RP106Z161D 1.6V RP106Z171D 1.7V RP106Z181D 1.8V RP106Z121D5 1.25V RP106Z181D5 1.85V

NO.EA-180-200325


# • Power Dissipation (DFN(PL)1212-6)

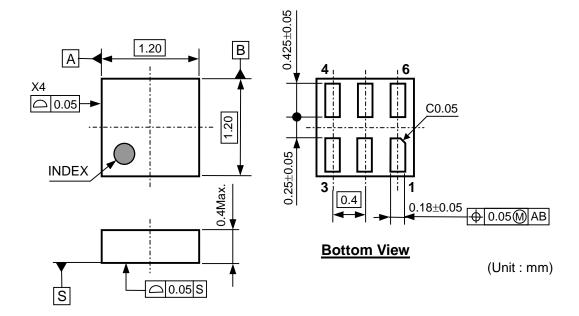

Power Dissipation ( $P_D$ ) depends on conditions of mounting on board. This specification is based on the measurement at the condition below:

**Measurement Conditions** 

|                  | Standard Test Land Pattern                    |  |
|------------------|-----------------------------------------------|--|
| Environment      | Mounting on Board (Wind velocity=0m/s)        |  |
| Board Material   | Glass cloth epoxy plastic (Double sided)      |  |
| Board Dimensions | 40mm×40mm×1.6mm                               |  |
| Copper Ratio     | Top side: Approx. 50%, Back side: Approx. 50% |  |
| Through-holes    | φ 0.54mm×28pcs                                |  |

| Measurement Result |                    | (Ta=25°C, Tjmax=125°C)      |  |
|--------------------|--------------------|-----------------------------|--|
|                    |                    | Standard Test Land Pattern  |  |
|                    | Power Dissipation  | ation 400mW                 |  |
|                    | Thermal Resistance | θja=(125-25°C)/0.4W=250°C/W |  |
|                    |                    | θjc=67 °C/W                 |  |

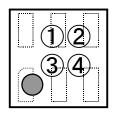





# **Measurement Board Pattern**



NO.EA-180-200325


# • Package Dimensions (DFN(PL)1212-6)



### • Mark Specification (DFN(PL)1212-6)

0 0 : Product Code......Refer to the marking list table

3 4 : Lot No.....Alphanumeric serial number.



NO.EA-180-200325

# • RP106K Series marking list table (DFN(PL)1212-6)

| RP106KxxxB   |    |       |  |
|--------------|----|-------|--|
| Product Name | 12 | VSET  |  |
| RP106K071B   | NA | 0.7V  |  |
| RP106K081B   | NB | 0.8V  |  |
| RP106K091B   | NC | 0.9V  |  |
| RP106K101B   | ND | 1.0V  |  |
| RP106K111B   | NE | 1.1V  |  |
| RP106K121B   | NF | 1.2V  |  |
| RP106K131B   | NG | 1.3V  |  |
| RP106K141B   | NH | 1.4V  |  |
| RP106K151B   | NJ | 1.5V  |  |
| RP106K161B   | NK | 1.6V  |  |
| RP106K171B   | NL | 1.7V  |  |
| RP106K181B   | NM | 1.8V  |  |
| RP106K121B5  | NP | 1.25V |  |
| RP106K181B5  | NQ | 1.85V |  |

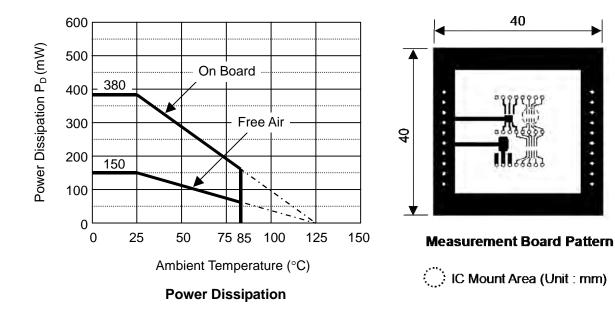
RP106KxxxD

| Product Name | 12 | VSET  |  |
|--------------|----|-------|--|
| RP106K071D   | PA | 0.7V  |  |
| RP106K081D   | PB | 0.8V  |  |
| RP106K091D   | PC | 0.9V  |  |
| RP106K101D   | PD | 1.0V  |  |
| RP106K111D   | PE | 1.1V  |  |
| RP106K121D   | PF | 1.2V  |  |
| RP106K131D   | PG | 1.3V  |  |
| RP106K141D   | PH | 1.4V  |  |
| RP106K151D   | PJ | 1.5V  |  |
| RP106K161D   | PK | 1.6V  |  |
| RP106K171D   | PL | 1.7V  |  |
| RP106K181D   | PM | 1.8V  |  |
| RP106K121D5  | PP | 1.25V |  |
| RP106K181D5  | PQ | 1.85V |  |

NO.EA-180-200325

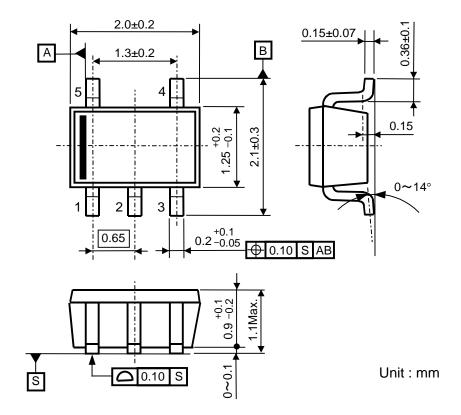
#### • Power Dissipation (SC-88A)

Power Dissipation ( $P_D$ ) depends on conditions of mounting on board. This specification is based on the measurement at the condition below;


#### **Measurement Conditions**

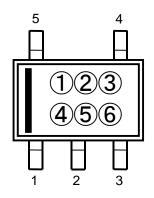
|                  | Standard Land Pattern                         |  |
|------------------|-----------------------------------------------|--|
| Environment      | Mounting on Board (Wind velocity=0m/s)        |  |
| Board Material   | Glass cloth epoxy plastic (Double Layers)     |  |
| Board Dimensions | 40mm×40mm×1.6mm                               |  |
| Copper Ratio     | Top side: Approx. 50%, Back side: Approx. 50% |  |
| Through-hole     | φ0.5mm×44pcs                                  |  |

#### Measurement Result


(Ta=25°C, Tjmax=125°C)

|                    | Standard Land Pattern        | Free Air                     |
|--------------------|------------------------------|------------------------------|
| Power Dissipation  | 380mW                        | 150mW                        |
| Thermal Resistance | θja=(125-25°C)/0.38W=263°C/W | θja=(125-25°C)/0.15W=667°C/W |
|                    | θjc=75°C/W                   | -                            |




NO.EA-180-200325

#### • Package Dimensions (SC-88A)



### • Mark Specification (SC-88A)

①②③④: Product Code......Refer to the marking list table
⑤⑥: Lot No.....Alphanumeric serial number.



NO.EA-180-200325

# • RP106Q Series marking list table (SC-88A)

| RP106QxxxB   |         |       |
|--------------|---------|-------|
| Product Name | 1234    | Vset  |
| RP106Q072B   | Q 0 0 1 | 0.7V  |
| RP106Q082B   | Q 0 0 2 | 0.8V  |
| RP106Q092B   | Q003    | 0.9V  |
| RP106Q102B   | Q 0 0 4 | 1.0V  |
| RP106Q112B   | Q 0 0 5 | 1.1V  |
| RP106Q122B   | Q006    | 1.2V  |
| RP106Q132B   | Q 0 0 7 | 1.3V  |
| RP106Q142B   | Q008    | 1.4V  |
| RP106Q152B   | Q009    | 1.5V  |
| RP106Q162B   | Q010    | 1.6V  |
| RP106Q172B   | Q 0 1 1 | 1.7V  |
| RP106Q182B   | Q 0 1 2 | 1.8V  |
| RP106Q122B5  | Q 0 1 4 | 1.25V |
| RP106Q182B5  | Q 0 1 5 | 1.85V |

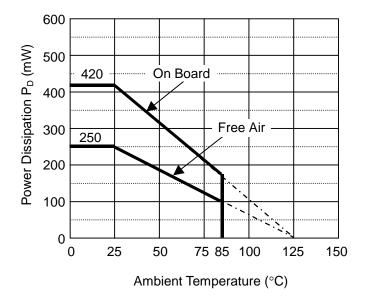
RP106QxxxD **Product Name** 1234VSET 0.7V RP106Q072D R 0 0 1 RP106Q082D R002 0.8V RP106Q092D R003 0.9V RP106Q102D R004 1.0V RP106Q112D R005 1.1V RP106Q122D R006 1.2V RP106Q132D R007 1.3V 1.4V RP106Q142D R008 RP106Q152D R009 1.5V RP106Q162D R010 1.6V RP106Q172D R 0 1 1 1.7V 1.8V RP106Q182D R 0 1 2 RP106Q122D5 R 0 1 4 1.25V RP106Q182D5 R 0 1 5 1.85V

NO.EA-180-200325

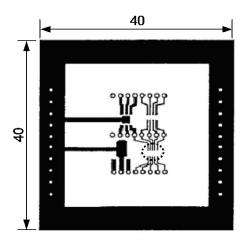
#### • Power Dissipation (SOT-23-5)

Power Dissipation ( $P_D$ ) depends on conditions of mounting on board. This specification is based on the measurement at the condition below:

(Power Dissipation (SOT-23-5) is substitution of SOT-23-6.)


**Measurement Conditions** 

|                  | Standard Test Land Pattern                    |  |
|------------------|-----------------------------------------------|--|
| Environment      | Mounting on Board (Wind velocity=0m/s)        |  |
| Board Material   | Glass cloth epoxy plastic (Double sided)      |  |
| Board Dimensions | 40mm×40mm×1.6mm                               |  |
| Copper Ratio     | Top side: Approx. 50%, Back side: Approx. 50% |  |
| Through-holes    | φ 0.5mm×44pcs                                 |  |

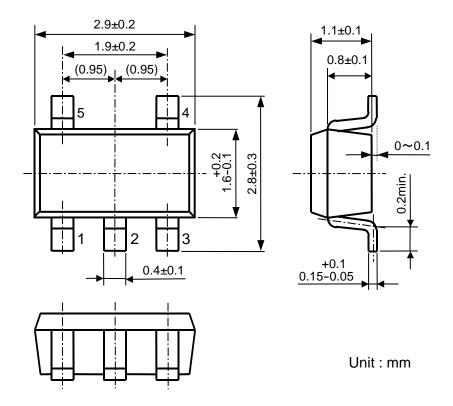

#### Measurement Result

(Ta=25°C, Tjmax=125°C)

|                    | Standard Land Pattern        | Free Air |
|--------------------|------------------------------|----------|
| Power Dissipation  | 420mW                        | 250mW    |
| Thermal Resistance | θja=(125-25°C)/0.42W=238°C/W | 400°C/W  |

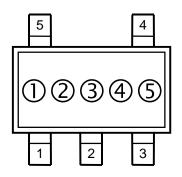


**Power Dissipation** 




#### **Measurement Board Pattern**

C Mount Area (Unit: mm)


NO.EA-180-200325

• Package Dimensions (SOT-23-5)



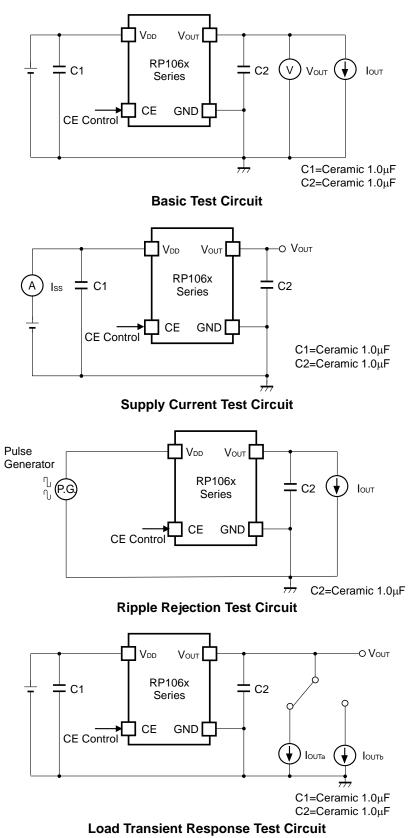
• Mark Specification (SOT-23-5)

①②③: Product Code......Refer to the marking list table
④⑤ : Lot No.....Alphanumeric serial number.



NO.EA-180-200325

# • RP106N Series marking list table (SOT-23-5)


| RP106NxxxB   |     |       |
|--------------|-----|-------|
| Product Name | 123 | VSET  |
| RP106N071B   | САА | 0.7V  |
| RP106N081B   | CAB | 0.8V  |
| RP106N091B   | CAC | 0.9V  |
| RP106N101B   | CAD | 1.0V  |
| RP106N111B   | CAE | 1.1V  |
| RP106N121B   | CAF | 1.2V  |
| RP106N131B   | CAG | 1.3V  |
| RP106N141B   | САН | 1.4V  |
| RP106N151B   | CAJ | 1.5V  |
| RP106N161B   | CAK | 1.6V  |
| RP106N171B   | CAL | 1.7V  |
| RP106N181B   | CAM | 1.8V  |
| RP106N121B5  | САР | 1.25V |
| RP106N181B5  | CAQ | 1.85V |

RP106NxxxD

| Product Name | 123 | Vset  |  |
|--------------|-----|-------|--|
| RP106N071D   | СВА | 0.7V  |  |
| RP106N081D   | СВВ | 0.8V  |  |
| RP106N091D   | СВС | 0.9V  |  |
| RP106N101D   | CBD | 1.0V  |  |
| RP106N111D   | CBE | 1.1V  |  |
| RP106N121D   | CBF | 1.2V  |  |
| RP106N131D   | CBG | 1.3V  |  |
| RP106N141D   | СВН | 1.4V  |  |
| RP106N151D   | СВЈ | 1.5V  |  |
| RP106N161D   | СВК | 1.6V  |  |
| RP106N171D   | CBL | 1.7V  |  |
| RP106N181D   | СВМ | 1.8V  |  |
| RP106N121D5  | СВР | 1.25V |  |
| RP106N181D5  | CBQ | 1.85V |  |

NO.EA-180-200325

# **TEST CIRCUITS**



1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

0

100

Output Voltage Vour (V)

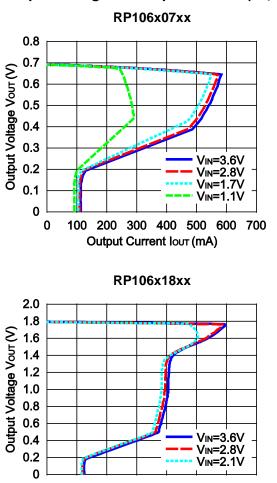
RP106x12xx

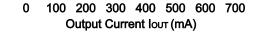
Vin=3.6V

VIN=2.8V VIN=2.2V

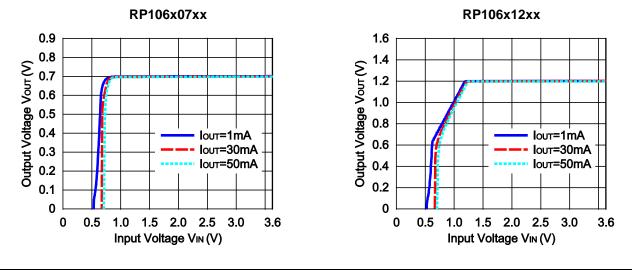
Vin=1.5V

200 300 400 500 600 700


Output Current lout (mA)

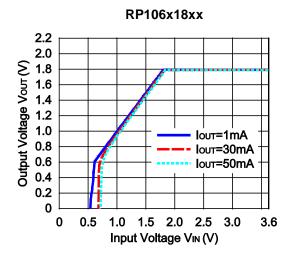

### **RP106x**

NO.EA-180-200325

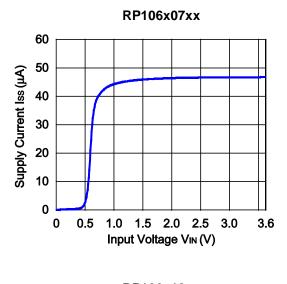

# **TYPICAL CHARACTERISTICS**

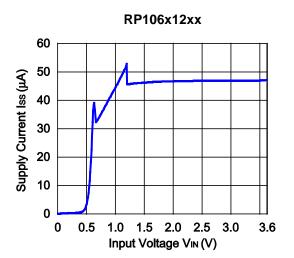
#### 1) Output Voltage vs. Output Current (Topt=25°C)

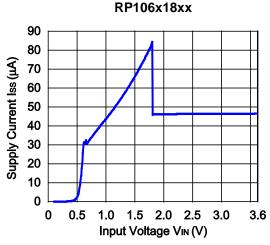





2) Output Voltage vs. Input Voltage (Topt=25°C)





**RP106x** 


NO.EA-180-200325











1.23

1.22 1.21 مرمل 1.20 مر 1.19 1.18 1.17

1.16

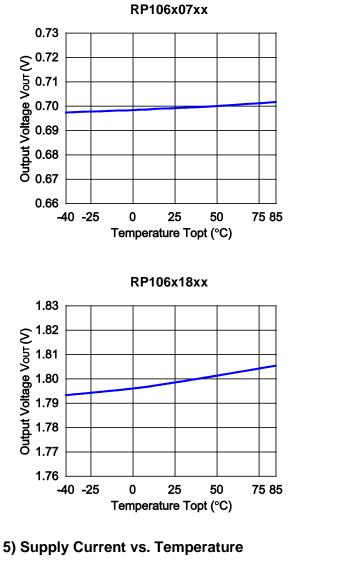
-40 -25

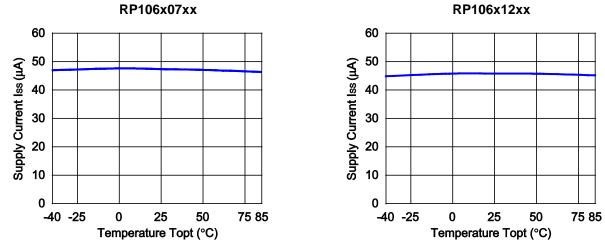
0

25

Temperature Topt (°C)

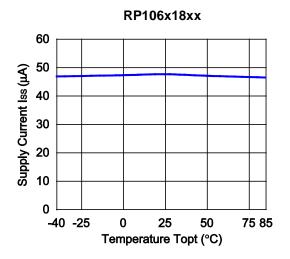
50

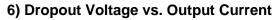

75 85


RP106x12xx

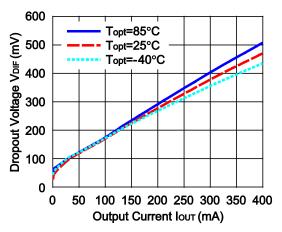
### **RP106x**

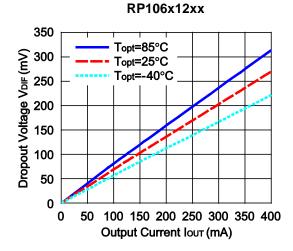
NO.EA-180-200325

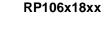

#### 4) Output Voltage vs. Temperature

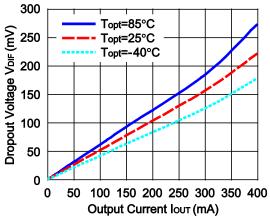






RP106x


NO.EA-180-200325

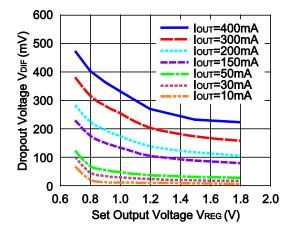


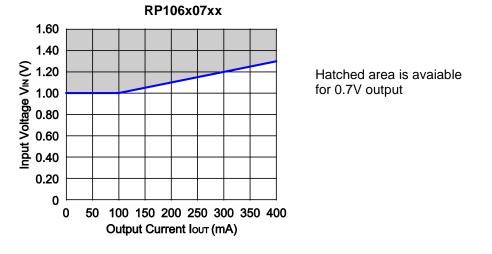




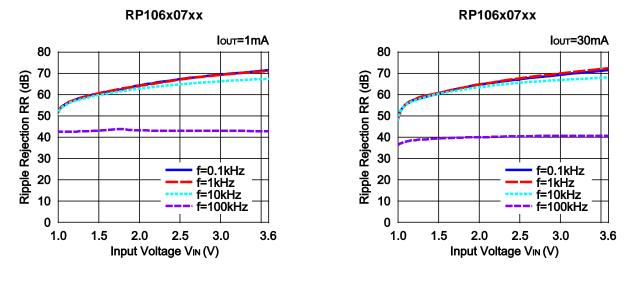






### <u>RP106x</u>

NO.EA-180-200325


### 7) Dropout Voltage vs Set Output Voltage (Topt=25°C)



### 8) Minimum Operating Voltage



9) Ripple Rejection vs. Input Bias Voltage (C1=none, C2=1.0µF, Ripple=0.2Vp-p, Topt=25°C)



#### \* RP106N (SOT-23-5) is the discontinued product as of March 2020.

11111

1

IOUT=1mA

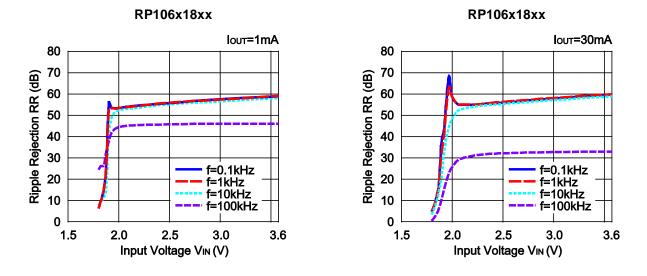
IOUT=30mA

Iout=150mA

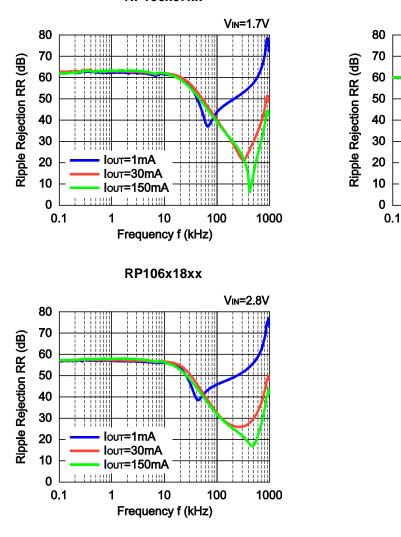
1 1 1 1 1 1 1 1 1

10

Frequency f (kHz)

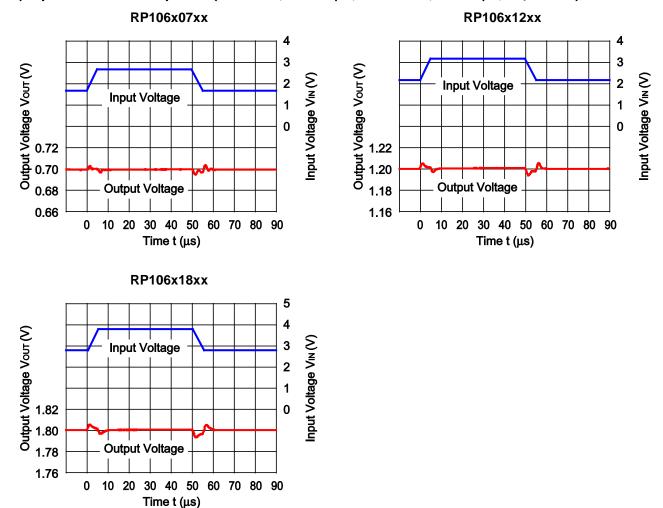

#### **RP106x**

NO.EA-180-200325


VIN=2.2V

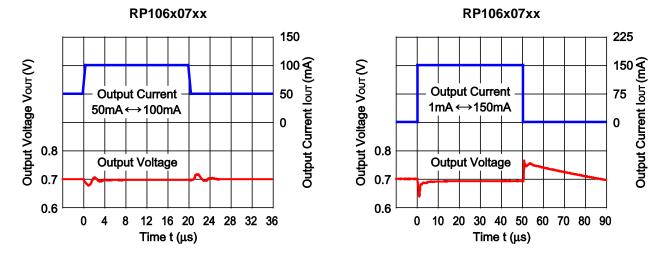
100

1000

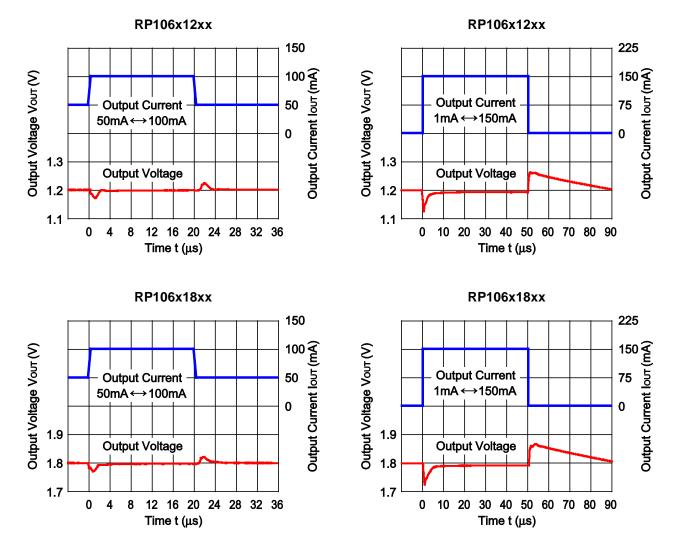



10) Ripple Rejection vs. Frequency (C1=none, C2=1.0μF, Ripple=0.1Vp-p, Topt=25°C) RP106x07xx RP106x12xx

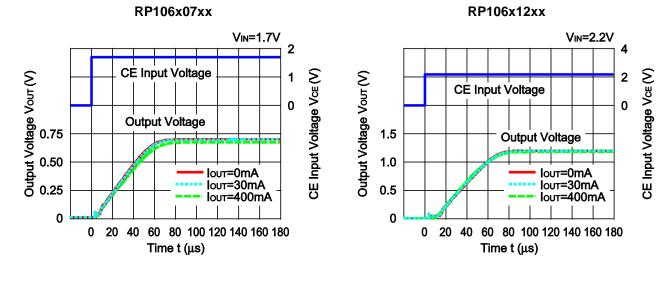



# <u>RP106x</u>

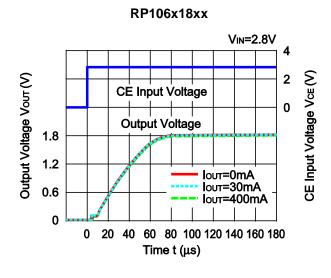
NO.EA-180-200325



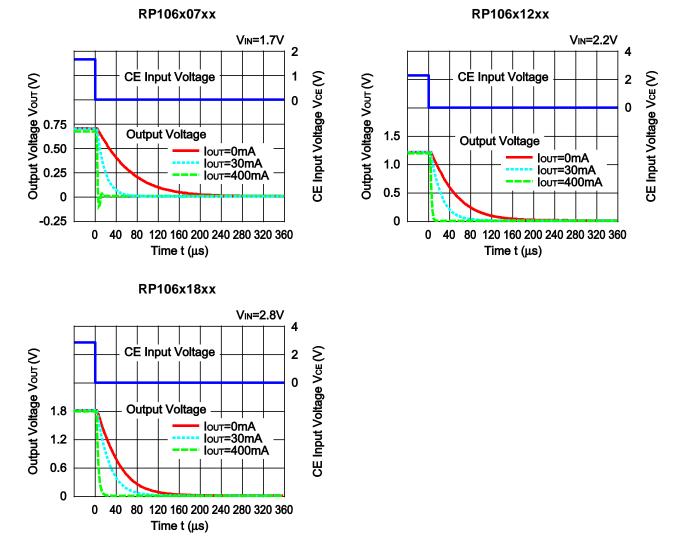

#### 11) Input Transient Response (C1=none, C2=1.0µF, Iout=30mA, tr=tf=5µs, Topt=25°C)


12) Load Transient Response (C1=C2=1.0µF, tr=tf=5µs, Topt=25°C)

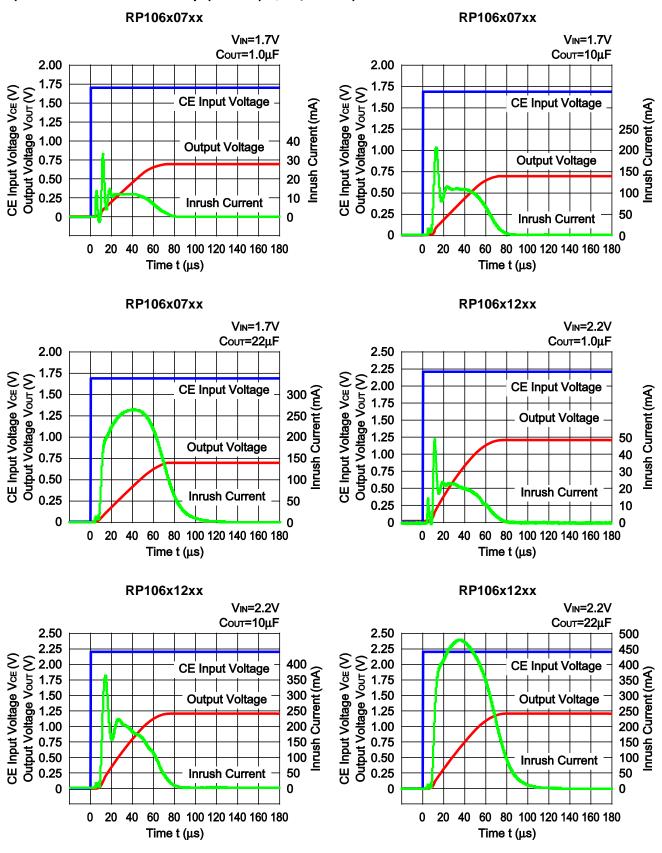



NO.EA-180-200325



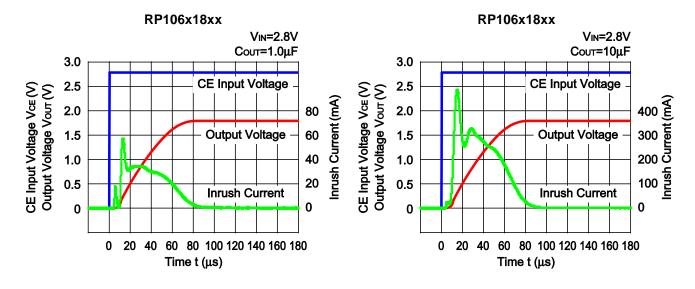

13) Turn On Speed with CE pin (C1=C2=1.0 $\mu$ F, Topt=25°C)

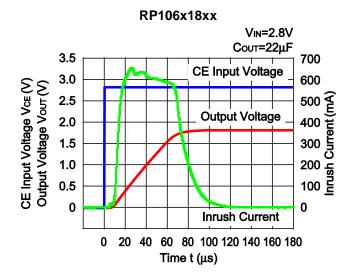



NO.EA-180-200325



14) Turn Off Speed with CE pin (C1=C2=1.0 $\mu$ F, Topt=25°C)





NO.EA-180-200325



# 15) Inrush Current at Start up (C1=1.0μF, Topt=25°C)

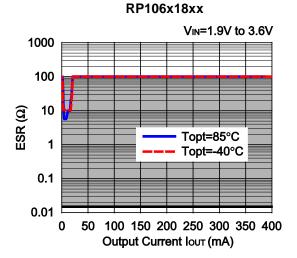
NO.EA-180-200325





NO.EA-180-200325

# **ESR vs. Output Current**


When using these ICs, consider the following points:

The relations between  $I_{OUT}$  (Output Current) and ESR of an output capacitor are shown below. The conditions when the white noise level is under  $40\mu V$  (Avg.) are marked as the hatched area in the graph.

#### **Measurement conditions**

If other than ceramic capacitors such as tantalum, the ESR of the capacitor might be higher than expected. This graph shows the stable area with ESR limit. In the actual evaluation, we used Murata GRM155B31A105KE15, therefore, bias characteristics of the same kind of ceramic capacitors are considered.





- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to our sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of our company.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under our company's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact our sales or our distributor before attempting to use AOI.
- 11. Please contact our sales representatives should you have any questions or comments concerning the products or the technical information.

# **N**SSHNBO

#### Nisshinbo Micro Devices Inc.

#### **Official website**

https://www.nisshinbo-microdevices.co.jp/en/ Purchase information https://www.nisshinbo-microdevices.co.jp/en/buy/

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for LDO Voltage Regulators category:

Click to view products by Nisshinbo manufacturer:

Other Similar products are found below :

AP7363-SP-13 NCV8664CST33T3G L79M05TL-E AP7362-HA-7 PT7M8202B12TA5EX TCR3DF185,LM(CT TLF4949EJ NCP4687DH15T1G NCV8703MX30TCG LP2951CN NCV4269CPD50R2G AP7315-25W5-7 NCV47411PAAJR2G AP2111H-1.2TRG1 ZLDO1117QK50TC AZ1117ID-ADJTRG1 NCV4263-2CPD50R2G NCP706ABMX300TAG NCP114BMX075TCG MC33269T-3.5G TLE4471GXT AP7315-33SA-7 NCV4266-2CST33T3G NCP715SQ15T2G NCV8623MN-50R2G NCV563SQ18T1G NCV8664CDT33RKG NCV4299CD250R2G NCP715MX30TBG NCV8702MX25TCG TLE7270-2E NCV562SQ25T1G AP2213D-3.3TRG1 AP2202K-2.6TRE1 NCV8170BMX300TCG NCV8152MX300180TCG NCP700CMT45TBG AP7315-33W5-7 NCP154MX180300TAG AP2113AMTR-G1 NJW4104U2-33A-TE1 MP2013AGG-5-P NCV8775CDT50RKG NJM2878F3-45-TE1 S-19214B00A-V5T2U7 S-19214B50A-V5T2U7 S-19213B50A-V5T2U7 S-19214BC0A-E8T1U7\*1 S-19213B00A-V5T2U7 S-19213B33A-V5T2U7