RICOH

RP108J Series

Low Input Voltage 3A LDO Regulator

NO.EA-203-201216

OUTLINE

The RP108J is a CMOS-based voltage regulator IC featuring 3A output with low ON-resistance.

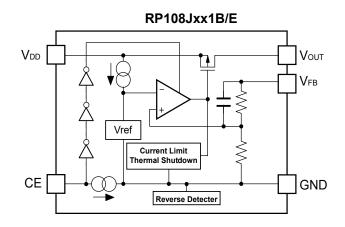
The RP108J consists of a voltage reference unit, an error amplifier, resistor-net for voltage setting, a fold-back protection circuit, and a thermal shutdown circuit. The RP108J features both low supply current and high output current, and the dropout voltage is much smaller than bi-polar's. The minimum input voltage is as low as 1.6V and the output voltage can be set from 0.8V, therefore it can be connected with the DC/DC converter as the latter power supply for high density LSI that is operated by low output voltage.

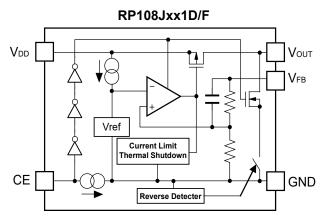
The output voltage of RP108J081x is externally adjustable by using external divide resistors. The CE pin of the RP108J can switch the regulator to standby mode. In addition to a fold-back protection circuit, which is already built in the conventional regulators, The RP108J contains a thermal shutdown circuit, a constant slope circuit as a soft-start function and a reverse current protection circuit. Ceramic capacitors can be used.

FEATURES

Output Current	Min. 3A
Supply Current	
Standby Current	
Input Voltage Range	1.6V to 5.25V
	Fixed Output Voltage Type: 0.8V to 4.2V (0.1V steps)
	* Refer to MARK INFORMATIONS for other voltages.
	Adjustable Output Voltage Type: 0.8V to 4.2V
Output Voltage Accuracy	±1.0% (±15mV accuracy, When V _{SET} ≤ 1.5V)
Output Voltage Temperature-drift Coefficient	Typ. ±100ppm/°C
Ripple Rejection	Typ. 65dB (f = 1kHz, V _{SET} = 2.8V)
Dropout Voltage	
Line Regulation	
Package	
Built-in Fold-back Protection Circuit	
Built-in Thermal Shutdown Circuit	Stops at 165°C
Built-in Constant Slope Circuit	·
Built-in Reverse Current Protection Circuit	

APPLICATIONS


- Power source for battery-powered equipments.
- Power source for portable communication equipments such as cameras and VCRs.


Ceramic capacitors are recommended to be used with this IC···· 10μF or more

• Power source for electrical home appliances.

NO.EA-203-201216

BLOCK DIAGRAMS

SELECTION GUIDE

The output voltage, auto discharge function, and the soft-start time for the ICs can be selected at the user's request.

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
RP108Jxx1*(y) -T1-FE	TO-252-5-P2	3,000 pcs	Yes	Yes

xx: The set output voltage (V_{SET}) can be designated in the range of 0.8V(08) to 4.2V(42) in 0.1V steps.

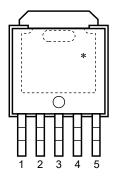
y: If the output voltage includes the 3rd digit, indicate the digit of 0.01V.

(1.25V, 1.85V, 2.85V)

Ex. If the output voltage is 1.25V, RP108J121*5-T1-FE.

If the output voltage is 1.85V, RP108J181*5-T1-FE.

If the output voltage is 2.85V, RP108J281*5-T1-FE.


- *: Designation of auto-discharge function at off state and the soft-start time
 - (B) No auto-discharge function, soft start time typ. 180 µs
 - (D) Auto-discharge function, soft start time typ. 180 µs
 - (E) No auto-discharge function, soft start time typ. 570 μs
 - (F) Auto-discharge function, soft start time typ. 570 μs

Auto-discharge function quickly lowers the output voltage to 0V, when the chip enable signal is switched from the active mode to the standby mode, by releasing the electrical charge accumulated in the external capacitor.

Refer to CONSTANT SLOPE CIRCUIT for detailed information on the difference of soft-start time and its effect.

PIN DESCRIPTIONS

TO-252-5-P2

Pin No.	Symbol	Description
1	CE	Chip Enable Pin ("H" Active)
2	V_{DD}	Input Pin
3	GND	Ground Pin
4	Vouт	Output Pin
5	V _{FB}	Feedback Pin

^{*1} The tab on the bottom of the package enhances thermal performance and is electrically connected to GND (substrate level). It is recommended that the tab be connected to the ground plane on the board, or otherwise be left floating.

The V_{OUT} pin should be connected to the V_{FB} pin when using RP108J as an internal fixed output voltage type. In case of using RP108J as an external adjustable type, please refer to "Adjustable Output Voltage Type Settings".

RP108J

NO.EA-203-201216

ABSOLUTE MAXIMUM RATINGS

Symbol	Item		Rating	Unit
Vin	Input Voltage		6.0	V
Vce	Input Voltage (CE Input Pin)		-0.3 to 6.0	V
V _{FB}	Input Voltage (V _{FB} Pin)		-0.3 to 6.0	V
V _{OUT}	Output Voltage		−0.3 to V _{IN} +0.3	V
Б	Power Dissipation (TO-252-5- High Wattage Land Pattern		3800	\ /
P□	P2)*1 Standard Land Pattern		1900	mV
Та	Operating Temperature		-40 to 85	°C
Tstg	Storage Temperature		-55 to 125	°C

^{*1} For Power Dissipation, please refer to *PACKAGE INFORMATION*.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings are not assured.

ELECTRICAL CHARACTERISTICS

V_{IN} = V_{SET} +1.0 V , I_{OUT} =1 mA , C_{IN} = C_{OUT} =	10μF, unless otherwise noted.
The specifications surrounded by	are guaranteed by design engineering at - 40°C ≤ Ta ≤85°C.

RP108Jxx1B/D/E/F (Ta=25°C)

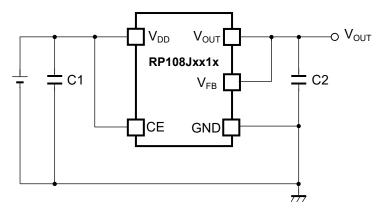
Symbol	Item	Condition	s	Min.	Тур.	Max.	Unit
		T 0500	V _{SET} > 1.5V	×0.99		×1.01	V
\	Outent Valta na	Ta = 25°C	V _{SET} ≤ 1.5V	-15		15	mV
Vout	Output Voltage	4000 × T- × 0500	V _{SET} > 1.5V	×0.97		×1.02	V
		-40°C ≤ Ta ≤ 85°C	V _{SET} ≤ 1.5V	-45		30	mV
I _{LIM}	Output Current Limit			3.0			Α
ΔV_OUT	Load regulation	1mA≤ I _{OUT} ≤ 300mA		-15	2.0	20	mV
Δl оит	Load regulation	1mA≤ I _{OUT} ≤ 3000mA		-70	3.0	50	IIIV
V_{DIF}	Dropout Voltage	Please refer	to Dropout Vol	<i>tage</i> on t	he next إ	page.	
Iss	Supply Current	I _{OUT} = 0mA			350	500	μΑ
Istandby	Standby Current	V _{CE} = 0V			2.0	5.0	μΑ
ΔV_{OUT} / ΔV_{IN}	Line Regulation	$V_{SET} + 0.5V \le V_{IN} \le 5.25V$, $I_{OUT} = 1mA$ (When $V_{SET} \le 1.1V$, $V_{IN} = 1.6V$)			0.10	0.15	%/V
V_{IN}	Input Voltage*1			1.6		5.25	V
RR	Ripple Rejection	f = 1kHz, Ripple 0.2Vp-p	V _{SET} ≤ 2.8V		65		dB
IXIX	Ripple Rejection	I _{OUT} =100mA	V _{SET} > 2.8V		55		dB
ΔV _{ΟUT} /Δ Ta	Output Voltage Temperature Coefficient	-40°C ≤ Ta ≤ 85°C			±100		ppm /°C
Isc	Short Current Limit	V _{OUT} = 0V			220		mA
I_{PD}	CE Pull-down Current				0.3	0.6	μΑ
V_{CEH}	CE Input Voltage "H"			1.0			V
V_{CEL}	CE Input Voltage "L"					0.4	V
en	Output Noise	BW = 10Hz to 100kHz			70		μVrms
T _{TSD}	Thermal Shutdown Temperature	Junction Temperature			165		°C
T _{TSR}	Thermal Shutdown Released Temperature	Junction Temperature			95		°C
R _{Low}	Auto-discharge Nch Tr. ON Resistance (D/F version)	V _{IN} = 4.0V, V _{CE} = 0V			30		Ω
I_{REV}	Reverse Current Limit	$V_{OUT} > 0.5V$, $0V \le V_{IN} \le$	5.25V		10		μΑ

All test items listed under *Electrical Characteristics* are done under the pulse load condition (Tj ≈ Ta = 25°C) except Ripple Rejection, Output Voltage Temperature Coefficient, Output Noise and Thermal Shutdown.

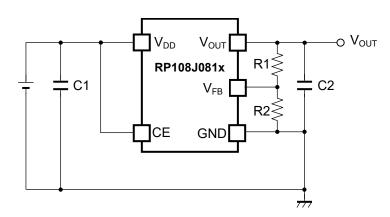
^{*1} The maximum input voltage listed under *Electrical Characteristics* is 5.25V. If for any reason the input voltage exceeds 5.25V, it has to be no more than 5.5V with 500 cumulative operating hours.

RP108J
NO.EA-203-201216
The specifications surrounded by are guaranteed by design engineering at - 40°C ≤ Ta ≤85°C.

Dropout Voltage by Output Voltage


(Ta=25°C)

Output Voltage	Dropout Voltage VDIF (V)		
V _{SET} (V)	Condition	Тур.	Max.
0.8 ≤ V _{SET} < 0.9		0.910	1.110
0.9 ≤ V _{SET} < 1.0		0.865	1.000
1.0 ≤ V _{SET} < 1.1		0.810	0.950
1.1 ≤ V _{SET} < 1.2	Jan 2000m A	0.755	0.895
1.2 ≤ V _{SET} < 1.5	Iо∪т=3000mA	0.720	0.840
1.5 ≤ V _{SET} < 2.5		0.630	0.760
2.5 ≤ V _{SET} < 3.3		0.510	0.600
3.3 ≤ V _{SET} ≤ 4.2		0.480	0.560


RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

TYPICAL APPLICATIONS

Typical Application

Typical application for adjustable output voltage type

External Components:

Symbol	Descriptions
C1, C2	10μF (Ceramic), CM21X7R106M06AB, KYOCERA

RP108J

NO.EA-203-201216

TECHNICAL NOTES

When using the RP108J as an internally fixed output voltage type, please connect the V_{OUT} pin to the V_{FB} pin. However, when using it as the Adjustable Output Voltage Type, The output voltage of the externally adjustable output voltage type should be set to 4.2V or less. Also, total resistors value of R1 and R2 should be $20k\Omega$ or less.

Phase Compensation

In the IC, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, use a 10µF or more capacitor C2.

In case of using a tantalum capacitor and its ESR is large, the output may be unstable. Therefore, select C2 carefully considering its frequency characteristics.

The recommended temperature characteristics for C1 and C2 capacitors are the followings.

- B Characteristics: Temperature range from -25°C to 85°C, Capacitance change of ±10%
- X5R Characteristics: Temperature range from −55°C to 85°C, Capacitance change of ±15%
- X7R Characteristics: Temperature range from −55°C to 125°C, Capacitance change of ±15%

The recommended capacitor's tolerable voltage is twice as large as the voltage of use (C1: Input voltage,

C2: Output voltage). The upper limit of the capacitance value for C2 is $100\mu F$.

However, the increase of C2 leads to the increase of inrush current. Refer to CONSTANT SLOPE CIRCUIT for detailed information.

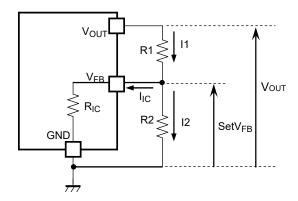
PCB Layout

Make V_{DD} and GND lines sufficient. If their impedance is high, noise pickup or unstable operation may result. Connect a capacitor C1 with a capacitance value as much as $10\mu F$ or more between V_{DD} and GND pin, and as close as possible to the pins.

Set external components, especially the output capacitor C2, as close as possible to the ICs and make wiring as short as possible.

Transient Response

When using the Adjustable Output Voltage Type, the transient response could be affected by the external resistors. Evaluate the circuit taking the actual conditions of use into account.


ADUSTABLE OUTPUT VOLTAGE TYPE SETTINGS

Output Voltage Setting Method

RP108J081x can be adjusted the output voltage by using the external divider resistors.

If the V_{FB} voltage fixed into the IC is described as $SetV_{FB}$, the output voltage can be set by using the following equations

SetV_{FB} is equal to 0.8V. The V_{OUT} pin of RP108J081x should be connected to the V_{FB} pin.

I1= I _{IC} + I2	(1)
I1= I _{IC} + I2 I2= SetV _{FB} / R2	(2)
Thus,	
I1= I _{IC} + SetV _{FB} /R2	(3)
Therefore,	
$V_{OUT}=$ Set $V_{FB} \times R1 \times I1$	(4)
Put Equation (3) into Equation (4), then	
Vout	= SetV _{FB} + R1(I _{IC} + SetV _{FB} / R2)
= $SetV_{FB} \times (1+R1/R2) + R1 \times I_{IC}$	(5)
In Equation (5), R1x I _{IC} is the error-causing factor in V _{OUT} .	
As for I _{IC} ,	
I _{IC} = SetV _{FB} / R _{IC}	(6)
Therefore, the error-causing factor R1x lic can be described as follows.	
$R1 \times I_{IC}$ = $SetV_{FB} \times R1 / R_{IC}$	$= R1 \times SetV_{FB} / R_{IC}$
$=$ SetV _{FB} \times R1 / R _{IC}	(7)
For better accuracy, choosing R1 (< <r<sub>IC) reduces this error.</r<sub>	
Without the error-causing factor R1x I_{IC} , the output voltage can be calculated V_{OUT} = Set $V_{FB} \times ((R1 + R2) / R2)$	

R_{IC} of RP108J is approximately Typ.1.6MΩ (Ta=25°C, this value is guaranteed by design.).

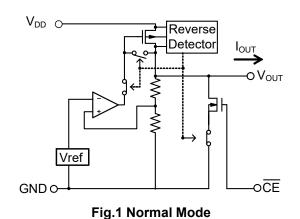
The value could be affected by the temperature, therefore evaluate the circuit taking the actual conditions of use into account.

NO.EA-203-201216

REVERSE CURRENT PROTECTION CIRCUIT

The RP108J includes a Reverse Current Protection Circuit, which stops the reverse current from V_{OUT} pin to V_{DD} pin or to GND pin when V_{OUT} becomes higher than V_{IN} .

Usually, the LDO using Pch output transistor contains a parasitic diode between V_{DD} pin and V_{OUT} pin. Therefore, if V_{OUT} is higher than V_{IN} , the parasitic diode becomes forward direction. As a result, the current flows from V_{OUT} pin to V_{DD} pin.


The RP108J switches the mode to the reverse current protection mode before V_{IN} becomes lower than V_{OUT} by connecting the parasitic diode of Pch output transistor to the backward direction, and connecting the gate to V_{OUT} pin. As a result, the Pch output transistor is turned off and the all the current pathways from V_{OUT} pin to GND pin are shut down to maintain the reverse current lower than $10\mu A$.

Switching to either the normal mode or to the reverse current protection mode is determined by the magnitude of V_{IN} voltage and V_{OUT} voltage. For the stable operation, offset and hysteresis are set as the threshold. Offset is set to 30mV (Typ.25°C) and hysteresis is set to 5mV (Typ.25°C).

Therefore, the minimum dropout voltage under the small load current condition is restricted by the value of 35mV (Typ.25°C).

Fig.1 and Fig.2 show the diagrams of each mode, and Fig.3 shows the load characteristics of each mode. When giving the V_{OUT} pin a constant-voltage and decreasing the V_{IN} voltage, the dropout voltage will become lower than 30mV (Typ.25°C). As a result, the reverse current protection starts to function to stop the load current. By increasing the dropout voltage higher than 35mV (Typ.25°C), the protection mode will be released to let the load current to flow. If the dropout voltage to be used is lower than 30mV (Typ.25°C), the detection and the release may be repeated.

 V_{DD} \bigcirc

GND O OCE

Reverse

Fig.2 Reverse Current Protection Mode

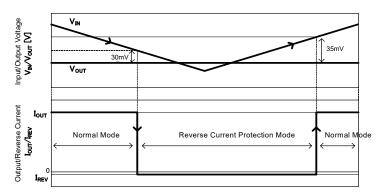
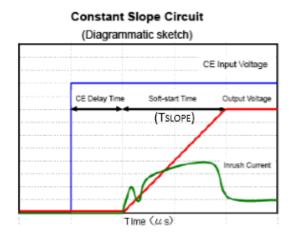


Fig. 3 Reverse Current Protection Mode Detection/ Release & Reverse Current/ Output Current Characteristics

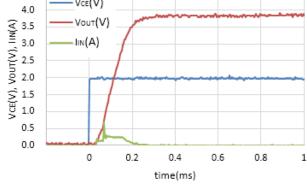
CONSTANT SLOPE CIRCUIT (RP108Jxx1B/xx1D)

RP108Jxx1B/xx1D has a Constant Slope Circuit (soft-start circuit) which allows the output voltage to start-up gradually. The capacitor to create the start-up slope is built-in the IC so that it does not require any external components. The upper limit of inrush current during the start-up is controlled by the short current ISC and the output current limit ILIM.

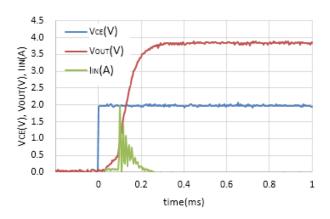

In the following characteristics $C_{OUT} = 10 \mu F$ ($R_{LOAD} = 380\Omega$), the inrush current I_{RUSH} is not controlled by the short current ISC and the output current limit ILIM. Therefore the output voltage rises with the soft-start time (T_{SLOPE}) set inside IC, and it enables to control the overshoot of the output voltage and the inrush current. T_{SLOPE} is typ. 180 μs.

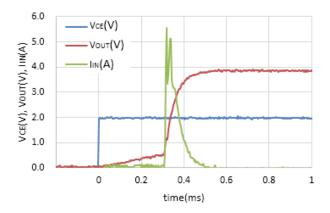
In the characteristics Cout = 20 μF, IRUSH at the low output voltage is controlled by the short current ISC. After the current is released from ISC, the output voltage rises with the soft-start time (T_{SLOPE}).

In the characteristics Cout = 100 μF, IRUSH at the low output voltage is controlled by the short current ISC. After the current is released from ISC, it is controlled by the output current limit. The output voltage rises with the soft-start time (TSLOPE) or longer.


The relation of the inrush current and the constant slope depends on the output voltage since the inrush current is a sum of the charge current of Cout and the load current. Use RP108Jxx1E/xx1F to avoid an influence on peripheral components due to the inrush current generated in the use environment conditions (Cout and output voltage).

RP108J381B/D Inrush current characteristics




CIN=4.7 μ F, COUT=10 μ F, Topt=25°C, RLOAD=380 Ω

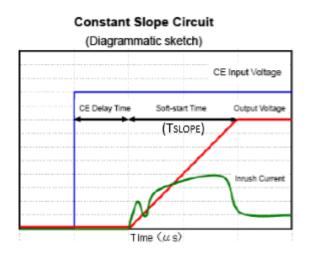
CIN=4.7 μ F, COUT=20 μ F, Topt=25°C, RLOAD=380 Ω

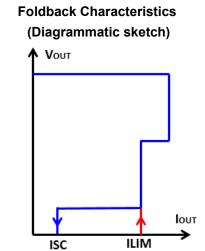
CIN=4.7 μ F, COUT=100 μ F, Topt=25°C, RLOAD=380 Ω

NO.EA-203-201216

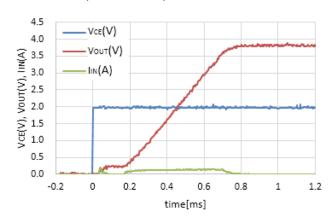
CONSTANT SLOPE CIRCUIT (RP108Jxx1E/xx1F)

RP108Jxx1E/xx1F has a constant slope circuit (soft-start circuit) which allows the output voltage to start-up gradually. The capacitor to create the start-up slope is built-in the IC so that it does not require any external components. The upper limit of inrush current during the start-up is controlled by the output current limit ILIM.

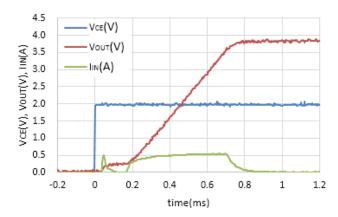

As shown in the following Foldback Characteristics, the inrush current is not controlled by the short current ISC during the soft-start time at the start-up. Therefore the output voltage rises with the soft-start time (T_{SLOPE}) set inside IC, and it enables to control the overshoot of the output voltage and the inrush current. T_{SLOPE} is typ. 570 μ s (max. 900 μ s/85°C). Use RP108Jxx1B/xx1D to avoid an influence on peripheral components due to the output start-up time is slow in the system.


In the characteristics C_{OUT} = 20 μ F, the inrush current is lower or equal to the output current limit ILIM. The output voltage rises with the soft-start time (T_{SLOPE}).

Similarly in the characteristics C_{OUT} = 100 μ F, the inrush current is lower or equal to the output current limit ILIM. The output voltage rises with the soft-start time (T_{SLOPE}).


The relation of the inrush current and the constant slope depends on the output voltage since the inrush current is a sum of the charge current of C_{OUT} and the load current.

RP108J381E/F Inrush current characteristics



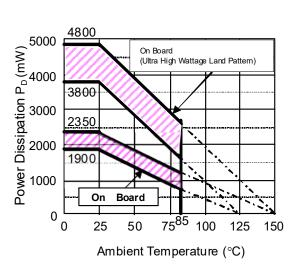
CIN=4.7 μ F, COUT=20 μ F, Topt=25°C, RLOAD=380 Ω

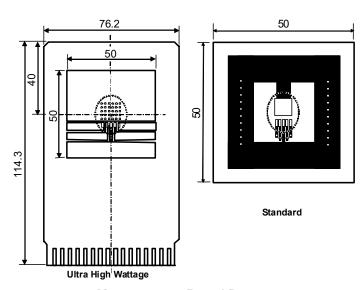
CIN=4.7 μ F, COUT=100 μ F, Topt=25°C, RLOAD=380 Ω

PACKAGE INFORMATION

Power Dissipation (TO-252-5-P2)

Power Dissipation (P_D) depends on conditions of mounting on board. This specification is based on the Measurement Conditions below.

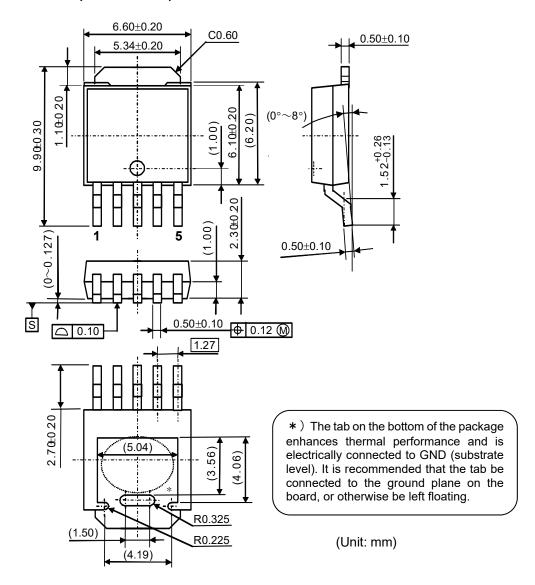

Measurement conditions


	Ultra High Wattage Land Pattern	Standard Land Pattern	
Environment	Mounting on board (Wind velocity 0m/s)		
Board Material	Glass cloth epoxy plastic (Four-layers) Glass cloth epoxy plastic (Double layers)		
Board Dimensions	76.2mm x 114.3mm x 0.8mm	50mm x 50mm x 1.6mm	
Copper Ratio	Top, Back side: 50mm Square, Approx.96%, 2 nd , 3 rd Layer: 50mm Square, Approx.100%	Top side: Approx. 50%, Back side: Approx. 50%	
Through - Hole	φ 0.4mm x 30pcs	φ 0.5mm x 24pcs	

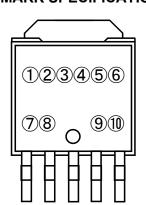
Measurement Results

(Ta=25°C, Tjmax=125°C)

	Ultra High Wattage Land Pattern	Standard Land Pattern
Power Dissipation	3800mW	1900mW
Thermal Desistance	θja= (125-25°C)/3.8W = 26°C/W	θja=(125-25°C)/1.9W= 53°C/W
Thermal Resistance	θjc= 7°C/W	θjc= 17°C/W


Power Dissipation

Measurement Board Pattern IC Mount Area (Unit: mm)


The above graph shows the Power Dissipation of the package based on Tjmax=125°C and Tjmax=150°C. Operating the IC in the shaded area in the graph might have an influence its lifetime. Operating time must be within the time limit described in the table below, in case of operating in the shaded area.

Operating Time	Estimated years (Operating 4 hours/day)	
13,000 hours	9 years	

• PACKAGE DIMENSIONS (TO-252-5-P2)

• MARK SPECIFICATION (TO-252-5-P2)

①②③④⑤⑥⑦⑧: Product Code...Refer to MARK SPECIFICATION TABLE ⑨⑩: Lot Number ... Alphanumeric Serial Number

RP108J Mark Specification Table (TO-252-5-P2)

RP108Jxx1B

Part Number	02345678	V _{SET}
RP108J081B	E1J081B	V8.0
RP108J091B	E1J091B	0.9V
RP108J101B	E1J101B	1.0V
RP108J111B	E1J111B	1.1V
RP108J121B	E1J121B	1.2V
RP108J131B	E1J131B	1.3V
RP108J141B	E1J141B	1.4V
RP108J151B	E1J151B	1.5V
RP108J161B	E1J161B	1.6V
RP108J171B	E1J171B	1.7V
RP108J181B	E1J181B	1.8V
RP108J191B	E1J191B	1.9V
RP108J201B	E1J201B	2.0V
RP108J211B	E1J211B	2.1V
RP108J221B	E1J221B	2.2V
RP108J231B	E1J231B	2.3V
RP108J241B	E1J241B	2.4V
RP108J251B	E1J251B	2.5V
RP108J261B	E1J261B	2.6V
RP108J271B	E1J271B	2.7V
RP108J281B	E1J281B	2.8V
RP108J291B	E1J291B	2.9V
RP108J301B	E1J301B	3.0V
RP108J311B	E1J311B	3.1V
RP108J321B	E1J321B	3.2V
RP108J331B	E1J331B	3.3V
RP108J341B	E1J341B	3.4V
RP108J351B	E1J351B	3.5V
RP108J361B	E1J361B	3.6V
RP108J371B	E1J371B	3.7V
RP108J381B	E1J381B	3.8V
RP108J391B	E1J391B	3.9V
RP108J401B	E1J401B	4.0V
RP108J411B	E1J411B	4.1V
RP108J421B	E1J421B	4.2V
RP108J121B5	E1J121B5	1.25V
RP108J181B5	E1J181B5	1.85V
RP108J281B5	E1J281B5	2.85V

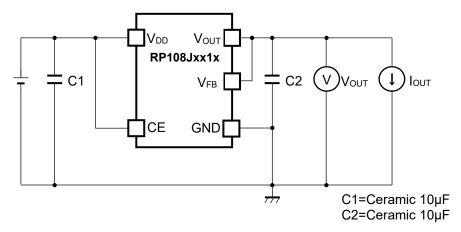
RP108Jxx1D

Part Number	02345678	V _{SET}
RP108J081D	E1J081D	0.8V
RP108J091D	E1J091D	0.9V
RP108J101D	E1J101D	1.0V
RP108J111D	E1J111D	1.1V
RP108J121D	E1J121D	1.2V
RP108J131D	E1J131D	1.3V
RP108J141D	E1J141D	1.4V
RP108J151D	E1J151D	1.5V
RP108J161D	E1J161D	1.6V
RP108J171D	E1J171D	1.7V
RP108J181D	E1J181D	1.8V
RP108J191D	E1J191D	1.9V
RP108J201D	E1J201D	2.0V
RP108J211D	E1J211D	2.1V
RP108J221D	E1J221D	2.2V
RP108J231D	E1J231D	2.3V
RP108J241D	E1J241D	2.4V
RP108J251D	E1J251D	2.5V
RP108J261D	E1J261D	2.6V
RP108J271D	E1J271D	2.7V
RP108J281D	E1J281D	2.8V
RP108J291D	E1J291D	2.9V
RP108J301D	E1J301D	3.0V
RP108J311D	E1J311D	3.1V
RP108J321D	E1J321D	3.2V
RP108J331D	E1J331D	3.3V
RP108J341D	E1J341D	3.4V
RP108J351D	E1J351D	3.5V
RP108J361D	E1J361D	3.6V
RP108J371D	E1J371D	3.7V
RP108J381D	E1J381D	3.8V
RP108J391D	E1J391D	3.9V
RP108J401D	E1J401D	4.0V
RP108J411D	E1J411D	4.1V
RP108J421D	E1J421D	4.2V
RP108J121D5	E1J121D5	1.25V
RP108J181D5	E1J181D5	1.85V
RP108J281D5	E1J281D5	2.85V

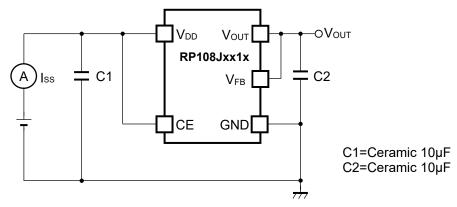
RP108J

NO.EA-203-201216

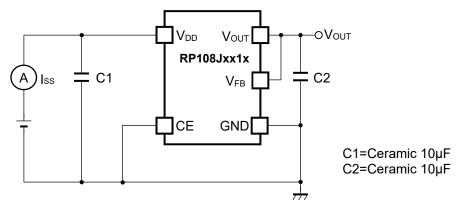
RP108Jxx1E


Part Number	02345678	V _{SET}
RP108J081E	E1J081E	0.8V
RP108J091E	E1J091E	0.9V
RP108J101E	E1J101E	1.0V
RP108J111E	E1J111E	1.1V
RP108J121E	E1J121E	1.2V
RP108J131E	E1J131E	1.3V
RP108J141E	E1J141E	1.4V
RP108J151E	E1J151E	1.5V
RP108J161E	E1J161E	1.6V
RP108J171E	E1J171E	1.7V
RP108J181E	E1J181E	1.8V
RP108J191E	E1J191E	1.9V
RP108J201E	E1J201E	2.0V
RP108J211E	E1J211E	2.1V
RP108J221E	E1J221E	2.2V
RP108J231E	E1J231E	2.3V
RP108J241E	E1J241E	2.4V
RP108J251E	E1J251E	2.5V
RP108J261E	E1J261E	2.6V
RP108J271E	E1J271E	2.7V
RP108J281E	E1J281E	2.8V
RP108J291E	E1J291E	2.9V
RP108J301E	E1J301E	3.0V
RP108J311E	E1J311E	3.1V
RP108J321E	E1J321E	3.2V
RP108J331E	E1J331E	3.3V
RP108J341E	E1J341E	3.4V
RP108J351E	E1J351E	3.5V
RP108J361E	E1J361E	3.6V
RP108J371E	E1J371E	3.7V
RP108J381E	E1J381E	3.8V
RP108J391E	E1J391E	3.9V
RP108J401E	E1J401E	4.0V
RP108J411E	E1J411E	4.1V
RP108J421E	E1J421E	4.2V
RP108J121E5	E1J121E5	1.25V
RP108J181E5	E1J181E5	1.85V
RP108J281E5	E1J281E5	2.85V

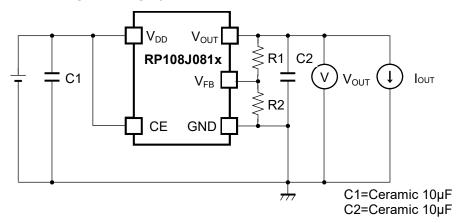
RP108Jxx1F

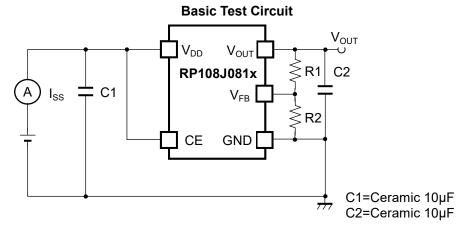

Part Number	02345678	V _{SET}
RP108J081F	E1J081F	V8.0
RP108J091F	E1J091F	0.9V
RP108J101F	E1J101F	1.0V
RP108J111F	E1J111F	1.1V
RP108J121F	E1J121F	1.2V
RP108J131F	E1J131F	1.3V
RP108J141F	E1J141F	1.4V
RP108J151F	E1J151F	1.5V
RP108J161F	E1J161F	1.6V
RP108J171F	E1J171F	1.7V
RP108J181F	E1J181F	1.8V
RP108J191F	E1J191F	1.9V
RP108J201F	E1J201F	2.0V
RP108J211F	E1J211F	2.1V
RP108J221F	E1J221F	2.2V
RP108J231F	E1J231F	2.3V
RP108J241F	E1J241F	2.4V
RP108J251F	E1J251F	2.5V
RP108J261F	E1J261F	2.6V
RP108J271F	E1J271F	2.7V
RP108J281F	E1J281F	2.8V
RP108J291F	E1J291F	2.9V
RP108J301F	E1J301F	3.0V
RP108J311F	E1J311F	3.1V
RP108J321F	E1J321F	3.2V
RP108J331F	E1J331F	3.3V
RP108J341F	E1J341F	3.4V
RP108J351F	E1J351F	3.5V
RP108J361F	E1J361F	3.6V
RP108J371F	E1J371F	3.7V
RP108J381F	E1J381F	3.8V
RP108J391F	E1J391F	3.9V
RP108J401F	E1J401F	4.0V
RP108J411F	E1J411F	4.1V
RP108J421F	E1J421F	4.2V
RP108J121F5	E1J121F5	1.25V
RP108J181F5	E1J181F5	1.85V
RP108J281F5	E1J281F5	2.85V

TEST CIRCUITS

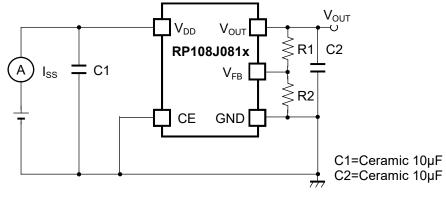

Fixed Output Voltage Type (RP108Jxx1x)

Basic Test Circuit

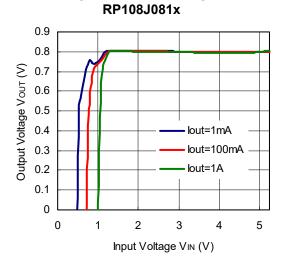

Test Circuit for Supply Current

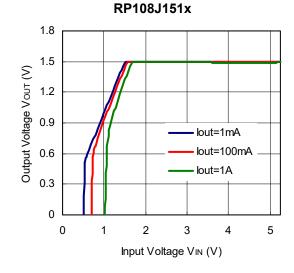


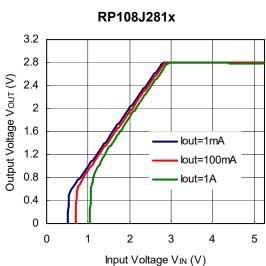
Test Circuit for Standby Current

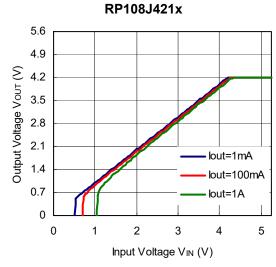

NO.EA-203-201216

Adjustable Output Voltage Setting Type (RP108J081x)

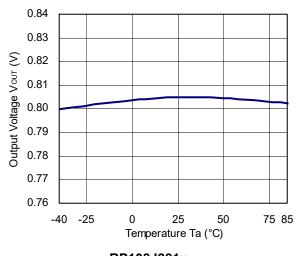

Test Circuit for Standby Current

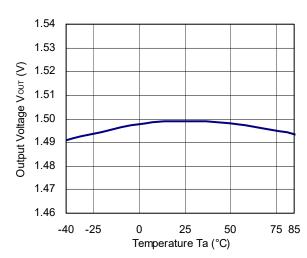

Note: Refer to Adjustable Output Voltage Type Settings for R1 and R2.

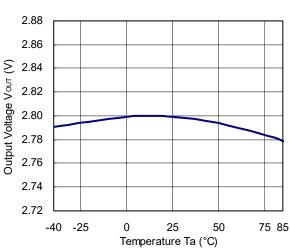

TYPICAL CHARACTERISTICS


Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.

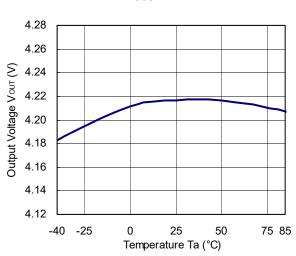
1) Output Voltage vs. Input Voltage (C1=C2=Ceramic10μF, Ta=25°C)

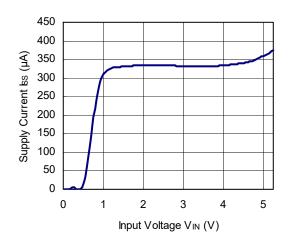




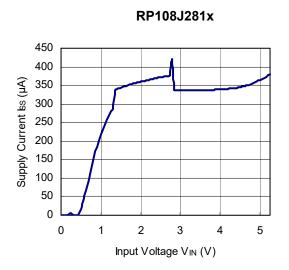


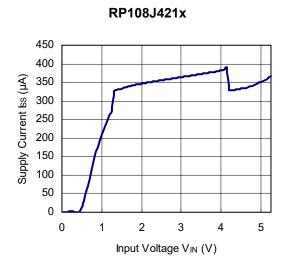
2) Output Voltage vs. Temperature (C1=C2=Ceramic10 μ F, -40°C \leq Ta \leq 85°C) RP108J081x RP108J151x



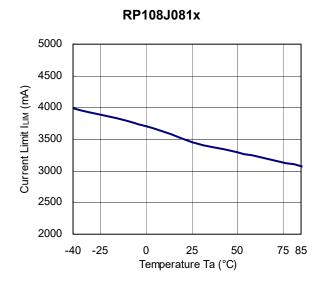

RP108J281x

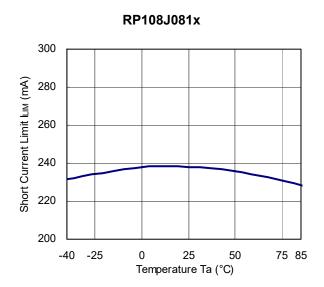
RP108J421x



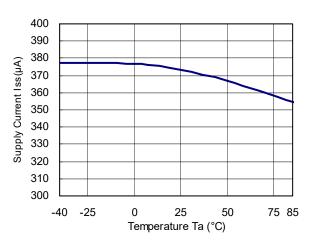

3) Supply Current vs. Input Voltage (C1=C2=Ceramic $10\mu F$, $I_{OUT}=0mA$, Ta=25°C) RP108J081x RP108J151x

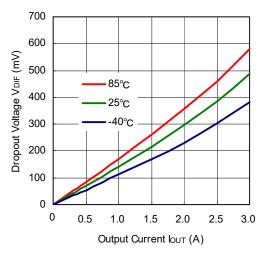
20



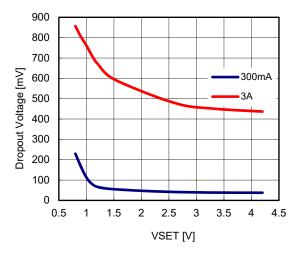


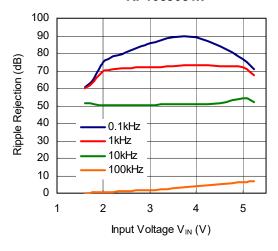

4) Short Current Limit vs. Temperature/ Current Limit vs. Temperature

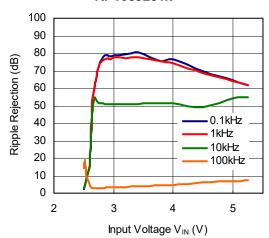

RP108J includes a Fold-back Protection Circuit. Under conditions during a Fold-back Protection Circuit works, Thermal Shutdown Circuit starts to operate in order to prevent the self-heat generation. Therefore, RP108J isn't able to test "Output voltage vs. Output Current".



5) Supply Current vs. Temperature (C1= C2=Ceramic 10 μ F, I $_{OUT}$ =0mA) RP108J081x RP108J151x

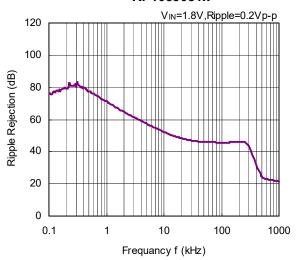


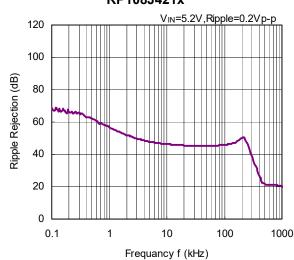

6) Dropout Voltage vs. Output Current (C1=C2=Ceramic $10\mu F$) RP108J251x



7) Dropout Voltage vs. Set Output Voltage (C1=C2=Ceramic $10\mu F$, Ta=25°C) RP108J251x

8) Ripple Rejection vs. Input Voltage (C1=C2=10 μ F, Ripple=0.2Vp-p, I $_{OUT}$ =100 μ A, Ta=25°C) RP108J081x RP108J251x

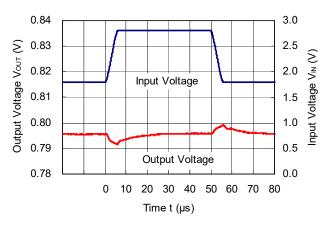


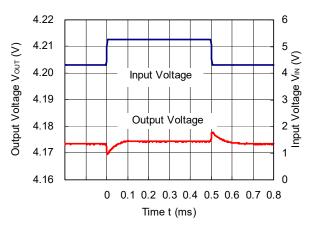


RP108J421x 100 90 0.1kHz 80 1kHz Ripple Rejection (dB) 70 10kHz 100kHz 60 50 40 30 20 10 4.00 4.25 4.50 4.75 5.00 5.25

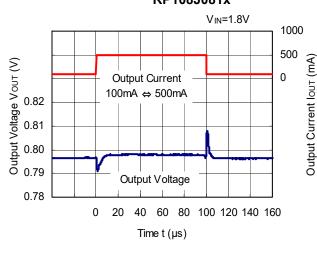
Input Voltage V_{IN} (V)

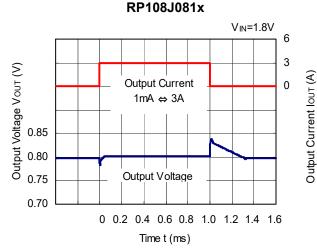
9) Ripple Rejection vs. Frequency (C1=none, C2=10μF, I_{OUT}=100mA, Ta=25°C) RP108J081x RP108J421x

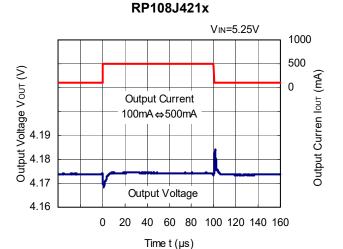


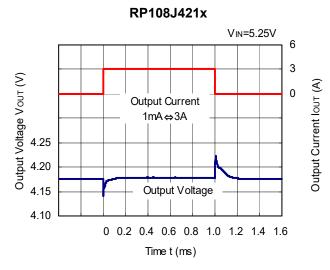


RP108J

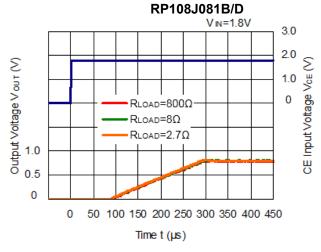

NO.EA-203-201216

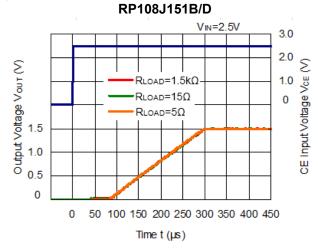

10) Input Transient Response (C1=none, C2=10 μ F, I $_{OUT}$ =30mA, tr=tf=5 μ s, Ta=25°C) RP108J081x RP108J421x

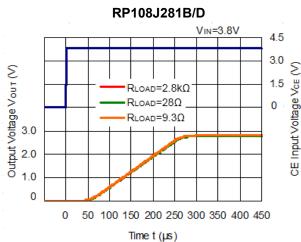


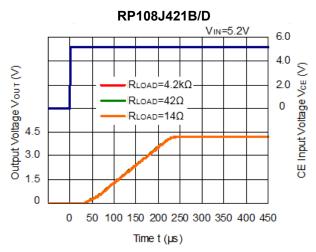


11) Load Transient Response (C1=C2=10 μ F, tr=tf=0.5 μ s, Ta=25°C) RP108J081x

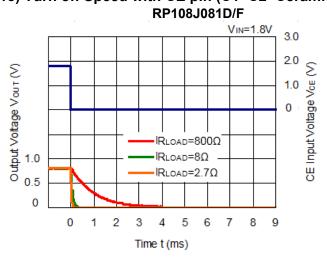


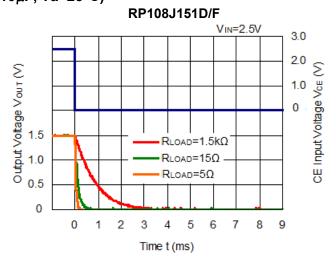


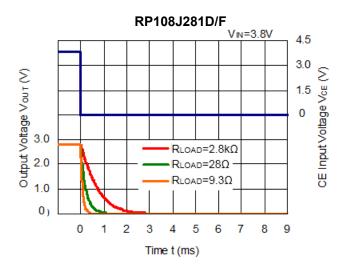


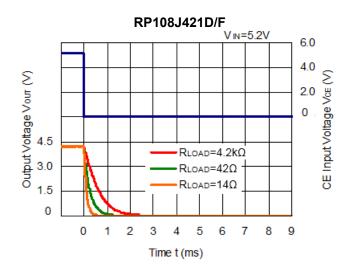


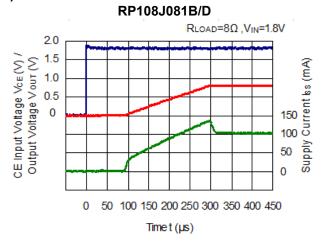
12) Turn on Speed with CE pin (C1=C2=Ceramic 10μF, Ta=25°C)

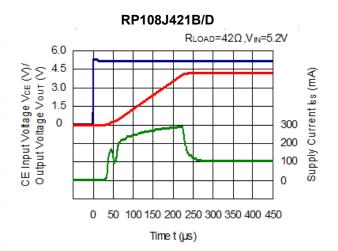





13) Turn off Speed with CE pin (C1=C2=Ceramic 10μF, Ta=25°C)

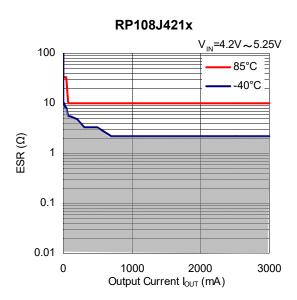



RP108J


NO.EA-203-201216

14) Inrush Current

ESR vs. Output Current


When using the IC, consider the following points: The relations between I_{OUT} (Output Current) and ESR of an output capacitor are shown below. The conditions when the white noise level is under $40\mu V$ (Avg.) are marked as the hatched area in the graph.

Measurement Conditions

Frequency Band : 10Hz to 2MHz Temperature : -40°C to 85°C

C1, C2 :10.0 μ F or more

RP108J081x V_{IN}=1.6V~5.25V 85°C -40°C 0.1 0.1 0 1000 2000 3000 Output Current l_{out} (mA)

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOI.
- 11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment.

Halogen Free

Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

RICOH RICOH ELECTRONIC DEVICES CO., LTD.

Official website https://www.n-redc.co.jp/en/Contact us

https://www.n-redc.co.jp/en/buy/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for LDO Voltage Regulators category:

Click to view products by Nisshinbo manufacturer:

Other Similar products are found below:

AP7363-SP-13 L79M05TL-E TCR3DF185,LM(CT TCR3DF24,LM(CT TCR3DF285,LM(CT TCR3DF31,LM(CT TCR3DF45,LM(CT MP2013GQ-33-Z 059985X NCP4687DH15T1G 701326R TCR2EN28,LF(S NCV8170AXV250T2G TCR3DF27,LM(CT TCR3DF19,LM(CT TCR3DF125,LM(CT TCR2EN18,LF(S AP2112R5A-3.3TRG1 AP7315-25W5-7 IFX30081LDVGRNXUMA1 NCV47411PAAJR2G AP2113KTR-G1 AP2111H-1.2TRG1 ZLDO1117QK50TC AZ1117IH-1.8TRG1 AZ1117ID-ADJTRG1 TCR3DG12,LF MIC5514-3.3YMT-T5 MIC5512-1.2YMT-T5 MIC5317-2.8YM5-T5 SCD7912BTG NCP154MX180270TAG SCD33269T-5.0G NCV8170BMX330TCG NCV8170AMX120TCG NCP706ABMX300TAG NCP153MX330180TCG NCP114BMX075TCG MC33269T-3.5G CAT6243-ADJCMT5T TCR3DG33,LF AP2127N-1.0TRG1 TCR4DG35,LF LT1117CST-3.3 TAR5S15U(TE85L,F) TAR5S18U(TE85L,F) TCR3UG19A,LF TCR4DG105,LF NCV8170AMX360TCG MIC94310-NYMT-T5