RICOH

RP130x-Y Series

Low Noise 150mA LDO Regulator for Industrial Applications

NO.EA-336-200129

OUTLINE

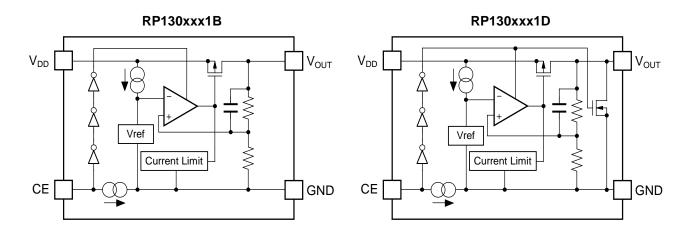
The RP130x is a CMOS-based positive voltage regulator IC with high ripple rejection, low dropout voltage, high output voltage accuracy and extremely low supply current. The RP130x consists of a voltage reference unit, an error amplifier, a resistor network for voltage setting, a short current limit circuit, and a chip enable circuit.

The RP130x has low supply current characteristics in the CMOS process. In addition, the RP130x can supply a low dropout voltage, which becomes the smallest difference between the input voltage and output voltage by having a low on-resistance and also can achieve the battery's long life by a chip enable function.

When compared with the conventional products of high-speed type, the RP130x achieves low consumption current of 38µA (Typ.) while improving the input transient response, the load transient response, and the ripple rejection.

The RP130x supports two package types: DFN(PLP)1010-4 and SOT-23-5. By the adoption of the ultra-compact DFN(PLP)1010-4, the RP130x can achieve a higher density mounting than ever.

This is a high-reliability semiconductor device for industrial applications (-Y) that has passed both the screening at high temperature and the reliability test with extended hours.


FEATURES

•	Input Voltage Range (Max. Rating)······1.7V to 6.5V (7.0V)
•	Operating Temperature Range ·······40°C to 105°C
•	Supply Current·····Typ. 38µA
•	Supply Current (Standby Mode)Typ. 0.1µA
•	Ripple Rejection·····Typ. 80dB (f = 1kHz)
•	Output Voltage Range1.2V, 1.5V, 1.5V, 1.8V, 2.5V, 2.8V, 2.9V, 3.0V,
	3.3V, 3.4V, 3.6V, 4.2V and 5.0V
	Contact Ricoh sales representatives for other voltages.
•	Output Voltage Accuracy
•	Temperature-Drift Coefficient of Output Voltage····Typ. ±20 ppm / °C
•	Dropout VoltageTyp. 0.32V (Iout = 150mA, Vset = 2.8V)
•	Line RegulationTyp. 0.02% / V
•	Packages DFN(PLP)1010-4, SOT-23-5
•	Built-in Fold Back Protection Circuit······Typ. 40mA
•	Recommended Ceramic Capacitors0.47µF or more
•	Output Noise Voltage ······Typ. V _{SET} × 20 [μVrms]
	(BW = $10Hz$ to $100kHz$, $I_{OUT} = 30mA$)

APPLICATIONS

- Industrial equipments such as FAs and smart meters
- Equipments used under high-temperature conditions such as surveillance camera and vending machine
- Equipments accompanied by self-heating such as motor and lighting

BLOCK DIAGRAMS

SELECTION GUIDE

The output voltage, chip-enable polarity, auto-discharge function, and package type for this device can be selected at the user's request.

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
RP130Kxx1*-TR-Y	DFN(PLP)1010-4	10,000pcs	Yes	Yes
RP130Nxx1*-TR-YE	SOT-23-5	3,000pcs	Yes	Yes

xx: Specify the set output voltage (VSET)

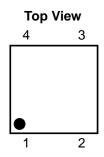
1.2 V (12) / 1.5 V (15) / 1.8 V (18) / 2.5 V (25) / 2.8 V (28) / 2.9 V (29) /

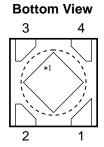
3.0 V (30) / 3.3 V (33) / 3.4 V (34) / 3.6 V (36) / 4.2 V (42) / 5.0 V (50)

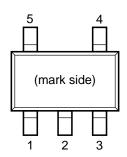
Note: Contact Ricoh sales representatives for other voltages.

*: Specify the desired functions for chip-enable polarity and auto-discharge

B: "H" active / No auto-discharge function


D: "H" active / Auto-discharge function


Auto-Discharge function quickly lowers the output voltage to 0V by releasing the electrical charge in the external capacitor when the chip enable signal is switched from the active mode to the standby mode.


PIN DESCRIPTION

• DFN(PLP)1010-4

• SOT-23-5

DFN(PLP)1010-4

Pin No.	Symbol	Description		
1	Vouт	Output Pin		
2	GND	Ground Pin		
3	CE	Chip Enable Pin ("H" Active)		
4	V _{DD}	Input Pin		

^{*1} The tab on the bottom of the package enhances thermal performance and is electrically connected to GND (substrate level). It is recommended that the tab be connected to the ground plane on the board, or otherwise be left floating.

SOT-23-5

Pin No.	Symbol	Description		
1	V_{DD}	Output Pin		
2	GND	Ground Pin		
3	CE	Chip Enable Pin ("H" Active)		
4	NC	No Connection		
5	V_{OUT}	Output Pin		

ABSOLUTE MAXIMUM RATINGS

Symbol	Item	Rating	Unit
V _{IN} Input Voltage		- 0.3 to 7.0	V
Vce	Input Voltage (CE Pin)	- 0.3 to 7.0	V
Vout Output Voltage		- 0.3 to V _{IN} +0.3	V
I _{OUT} Output Current		200	mA
P _D	Power Dissipation Refer to "PACKAGE INFO		RMATION"
Tj Junction Temperature		- 40 to 125	°C
Tstg Strong Temperature Range		- 55 to 125	°C

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause permanent damage and may degrade the life time and safety for both device and system using the device in the field.

The functional operation at or over these absolute maximum rating is not assured.

RECOMMENDED OPERATING CONDITIONS

Symbol	ltem	Rating	Unit
V_{IN}	Input Voltage	1.7 to 6.5	V
Ta	Operating Temperature Range	- 40 to 105	°C

RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

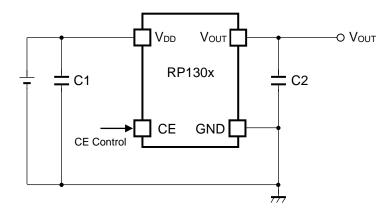
ELECTRICAL CHARACTERISTICS

 $V_{\text{IN}} = V_{\text{SET}} + 1.0 \text{V (}V_{\text{SET}} > 1.5 \text{V)}, \ V_{\text{IN}} = 2.5 \text{V (}V_{\text{SET}} \leq 1.5 \text{V)}, \ I_{\text{OUT}} = 1 \text{mA}, \ C_{\text{IN}} = C_{\text{OUT}} = 0.47 \mu\text{F}, \ \text{unless otherwise noted}.$ The specifications surrounded by ______ are guaranteed by design engineering at - 40°C \leq Ta \leq 105°C.

 $RP130xxx1B/D (Ta = 25^{\circ}C)$

Symbol	Item	Cor	nditio	ns	Min.	Тур.	Max.	Unit	
		Ta = 25°C		V _{SET} > 2.0V	×0.99		×1.01	V	
V	Output Valtage			V _{SET} ≤ 2.0V	- 20		20	mV	
Vоит	Output Voltage	4000 × T- × 40	VE00	V _{SET} > 2.0V	×0.985		×1.015	V	
		- 40°C ≤ Ta ≤ 10	15°C	V _{SET} ≤ 2.0V	- 30		30	mV	
Іоит	Output Current				150			mΑ	
ΔV_{OUT} / ΔI_{OUT}	Load Regulation	1mA ≤ I _{OUT} ≤ 150	mA			10	30	mV	
			1.2	V ≤ V _{SET} < 1.5V		0.67	1.03		
			1.5	V ≤ V _{SET} < 1.7V		0.54	0.84		
	Dropout Voltage		1.7	V ≤ V _{SET} < 2.0V		0.46	0.75		
V_{DIF}		I _{OUT} = 150mA	2.0	V ≤ V _{SET} < 2.5V		0.41	0.63	V	
			2.5	V ≤ V _{SET} < 4.0V		0.32	0.51		
			4.0	V ≤ V _{SET} ≤ 4.2V		0.24	0.39		
				V _{SET} = 5V		0.24	0.31		
Iss	Supply Current	I _{OUT} = 0mA				38	58	μΑ	
Istandby	Supply Current (at Standby)	V _{CE} = 0				0.1	1.0	μA	
ΔV _{OUT} /ΔV _{IN}	Line Regulation	V _{SET} + 0.5V ≤ V _{IN}	, ≤ 6.	5V		0.02	0.10	%/V	
Isc	Short Current Limit	V _{OUT} = 0V				40		mA	
I _{PD}	CE Pull-down Current					0.4		μΑ	
VCEH	CE Input Voltage "H"				1.0			V	
VCEL	CE Input Voltage "L"						0.36	V	
RLOW	Nch ON Resistance for Auto Discharge (D Version Only)	V _{IN} = 4.0V, V _{CE} =	0V			30		Ω	

All test items listed under Electrical Characteristics are done under the pulse load condition (Tj ≈ Ta = 25°C)


NO.EA-336-200129

Product-specific Electrical Characteristics

The specifications surrounded by are guaranteed by design engineering at - 40° C \leq Ta \leq 105°C. (Ta = 25°C)

Product Name	V _{out}	[V] (Ta = :	25°C)	V _{OUT} [V]	(Ta = - 40	to 105°C)	V _{DIF}	[V]
	Min.	Тур.	Max.	Min.	Тур.	Max.	Тур.	Max.
RP130x121x	1.180	1.200	1.220	1.170	1.200	1.230	0.67	1.03
RP130x151x	1.480	1.500	1.520	1.470	1.500	1.530	0.54	0.84
RP130x181x	1.780	1.800	1.820	1.770	1.800	1.830	0.46	0.75
RP130x251x	2.475	2.500	2.525	2.463	2.500	2.538		
RP130x281x	2.772	2.800	2.828	2.758	2.800	2.842		
RP130x291x	2.871	2.900	2.929	2.857	2.900	2.944		
RP130x301x	2.970	3.000	3.030	2.955	3.000	3.045	0.32	0.51
RP130x331x	3.267	3.300	3.333	3.251	3.300	3.350		
RP130x341x	3.366	3.400	3.434	3.349	3.400	3.451		
RP130x361x	3.564	3.600	3.636	3.546	3.600	3.654		
RP130x421x	4.158	4.200	4.242	4.137	4.200	4.263	0.24	0.39
RP130x501x	4.950	5.000	5.050	4.925	5.000	5.075	0.24	0.31

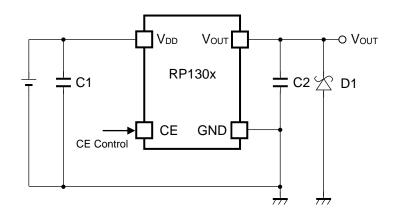
TYPICAL APPLICATION

External Components:

Symbol	Description
C2	0.47µF (Ceramic)

TECHNICAL NOTES

Phase Compensation


In the ICs, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, use a capacitor C2 with $0.47\mu F$ or more.

If a tantalum capacitor is used, and its ESR (Equivalent Series Resistance) of C2 is large, the loop oscillation may result. Because of this, select C2 carefully considering its frequency characteristics.

PCB Layout

Make V_{DD} and GND lines sufficient. If their impedance is too high, noise pickup or unstable operation may result. Connect $0.47\mu F$ or more of the capacitor C1 between the V_{DD} and GND, and as close as possible to the pins. In addition, connect the capacitor C2 between V_{OUT} and GND, and as close as possible to the pins.

TYPICAL APPLICATION FOR IC CHIP BREAKDOWN PREVENTION

When a sudden surge of electrical current travels along the V_{OUT} pin and GND due to a short-circuit, electrical resonance of a circuit involving an output capacitor (C2) and a short circuit inductor generates a negative voltage and may damage the device or the load devices. Connecting a schottky diode (D1) between the V_{OUT} pin and GND has the effect of preventing damage to them.

PACKAGE INFORMATION

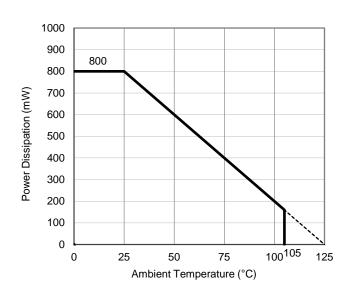
Power Dissipation (DFN(PLP)1010-4)

PD-DFN(PLP)1010-4-(105125)-JE-B

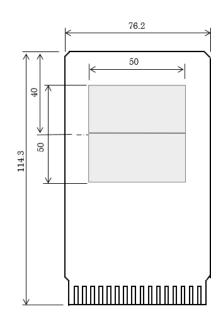
The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7.

Measurement Conditions

Item	Measurement Conditions
Environment	Mounting on Board (Wind Velocity = 0m/s)
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)
Board Dimensions	76.2mm × 114.3mm × 0.8mm
Copper Ratio	Outer Layer (First Layer): Less than 95% of 50mm Square Inner Layers (Second and Third Layers): Approx. 100% of 50mm Square Outer Layer (Fourth Layer): Approx. 100% of 50mm Square
Through-holes	φ 0.2mm × 11pcs

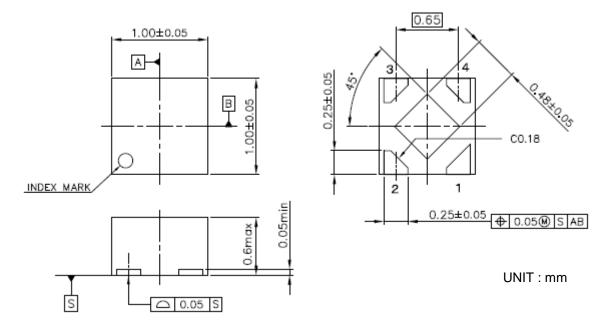

Measurement Result

 $(Ta = 25^{\circ}C, Tjmax = 125^{\circ}C)$


Item	Measurement Result
Power Dissipation	800mW
Thermal Resistance (θja)	θja = 125°C/W
Thermal Characterization Parameter (ψjt)	ψjt = 58°C/W

θja: Junction-to-Ambient Thermal Resistance

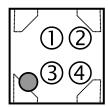
ψjt: Junction-to-Top Thermal Characterization Parameter


Power Dissipation vs. Ambient Temperature

Measurement Board Pattern

Package Dimensions (DFN(PLP)1010-4)

DM-DFN(PLP)1010-4-JE-C


DFN(PLP)1010-4 Package Dimensions

● Mark Specifications (DFN(PLP)1010-4)

MK-RP130K-JYEY-A

①②: Product Code ... Refer to "RP130K Mark Specification Table"

 $\ensuremath{\mathfrak{3}} \ensuremath{\mathfrak{4}} {:} \ensuremath{\mathsf{Lot}} \ensuremath{\mathsf{Number}} \ensuremath{\mathsf{...}} \ensuremath{\mathsf{Alphanumeric}} \ensuremath{\mathsf{Serial}} \ensuremath{\mathsf{Number}}$

DFN(PLP)1010-4 Mark Specifications

RP130K Mark Specification Table (DFN(PLP)1010-4)

RP130Kxx1B

Product Name	0 2	V _{SET}
RP130K121B	ΤA	1.2 V
RP130K151B	TD	1.5 V
RP130K181B	TG	1.8 V
RP130K251B	TQ	2.5 V
RP130K281B	TT	2.8 V
RP130K291B	ΤV	2.9 V
RP130K301B	TW	3.0 V
RP130K331B	ΤZ	3.3 V
RP130K341B	U A	3.4 V
RP130K361B	UC	3.6 V
RP130K421B	UJ	4.2 V
RP130K501B	US	5.0 V

RP130Kxx1D

Product	0 2	V _{SET}
RP130K121D	VA	1.2 V
RP130K151D	V D	1.5 V
RP130K181D	V G	1.8 V
RP130K251D	V Q	2.5 V
RP130K281D	VT	2.8 V
RP130K291D	VV	2.9 V
RP130K301D	VW	3.0 V
RP130K331D	VΖ	3.3 V
RP130K341D	W A	3.4 V
RP130K361D	WC	3.6 V
RP130K421D	WJ	4.2 V
RP130K501D	WS	5.0 V

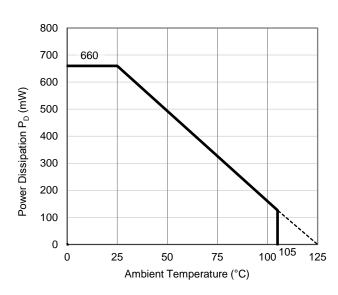
Power Dissipation (SOT-23-5)

PD-SOT-23-5-(105125)-JE-B

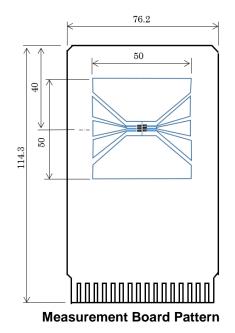
The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7.

Measurement Conditions

Item	Measurement Conditions
Environment	Mounting on Board (Wind Velocity = 0m/s)
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)
Board Dimensions	76.2mm × 114.3mm × 0.8mm
Copper Ratio	Outer Layer (First Layer): Less than 95% of 50mm Square Inner Layers (Second and Third Layers): Approx. 100% of 50mm Square Outer Layer (Fourth Layer): Approx. 100% of 50mm Square
Through-holes	φ 0.3 mm × 7 pcs

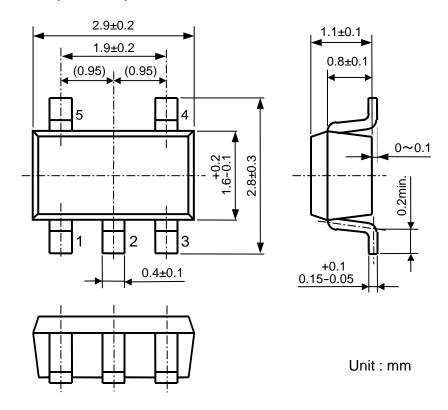

Measurement Result

 $(Ta = 25^{\circ}C, Tjmax = 125^{\circ}C)$


	, , , , , , , , , , , , , , , , , , , ,
Item	Measurement Result
Power Dissipation	660mW
Thermal Resistance (θja)	θja = 150°C/W
Thermal Characterization Parameter (ψjt)	ψjt = 51°C/W

θja: Junction-to-Ambient Thermal Resistance

ψjt: Junction-to-Top Thermal Characterization Parameter

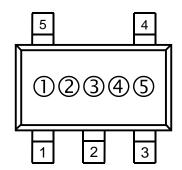


Power Dissipation vs. Ambient Temperature

Package Dimensions (SOT-23-5)

DM-SOT-23-5-JE-A

SOT-23-5 Package Dimensions


NO.EA-336-200129

Mark Specifications (SOT-23-5)

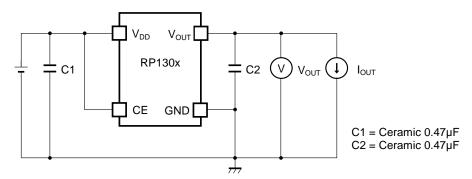
MK-RP130N-JYEY-A

①②③: Product Code ... Refer to "RP130N Mark Specification Table"

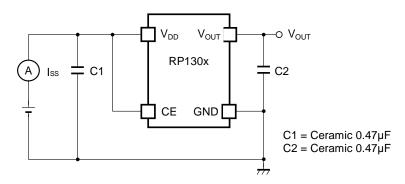
(4) (5): Lot Number ... Alphanumeric Serial Number

SOT-23-5 Mark Specifications

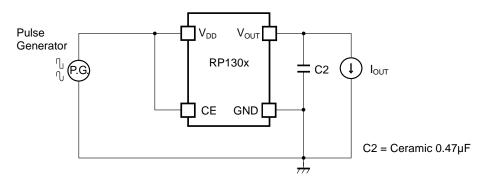
RP130N Mark Specification Table (SOT-23-5)

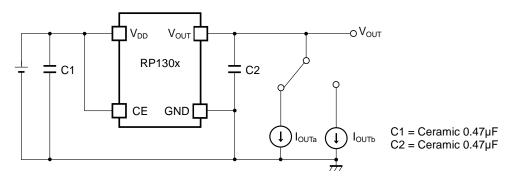

RP130Nxx1B

003	V _{SET}
H 1 A	1.2 V
H1D	1.5 V
H 1 G	1.8 V
H1Q	2.5 V
H1T	2.8 V
H 1 V	2.9 V
H 1 W	3.0 V
H 1 Z	3.3 V
J 1 A	3.4 V
J1C	3.6 V
J1J	4.2 V
J1S	5.0 V
	H1A H1D H1G H1Q H1T H1V H1V J1A J1C J1J


RP130Nxx1D

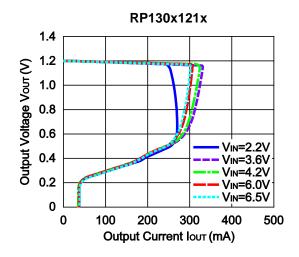
Product Name	003	V _{SET}
RP130N121D	H 2 A	1.2 V
RP130N151D	H 2 D	1.5 V
RP130N181D	H 2 G	1.8 V
RP130N251D	H 2 Q	2.5 V
RP130N281D	H 2 T	2.8 V
RP130N291D	H 2 V	2.9 V
RP130N301D	H 2 W	3.0 V
RP130N331D	H 2 Z	3.3 V
RP130N341D	J 2 A	3.4 V
RP130N361D	J2C	3.6 V
RP130N421D	J2J	4.2 V
RP130N501D	J2S	5.0 V

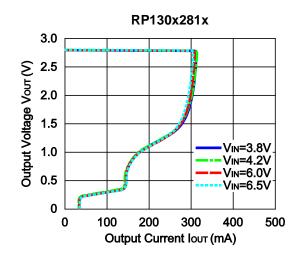

TEST CIRCUITS

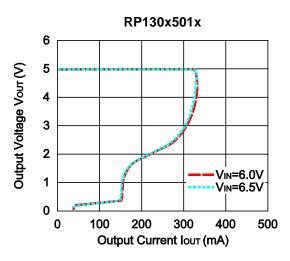

Standard Test Circuit

Supply Current Test Circuit

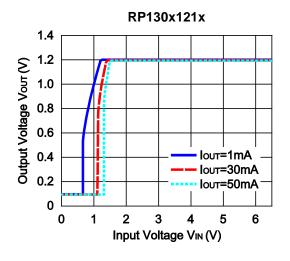
Ripple Rejection, Line Transient Response Test Circuit

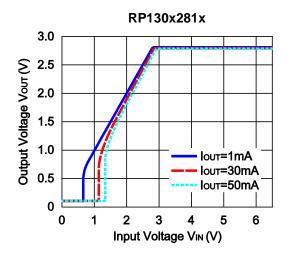


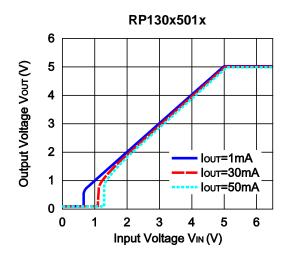

Load Transient Response Test Circuit

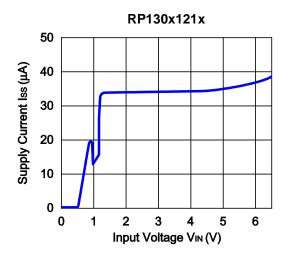

TYPICAL CHARACTERISTICS

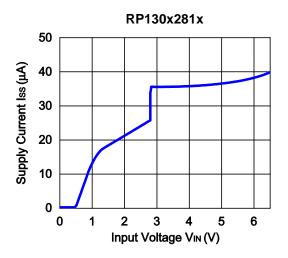
Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.

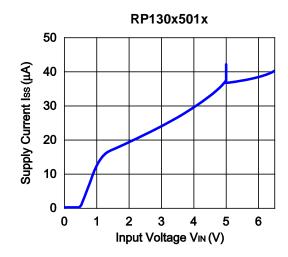

1) Output Voltage vs. Output Current (C1 = C2 = 0.47µF, Ta = 25°C)

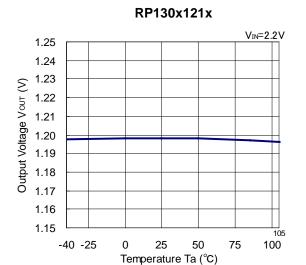


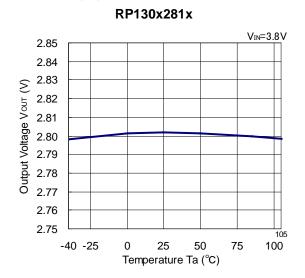


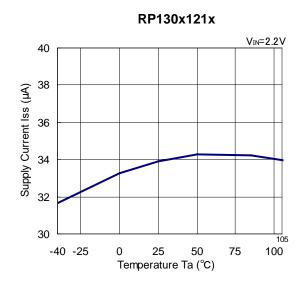

2) Output Voltage vs. Input Voltage (C1 = C2 = 0.47μ F, Ta = 25° C)

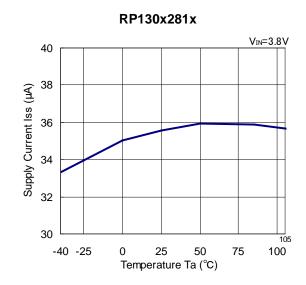


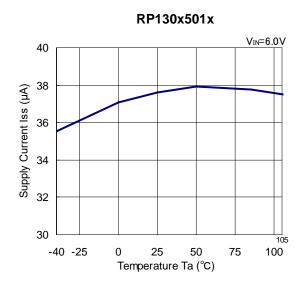



3) Supply Current vs. Input Voltage (C1 = C2 = 0.47μ F, Ta = 25° C)

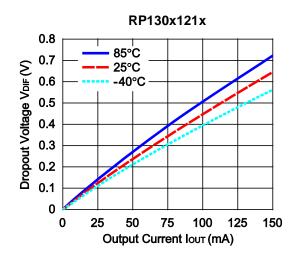


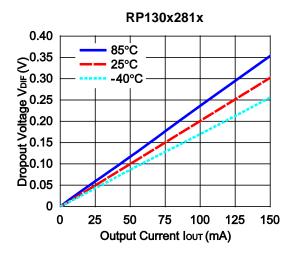

4) Output Voltage vs. Temperature ($I_{OUT} = 1mA$, $C1 = C2 = 0.47 \mu F$)

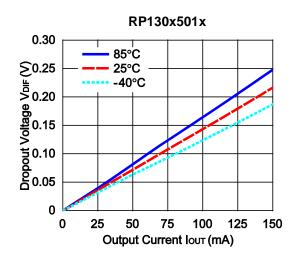


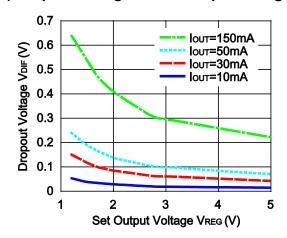


RP130x501x VIN=6.0V 5.05 5.04 5.03 Output Voltage Vour (V) 5.02 5.01 5.00 4.99 4.98 4.97 4.96 4.95 -40 -25 0 25 50 75 100 Temperature Ta (°C)

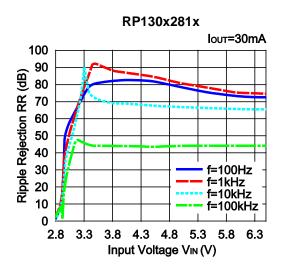

5) Supply Current vs. Temperature ($I_{OUT} = 0mA$, $C1 = C2 = 0.47 \mu F$)



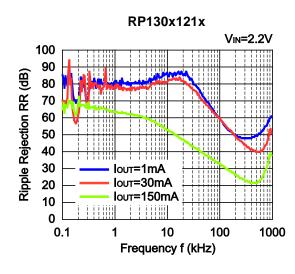


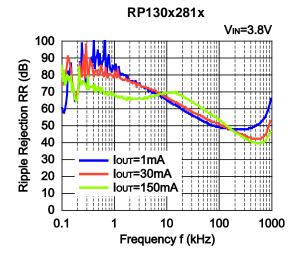

6) Dropout Voltage vs. Output Current (C1 = C2 = 0.47μ F)

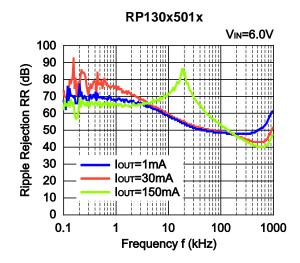




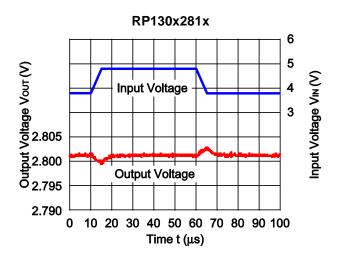
7) Dropout Voltage vs. Set Output Voltage (C1 = C2 = 0.47μ F)

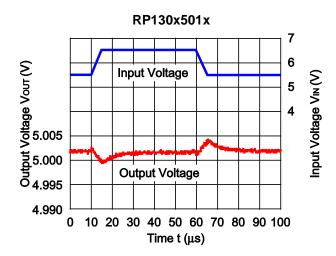


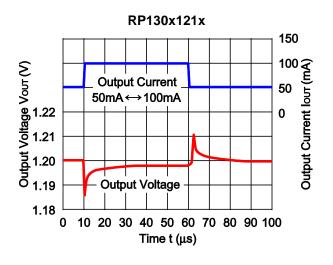

8) Ripple Rejection vs. Input Bias Voltage (C1 = none, C2 = 0.47µF, Ripple = 0.2Vp-p, Ta = 25°C)

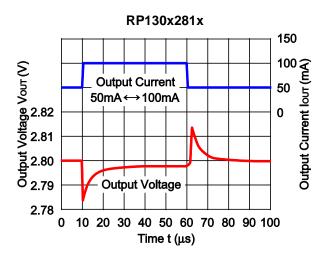


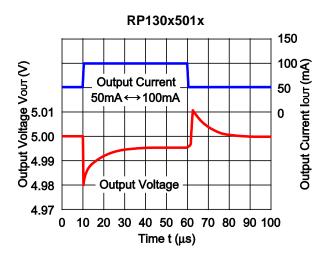
9) Ripple Rejection vs. Frequency (C1 = none, C2 = 0.47µF, Ripple = 0.2Vp-p, Ta = 25°C)

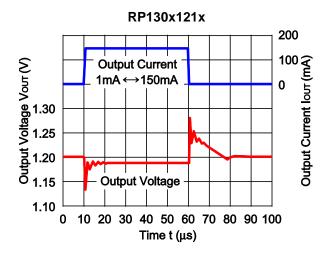


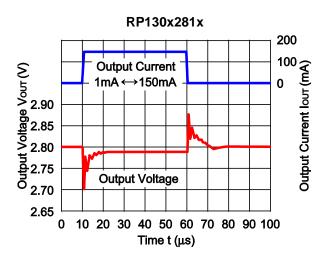


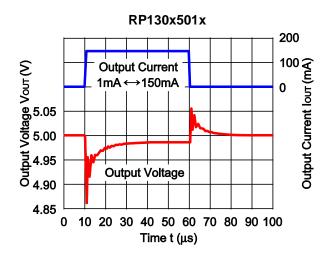

10) Input Transient Response ($I_{OUT} = 30 \text{mA}$, tr = tf = 5 μ s, C1 = none, C2 = 0.47 μ F, Ta = 25°C)

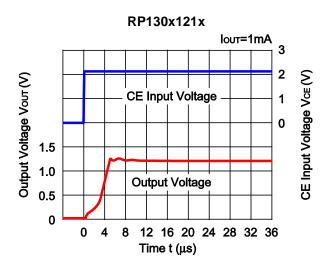


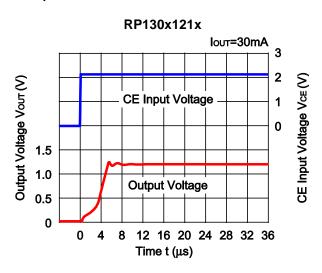


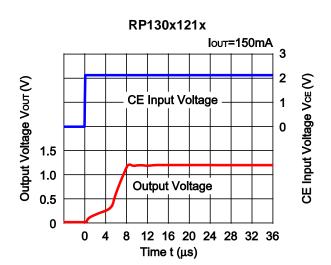

11) Load Transient Response (tr = tf = $0.5\mu s$, C1 = C2 = $0.47\mu F$, $I_{OUT} = 50mA \Leftrightarrow 100mA$, Ta = $25^{\circ}C$)

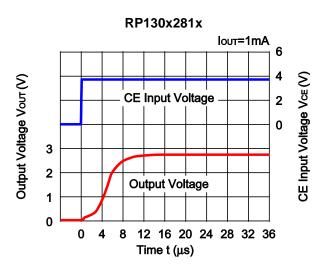


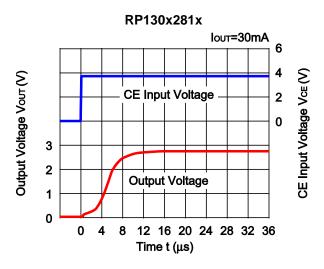


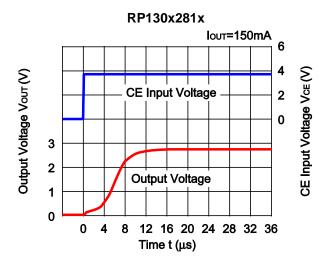

12) Load Transient Response (tr = tf = 0.5μs, C1 = C2 = 0.47μF, I_{OUT} = 1mA ⇔ 150mA, Ta = 25°C)

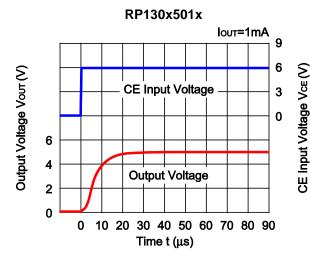


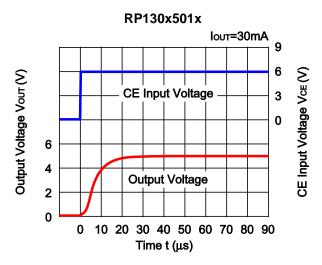


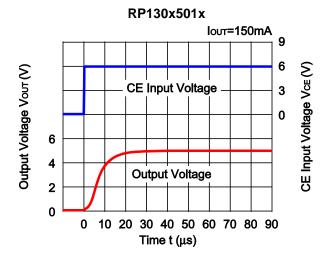


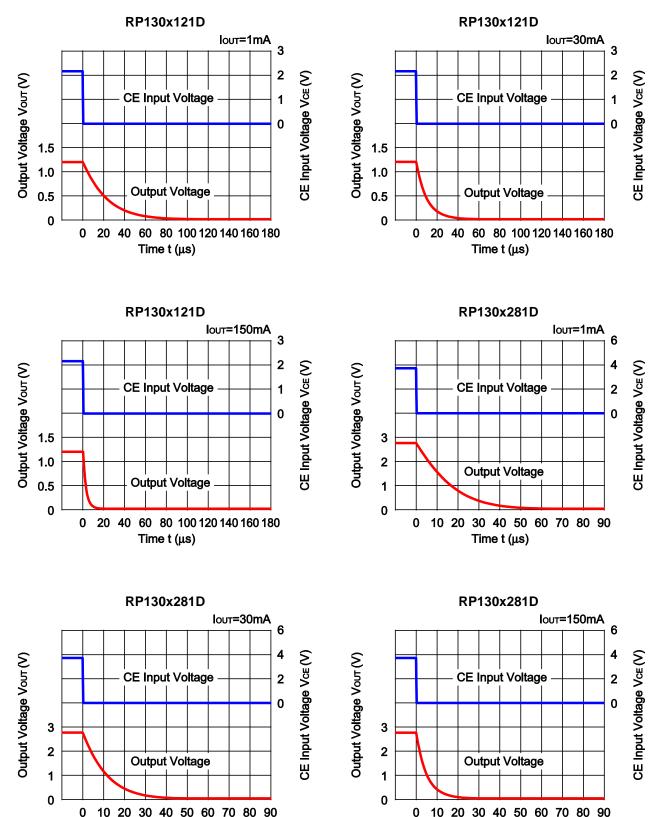

13) Rise Time with CE Pin (C1 = C2 = 0.47μ F, Ta = 25° C)

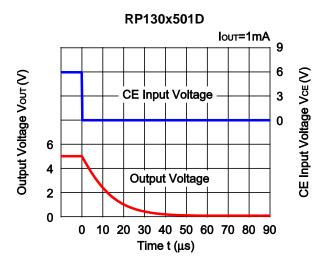


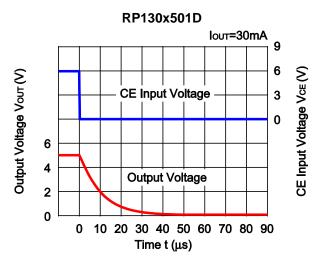


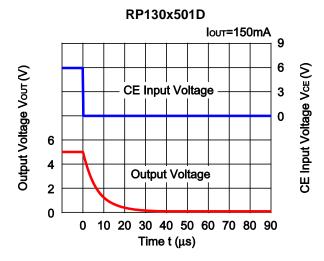




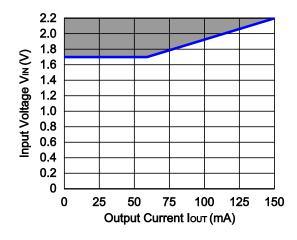



14) Fall Time with CE Pin in D-Version (C1 = C2 = 0.47μ F, Ta = 25° C)




Time t (µs)

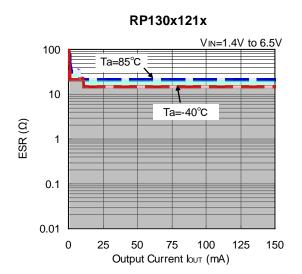
Time t (µs)

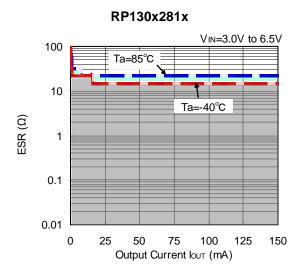

NO.EA-336-200129

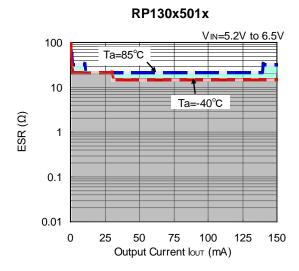
15) Minimum Operating Voltage (C1 = C2 = 0.47μ F)

Hatched area is available for 1.2V output.

ESR vs. Output Current


The RP130x is recommended to use a ceramic type capacitor, but the RP130x can be used other capacitors of the lower ESR type. The relation between the output current (I_{OUT}) and the ESR of output capacitor is shown below.


Measurement conditions


Frequency Band: 10Hz to 3MHz

Measurement Temperature: - 40°C to 85°C

Hatched area: Noise level is $40\mu V$ (average) or below Ceramic Capacitor: C1 = Ceramic 0.47 μF , C2 = 0.47 μF

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOI.
- 11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Halogen Free

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment.

Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

RICOH RICOH ELECTRONIC DEVICES CO., LTD.

Official website

https://www.e-devices.ricoh.co.jp/en/

Contact us

https://www.e-devices.ricoh.co.jp/en/support/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for LDO Voltage Regulators category:

Click to view products by Nisshinbo manufacturer:

Other Similar products are found below:

AP7363-SP-13 L79M05TL-E PT7M8202B12TA5EX TCR3DF185,LM(CT TCR3DF24,LM(CT TCR3DF285,LM(CT TCR3DF31,LM(CT TCR3DF31,LM(CT TCR3DF45,LM(CT MP2013GQ-33-Z 059985X NCP4687DH15T1G 701326R TCR2EN28,LF(S NCV8170AXV250T2G TCR3DF27,LM(CT TCR3DF19,LM(CT TCR3DF125,LM(CT TCR2EN18,LF(S AP2112R5A-3.3TRG1 AP7315-25W5-7 IFX30081LDVGRNXUMA1 NCV47411PAAJR2G AP2113KTR-G1 AP2111H-1.2TRG1 ZLDO1117QK50TC AZ1117IH-1.8TRG1 AZ1117ID-ADJTRG1 TCR3DG12,LF MIC5514-3.3YMT-T5 MIC5512-1.2YMT-T5 MIC5317-2.8YM5-T5 SCD7912BTG NCP154MX180270TAG SCD33269T-5.0G NCV8170BMX330TCG NCV8170AMX120TCG NCP706ABMX300TAG NCP153MX330180TCG NCP114BMX075TCG MC33269T-3.5G CAT6243-ADJCMT5T TCR3DG33,LF AP2127N-1.0TRG1 TCR4DG35,LF TAR5S15U(TE85L,F) TAR5S18U(TE85L,F) TCR3UG19A,LF TCR4DG105,LF NCV8170AMX360TCG MIC94310-NYMT-T5