600mA Step-down DCIDC Converter with Synchronous Rectifier

NO.EA-305-180529

OUTLINE

The RP507K001B is a CMOS-based $600 \mathrm{~mA}^{(1)}$ step-down DC/DC converter with synchronous rectifier. Internally, a single converter consists of an oscillator, a reference voltage unit, an error amplifier, a switching control circuit, a soft-start circuit, an under voltage lockout (UVLO) circuit, an over current protection circuit, a thermal shutdown circuit and switching transistors.
Replacing diodes with built-in switching transistors improves the efficiency of rectification. Therefore, by simply using an inductor, resistors and capacitors as the external components, a low ripple high efficiency synchronous rectifier step-down DC/DC converter can be easily configured.
The RP507K001B has an over current protection circuit which supervises the inductor peak current in each switching cycle, and turns the high-side driver off if the current exceeds the Lx current limit. The RP507K001B also contains a thermal shutdown circuit which detects overheating of the converter and stops the converter operation to protect it from damage if the junction temperature exceeds the specified temperature.
The RP507K001B is PWM/VFM auto switching control in which mode automatically switches from PWM mode to high-efficiency VFM mode in low output current.
The RP507K001B is available in DFN(PLP)1616-6D package which achieves high-density mounting on boards. For an input capacitor (Cin) and an output capacitor (Соит), the smaller sized 0402/1005 (inch/ mm) capacitor can be used. Output voltage is adjustable with external divider resistors.

FEATURES

- Input Voltage Range
- Output Voltage Range
............................. 0.7 V to 5.5 V
(Note: As for 1.0 V or less, input voltage range is limited.)
- Feedback Voltage Accuracy \qquad $\pm 9 \mathrm{mV}\left(\mathrm{V}_{\mathrm{FB}}=0.6 \mathrm{~V}\right)$
- Temperature-Drift Coefficient of Feedback Voltage

Typ. $\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

- Oscillator Frequency .. Typ. 2.0MHz
- Maximum Duty Cycle

100\%

- Built-in Driver ON Resistance

Typ. Pch. 0.38Ω, Nch. $0.3 \Omega\left(\mathrm{~V}_{\mathrm{in}}=3.6 \mathrm{~V}\right)$

- Supply Current (at no load)

Typ. $34 \mu \mathrm{~A}$

- Standby Current

Max. $5 \mu \mathrm{~A}$

- UVLO Detector Threshold

Typ. 2.0V

- Soft-start Time.. Typ. 150 $\mu \mathrm{s}$
- Lx Current Limit Circuit... Typ. 1A
- Package

DFN(PLP)1616-6D

[^0]
APPLICATIONS

- Power source for portable equipment such as cellular, PDA, DSC, Notebook PC, smartphone
- Power source for Li-ion battery-used equipment

SELECTION GUIDE

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
RP507K001B-TR	DFN(PLP)1616-6D	$5,000 \mathrm{pcs}$	Yes	Yes

Output voltage ($\mathrm{V}_{\mathrm{SET}}$) is adjustable with external divider resistors.
Recommended output voltage range is from 0.7 V to 5.5 V .
RP507K001B has an auto-discharge function ${ }^{(1)}$.

BLOCK DIAGRAMS

[^1]
PIN DESCRIPTIONS

- DFN(PLP) $1616-6 \mathrm{D}$

BOTTOM VIEW

RP507K: DFN(PLP)1616-6D

Pin No.	Symbol	Description
1	CE	Chip Enable Pin ("H" Active)
2	AGND	Ground Pin ${ }^{(1)}$
3	PGND	Ground Pin ${ }^{(1)}$
4	Lx	Lx Switching Pin
5	Vin 2	Input Pin
6	VFB	Feedback Pin

The exposed tab on the bottom of the package enhances thermal performance and is electrically connected to GND (substrate level). It is recommended that the exposed tab be connected to the ground plane on the board or otherwise be left open.

[^2]
RP507K001B

NO.EA-305-180529

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings		(AGND=PGND=0V)	
Symbol	Item	Rating	Unit
VIN	Vis Input Voltage	-0.3 to 6.5	V
VLx	Lx Pin Voltage	-0.3 to $\mathrm{V}_{\mathrm{IN}}+0.3$	V
$V_{\text {ce }}$	CE Pin Input Voltage	-0.3 to 6.5	V
$V_{\text {FB }}$	VFb Pin Voltage	-0.3 to 6.5	V
ILX	Lx Pin Output Current	1	A
PD	Power Dissipation ${ }^{(1)}$ (DFN(PLP)1616-6D, JEDEC STD. 51-7)	1580	mW
Tj	Junction Temperature	-40 to 125	${ }^{\circ} \mathrm{C}$
Tstg	Storage Temperature Range	-55 to 125	${ }^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings are not assured.

RECOMMENDED OPERATING CONDITIONS

Recommended Operating Conditions

Symbol	Item		Rating	Unit
V_{IN}	Input Voltage	$1.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{SET}}{ }^{(2)}$	2.3 to 5.5	V
		$0.9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{SET}}<1.0 \mathrm{~V}$	2.3 to 5.25	
		$0.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{SET}}<0.9 \mathrm{~V}$	2.3 to 4.5	
Ta	Operating Temperature Range	-40 to 85	${ }^{\circ} \mathrm{C}$	

RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such ratings by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

[^3]RP507K001B
NO.EA-305-180529

ELECTRICAL CHARACTERISTICS

- RP507K001B

Symbol	Item	Conditions	Min.	Typ.	Max.	Unit
$V_{\text {FB }}$	Feedback Output Voltage	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CE }}=3.6 \mathrm{~V}$	0.591	0.600	0.609	V
$\Delta \mathrm{V}_{\text {FB }} / \Delta \mathrm{T}$	Feedback Output Voltage Temperature Coefficient	$-40^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 85^{\circ} \mathrm{C}$		± 100		ppm/ ${ }^{\circ} \mathrm{C}$
fosc	Oscillator Frequency	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CE}}=3.6 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{SET}}(1) \leq 2.6 \mathrm{~V}\right), \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{SET}}+1 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{SET}}>2.6 \mathrm{~V}\right) \end{aligned}$	1.7	2.0	2.3	MHz
IdD	Supply Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CE }}=\mathrm{V}_{\text {FB }}=3.6 \mathrm{~V}$		32	45	$\mu \mathrm{A}$
Istandby	Standby Current	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {ce }}=0 \mathrm{~V}$		0	5	$\mu \mathrm{A}$
Iceh	CE "H" Input Current	$\mathrm{V}_{\text {In }}=\mathrm{V}_{\text {ce }}=5.5 \mathrm{~V}$	-1	0	1	$\mu \mathrm{A}$
Icel	CE "L" Input Current	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {ce }}=0 \mathrm{~V}$	-1	0	1	$\mu \mathrm{A}$
Ivfbr	VFB "H" Input Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{FB}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {ce }}=0 \mathrm{~V}$	-1	0	1	$\mu \mathrm{A}$
Ivfbl	VFB "L" Input Current	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {ce }}=\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}$	-1	0	1	$\mu \mathrm{A}$
tdis	Auto Discharge Time ${ }^{(2)}$	$\mathrm{V}_{\text {IN }}=2.3 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=0 \mathrm{~V}, \mathrm{Cout}=10 \mu \mathrm{~F}$		5	10	ms
ILxLEAKH	Lx Leakage Current "H"	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{LX}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=0 \mathrm{~V}$	-1	0	5	$\mu \mathrm{A}$
ILXLEAKL	Lx Leakage Current "L"	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=\mathrm{V}_{\text {LX }}=0 \mathrm{~V}$	-5	0	1	$\mu \mathrm{A}$
$V_{\text {cen }}$	CE "H" Input Voltage	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$	1.0			V
Vcel	CE "L" Input Voltage	$\mathrm{V}_{\mathrm{IN}}=2.3 \mathrm{~V}$			0.4	V
Ronp	On Resistance of Pch Tr.	$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{ILX}=-100 \mathrm{~mA}$		0.38		Ω
Ronn	On Resistance of Nch Tr.	$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{ILX}=-100 \mathrm{~mA}$		0.3		Ω
Maxduty	Maximum Duty Cycle		100			\%
tstart	Soft-start Time	$\begin{aligned} & \mathrm{V}_{I N}=\mathrm{V}_{\text {CE }}=3.6 \mathrm{~V}\left(\mathrm{~V}_{\text {SET }} \leq 2.6 \mathrm{~V}\right), \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CE }}=\mathrm{V}_{\text {SET }}+1 \mathrm{~V}\left(\mathrm{~V}_{\text {SET }}>2.6 \mathrm{~V}\right) \end{aligned}$		150	300	$\mu \mathrm{S}$
ILxLim	Lx Current Limit	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CE }}=3.6 \mathrm{~V}\left(\mathrm{~V}_{\text {SET }} \leq 2.6 \mathrm{~V}\right), \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CE }}=\mathrm{V}_{\text {SET }}+1 \mathrm{~V}\left(\mathrm{~V}_{\text {SET }}>2.6 \mathrm{~V}\right. \end{aligned}$	800	$\begin{gathered} 100 \\ 0 \end{gathered}$		mA
Vuvloi	UVLO Detector Threshold	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CE }}$	1.9	2.0	2.1	V
Vuvloz	UVLO Released Voltage	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CE }}$	2.0	2.1	2.2	V
TTSD	Thermal Shutdown Temperature	Junction Temperature		140		${ }^{\circ} \mathrm{C}$
TTSR	Thermal Shutdown Released Temperature	Junction Temperature		100		${ }^{\circ} \mathrm{C}$

Note: Test circuit is "OPEN LOOP" and AGND=PGND=0V unless otherwise specified.

[^4]
RP507K001B

NO.EA-305-180529

THEORY OF OPERATION

Operation of Step-Down DCI DC Converter and Output Current

The step-down DC/ DC converter charges energy in the inductor when Lx Tr. turns "ON", and discharges the energy from the inductor when Lx Tr. turns "OFF" and operates with less energy loss, so that a lower output voltage ($\mathrm{V}_{\text {out }}$) than the input voltage (V_{II}) can be obtained.
The operation of the step-down DC/ DC converter is explained in the following figures.

Figure 1. Basic Circuit

Figure 2. Inductor Current (IL) flowing through Inductor

Step1. Pch Tr. turns "ON" and IL (i1) flows, L is charged with energy. At this moment, i1 increases from the minimum inductor current (ILmin), which is OA, and reaches the maximum inductor current (ILmax) in proportion to the on-time period (ton) of Pch Tr.
Step2. When Pch Tr. turns "OFF", L tries to maintain IL at ILmax, so L turns Nch Tr. "ON" and IL (i2) flows into L.

Step3. i2 decreases gradually and reaches ILmin after the open-time period (topen) of Nch Tr., and then Nch Tr. turns "OFF". This is called discontinuous current mode.

As the output current (lout) increases, the off-time period (toff) of Pch Tr. runs out before IL reaches ILmin. The next cycle starts, and Pch Tr. turns "ON" and Nch Tr. turns "OFF", which means IL starts increasing from ILmin. This is called continuous current mode.

In the case of PWM control system, Vout is maintained by controlling ton. During PWM control, the oscillator frequency (fosc) is being maintained constant.

As shown in Figure 2. when the step-down DC/ DC operation is constant, ILmin and ILmax during ton of Pch Tr. would be same as during toff of Pch Tr.

The current differential between ILmax and ILmin is described as $\Delta \mathrm{I}$.

```
However,
    T = 1 / fosc = ton + toff
    Duty (%) = ton / T }\times100=\mathrm{ ton }\times\mathrm{ fosc }\times10
    topen \leq toff
```

In Equation 1, "Vout \times topen / L" shows the amount of current change in "OFF" state. Also, "(VIN $\left.-V_{\text {out }}\right) \times$ ton / L" shows the amount of current change at "ON" state.

Discontinuous Mode and Continuous Mode

As illustrated in Figure 3., when lout is relatively small, topen<toff. In this case, the energy charged into L during ton will be completely discharged during toff, as a result, ILmin=0. This is called discontinuous mode.

When lout is gradually increased, eventually topen=toff and when lout is increased further, eventually ILmin>0. This is called continuous mode.

Figure 3. Discontinuous Mode

Figure 4. Continuous Mode

In the continuous mode, the solution of Equation 1 is described as tonc.

$$
\text { tonc }=T \times V_{\text {out }} / V_{\text {IN }}
$$

Equation 2

When ton<tonc, it is discontinuous mode, and when ton=tonc, it is continuous mode.

RP507K001B

NO.EA-305-180529

VFM Mode

In low output current, the IC automatically switches into VFM mode in order to achieve high efficiency. In VFM mode, ton is forced to end when the inductor current reaches the pre-set ILmax. In the VFM mode, ILmax is typically set to 180 mA . When ton reaches 1.5 times of $\mathrm{T}=1 / \mathrm{fosc}$, ton will be forced to end even if the inductor current is not reached ILmax.

Figure 5. VFM Mode

Output Current and Selection of External Components

The following equations explain the relationship between output current and peripheral components used in the diagrams in "TYPICAL APPLICATIONS".

Ripple Current P-P value is described as IRP, ON resistance of Pch Tr. is described as RonP, ON resistance of Nch Tr. is described as Ronn, and DC resistor of the inductor is described as RL.

First, when Pch Tr. is "ON", the following equation is satisfied.

$$
\begin{equation*}
\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}+\left(\mathrm{RoNP}+\mathrm{RL}_{\mathrm{L}}\right) \times \text { lout }+\mathrm{L} \times \mathrm{I}_{\mathrm{RP}} / \text { ton } . \tag{Equation 3}
\end{equation*}
$$

Second, when Pch Tr. is "OFF" (Nch Tr. is "ON"), the following equation is satisfied.

$$
\mathrm{L} \times \mathrm{I}_{\mathrm{RP}} / \text { toff }=\text { Ronn } \times \text { lout }+\mathrm{V}_{\text {out }}+\mathrm{RL} \times \text { lout } .
$$

Equation 4

Put Equation 4 into Equation 3 to solve ON duty of Pch Tr. (Don $=$ ton $/($ toff + ton $)$):

$$
\text { Don }=(\text { Vout }+ \text { Ronn } \times \text { lout }+ \text { RL } \times \text { lout }) /(\text { Vin }+ \text { Rons } \times \text { lout }- \text { Ronp } \times \text { lout }) .
$$

Equation 5

Ripple Current is described as follows:

$$
\begin{equation*}
I_{\text {RP }}=\left(V_{\text {IN }}-\text { Vout }- \text { Ronp } \times \text { lout }- \text { RL } \times \text { lout }\right) \times \text { Don } / \text { fosc } / L . \tag{Equation 6}
\end{equation*}
$$

Peak current that flows through L, and $L x$ Tr. is described as follows:
ILxmax $=$ lout $+\mathrm{IRP}_{\mathrm{RP}} / 2$ \qquad Equation 7
\star Please consider ILxmax when setting conditions of input and output, as well as selecting the external components.
\star The above calculation formulas are based on the ideal operation of the ICs in continuous mode.

RP507K001B

NO.EA-305-180529

Timing Chart

(1) Soft-start Time

Starting-up with CE Pin

The IC starts to operate when the CE pin voltage (V_{CE}) exceeds the threshold voltage. The threshold voltage is preset between CE "H" input voltage (V сен) and CE "L" input voltage ($\mathrm{V}_{\text {сег }}$).
After the start-up of the IC, soft-start circuit starts to operate. Then, after a certain period of time, the reference voltage ($V_{\text {REF }}$) in the IC gradually increases up to the specified value.

Soft-start time starts when soft-start circuit is activated, and ends when the reference voltage reaches the specified voltage.
\star Soft start time is not always equal to the turn-on speed of the step-down DC/ DC converter. Please note that the turn-on speed could be affected by the power supply capacity, the output current, the inductance value and the Cout value.

Starting-up with Power Supply

After the power-on, when VIN exceeds the UVLO released voltage (VuvLoz), the IC starts to operate. Then, softstart circuit starts to operate and after a certain period of time, $\mathrm{V}_{\text {REF }}$ gradually increases up to the specified value. Soft-start time starts when soft-start circuit is activated, and ends when $V_{\text {REF }}$ reaches the specified voltage.

\star Please note that the turn-on speed of Vout could be affected by the power supply capacity, the output current, the inductance value, the Cout value and the turn-on speed of $\mathrm{V}_{\text {IN }}$ determined by C_{IN}.

RP507K001B

NO.EA-305-180529

(2) Under Voltage Lockout (UVLO) Circuit

If $V_{\text {IN }}$ becomes lower than $V_{\text {SET }}$, the step-down DC/ DC converter stops the switching operation and ON duty becomes 100%, and then Vout gradually drops according to Vin.
If the $\mathrm{V}_{\text {IN }}$ drops more and becomes lower than the UVLO detector threshold (VuvLo1), the UVLO circuit starts to operate, $\mathrm{V}_{\text {REF }}$ stops, and Pch and Nch built-in switch transistors turn "OFF". As a result, Vout drops according to the Cout capacitance value and the load.
To restart the operation, VIN needs to be higher than Vuvloz. The timing chart below shows the voltage shifts of $V_{\text {REF }}, V_{L x}$ and $V_{\text {out }}$ when $V_{\text {in }}$ value is varied.

\star Falling edge (operating) and rising edge (releasing) waveforms of Vout could be affected by the initial voltage of Cout and the output current of Vout.

(3) Over Current Protection Circuit

Over current protection circuit supervises the inductor peak current (the peak current flowing through Pch Tr.) in each switching cycle, and if the current exceeds the L_{x} current limit (ILxLim), it turns off Pch Tr. ILxlim of the RP507K001B is set to Typ. 1000 mA .

Notes: ILxLIM could be easily affected by self-heating or ambient environment. If the V_{IN} drops dramatically or becomes unstable due to short-circuit, protection operation could be affected.

RP507K001B

NO.EA-305-180529

APPLICATION INFORMATION

Typical Application

(Adjustable Output Voltage Type)

Table 1. Recommended Components

Symbol	Value	Components	Part Number
Cin	4.7 $\mu \mathrm{F}$	Ceramic Capacitor	C1005X5R0J475M (TDK) JMK105BBJ475MV (Taiyo Yuden) GRM155R60J475ME47 (Murata)
Cout	10 $\mu \mathrm{F}$	Ceramic Capacitor	GRM155R60J106ME44 (Murata) JMK105CBJ106MV (Taiyo Yuden)
L	$2.2 \mu \mathrm{H}$	Inductor	LQM21PN2R2NGC (Murata) CIG21L2R2MNE (Samsung Electro-Mechanics) MIPSZ2012D2R2 (FDK)
	$4.7 \mu \mathrm{H}$		CIG21L4R7MNE (Samsung Electro-Mechanics) MIPS2520D4R7 (FDK)

RP507K001B

NO.EA-305-180529

TECHNICAL NOTES

When using the RP507K001B, please consider the following points.

- AGND and PGND must be wired to the GND plane when mounting on boards.
- Ensure the V_{IN} and AGND/ PGND lines are sufficiently robust. A large switching current flows through the AGND/ PGND lines, the VDD line, the Vout line, an inductor, and Lx. If their impedance is too high, noise pickup or unstable operation may result. Set the external components as close as possible to the IC and minimize the wiring between the components and the IC, especially between a capacitor (C_{IN}) and the $\mathrm{V}_{\mathbb{I N}}$ pin. The wiring between a resistor for setting output voltage $\left(R_{1}\right)$ and an inductor (L) and between L and Load should be separated.
- Choose a low ESR ceramic capacitor. The capacitance of C_{IN} should be more than or equal to $4.7 \mu \mathrm{~F}$. The capacitance of a capacitor (Cout) should be $10 \mu \mathrm{~F}$.
- The Inductance value should be set within the range of $1.5 \mu \mathrm{H}$ to $4.7 \mu \mathrm{H}$. However, the inductance value is limited by output voltage, so please refer to the table below. The phase compensation of this IC is designed according to the Cout and L values. Choose an inductor that has small DC resistance, has enough allowable current and is hard to cause magnetic saturation. If the inductance value of an inductor is extremely small, the peak current of L_{x} may increase. The increased L_{x} peak current reaches " $L x$ limit current" to trigger over current protection circuit even if the load current is less than 600mA.
Table 2. Set Output Voltage Range vs. Inductance Range

Set Output Voltage (V)	Inductance		
$\mathrm{V}_{\mathrm{SET}}$	$\mathrm{L}=1.5 \mu \mathrm{H}$	$\mathrm{L}=2.2 \mu \mathrm{H}$	$\mathrm{L}=4.7 \mu \mathrm{H}$
$0.7 \sim 1.0$	Ok	Good	-
$1.1 \sim 1.7$	-	Good	-
$1.8 \sim 2.5$	-	Good	Ok
$2.6 \sim$	-	Ok	Good

- Over current protection circuit may be affected by self-heating or power dissipation environment.
- The output voltage (Vout) is adjustable by changing the R_{1} and R_{2} values as follows.

$$
V_{\text {OUT }}=V_{F B} \times\left(R_{1}+R_{2}\right) / R_{2} \quad\left(0.7 \mathrm{~V} \leq V_{\text {OUT }} \leq 5.5 \mathrm{~V}\right)
$$

- The recommended resistance values for $\mathrm{R}_{1}, \mathrm{R}_{2}$ and C_{1} are as follows.

Table 3. Set Output Voltage Range vs. Resistor \& Capacitor Range

Set Output Voltage (V)	Resistor (k)		Capacitor (pF)
$\mathbf{V}_{\text {SET }}$	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{C}_{\mathbf{1}}$
1.0	120	180	22
1.2	180	180	22
1.5	270	180	22
1.8	240	120	22
2.5	380	120	15
2.8	275	75	15
3.3	270	60	15

\star The performance of power source circuits using this IC largely depends on the peripheral circuits. When selecting the peripheral components, please consider the conditions of use. Do not allow each component, PCB pattern and the IC to exceed their respected rated values (voltage, current, and power) when designing the peripheral circuits.

Reference PCB Layout

RP507K001B (PKG: DFN(PLP)1616-6D) PCB Layout

* R11 and R12 are arranged as a substitute for R1 so that two resistors can be connected in series.

RP507K001B

NO.EA-305-180529

TYPICAL CHARACTERISTICS

2) Output Voltage vs. Input Voltage

3) Feedback Voltage vs. Temperature RP507K001B

4) Efficiency vs. Output Current

RP507K001B Vout=3.3V

RP507K001B

NO.EA-305-180529

5) Supply Current vs. Temperature

RP507K001B Vоит=1.8V (Vin=3.6V)

7) DCIDC Output Waveform

RP507K001B Vout=1.0V (Vin=3.6V)

RP507K001B Vout=3.3V $\mathrm{L}=4.7 \mu \mathrm{H}$ (MIPS2520D4R7)

6) Supply Current vs. Input Voltage RP507K001B Vout $=1.8 \mathrm{~V}$

RP507K001B Vоит=1.0V ($\mathrm{V}_{\text {in }}=3.6 \mathrm{~V}$)

NO.EA-305-180529
8) Oscillator Frequency vs. Temperature

9) Oscillator Frequency vs. Input Voltage

10) Soft-start Time vs. Temperature

11) UVLO Detector Threshold / Released Voltage vs. Temperature

UVLO Detector Threshold

UVLO Released Voltage

12) CE Input Voltage vs. Temperature

CE"H" Input Voltage(Vin=5.5V)

13) Lx Current Limit vs. Temperature

14) On Resistance of Pch Tr. vs. Temperature Temperature

CE"L" Input Voltage (Vin=2.3V)

15) On Resistance of Nch Tr. vs.

RP507K001B

NO.EA-305-180529
16) Load Transient Response (Cout=10رF GRM155R60J106ME44)

RP507K001B (Vin=3.6V, Vоut=1.2V)

RP507K001B

NO.EA-305-180529

RP507K001B (Vin=5.0V, Vout=3.3V)

RP507K001B ($\mathrm{V}_{\text {In }}=5.0 \mathrm{~V}$, $\mathrm{V}_{\text {out }}=3.3 \mathrm{~V}$)

RP507K001B (Vin=5.0V, Vоut=3.3V)

RP507K001B ($\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}$, $\mathrm{V}_{\text {out }}=3.3 \mathrm{~V}$)

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions.
The following measurement conditions are based on JEDEC STD. 51-7.

Measurement Conditions

Item	Measurement Conditions
Environment	Mounting on Board (Wind Velocity $=0 \mathrm{~m} / \mathrm{s}$)
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)
Board Dimensions	$76.2 \mathrm{~mm} \times 114.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$
Copper Ratio	Outer Layer (First Layer): Less than 95\% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100\% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100\% of 50 mm Square
Through-holes	$\phi 0.2 \mathrm{~mm} \times 15 \mathrm{pcs}$

Measurement Result
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Tjmax}=125^{\circ} \mathrm{C}\right)$

Item	Measurement Result
Power Dissipation	1580 mW
Thermal Resistance ($\theta \mathrm{ja}$)	$\theta \mathrm{ja}=63^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Characterization Parameter ($\psi \mathrm{jj})$)	$\psi j \mathrm{jt}=33^{\circ} \mathrm{C} / \mathrm{W}$

Өja: Junction-to-Ambient Thermal Resistance
ψj t: Junction-to-Top Thermal Characterization Parameter

Power Dissipation vs. Ambient Temperature

Measurement Board Pattern

DFN(PLP)1616-6D Package Dimensions (Unit: mm)

[^5]1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
7. Anti-radiation design is not implemented in the products described in this document.
8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOI.
11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment.
Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012

RICOH RICOH ELECTRONIC DEVICES CO., LTD.

https://www.e-devices.ricoh.co.jp/en/

Sales \& Support Offices

Ricoh Electronic Devices Co., Ltd.

Shin-Yokohama Office (International Sales)
2-3, Shin-Yokohama 3-chome, Kohoku-ku, Yokohama-shi, Kanagawa, 222-8530, Japan Phone: +81-50-3814-7687 Fax: +81-45-474-0074
Ricoh Americas Holdings, Inc.
675 Campbell Technology Parkway, Suite 200 Campbell, CA 95008, U.S.A.
Phone: +1 -408-610-3105
Ricoh Europe (Netherlands) B.V.
Semiconductor Support Centre
Prof. W.H. Keesomlaan 1, 1183 DJ Amstelveen, The Netherlands
Phone: +31-20-5474-309
Ricoh International B.V. - German Branch
Semiconductor Sales and Support Centre
Oberrather Strasse 6, 40472 Düsseldorf, Germany
Phone: +49-211-6546-0
Ricoh Electronic Devices Korea Co., Ltd. 3F, Haesung Bldg, 504, Teheran-ro, Gangnam-gu, Seoul, 135-725, Korea Phone: +82-2-2135-5700 Fax: +82-2-2051-5713
Ricoh Electronic Devices Shanghai Co., Ltd.

Ricoh Electronic Devices Shanghai Co., Ltd.
Shenzhen Branch
1205, Block D(Jinlong Building), Kingkey 100, Hongbao Road, Luohu District
henzhen, China
Ricoh Electronic Devices Co., Ltd.
Taipei office
Room 109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan
Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623 \square

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switching Voltage Regulators category:
Click to view products by Nisshinbo manufacturer:

Other Similar products are found below :
FAN53610AUC33X FAN53611AUC123X FAN48610BUC33X FAN48610BUC45X FAN48617UC50X R3 430464BB KE177614 FAN53611AUC12X MAX809TTR NCV891234MW50R2G NCP81103MNTXG NCP81203PMNTXG NCP81208MNTXG NCP81109GMNTXG SCY1751FCCT1G NCP81109JMNTXG AP3409ADNTR-G1 NCP81241MNTXG LTM8064IY LT8315EFE\#TRPBF LTM4664EY\#PBF LTM4668AIY\#PBF NCV1077CSTBT3G XCL207A123CR-G MPM54304GMN-0002 MPM54304GMN-0004 MPM54304GMN-0003 AP62300Z6-7 MP8757GL-P MIC23356YFT-TR LD8116CGL HG2269M/TR OB2269 XD3526 U6215A U6215B U6620S LTC3412IFE LT1425IS MAX25203BATJA/VY+ MAX77874CEWM + XC9236D08CER-G MP3416GJ-P BD9S201NUX-CE2 MP5461GC-Z MPQ4415AGQB-Z MPQ4590GS-Z MAX38640BENT18+T MAX77511AEWB+

[^0]: ${ }^{(1)}$ This is an approximate value, because output current depends on conditions and external components.

[^1]: ${ }^{(1)}$ Auto-discharge function quickly lowers the output voltage to 0 V , when the chip enable signal is switched from the active mode to the standby mode, by releasing the electrical charge accumulated in the external capacitor.

[^2]: ${ }^{(1)}$ No. 2 pin and No. 3 pin must be wired to the GND plane when mounting on boards.

[^3]: ${ }^{(1)}$ Refer to POWER DISSIPATION for detailed information
 ${ }^{(2)} V_{\text {SET }}=$ Set Output Voltage

[^4]: (1) $\mathrm{V}_{\text {SET }}=$ Set Output Voltage
 (2) It starts when the CE pin is low and ends when $V_{\text {Out }} \leq \mathrm{V}_{\text {SET }} \times 0.1$.

[^5]: * The tab on the bottom of the package shown by circle is a substrate potential (GND). It is recommended that this tab be connected to the ground plane on the board but it is possible to leave the tab floating.

