1.5 A PWM/VFM Buck-Boost DC/DC Converter with Synchronous Rectifier

No. EA-353-190507

OVERVIEW

The RP602x is a 6.5 V (Max. rating) buck-boost DC/DC converter with synchronous rectifier. This device is ideally suited for industrial or OA equipment that require constant voltage even when low-input voltage (Min. 2.3 V). Since operating with switching frequency of 2.6 MHz , this device can realize a high-speed response with a small coil and maintain a high-efficiency at low input voltage.

KEY BENEFITS

- Realize a high-efficiency at low input voltage.
- Provide output voltage of 2.7 to 4.2 V corresponding to input voltage of 2.3 to 5.5 V .

KEYSPECIFICATIONS

- Input Voltage Range:2.3 V to 5.5 V
- Output Voltage Range:2.7 V to 4.2 V (0.1V step)
- Output Voltage Accuracy : $\pm 1.5 \%$
- Line Regulation: Typ. 0.5\%, PWM mode
- Load Regulation: Typ. 0.1\%, (lout $=0$ to $500 \mathrm{~mA}, \mathrm{PWM}$ mode)
- Maximum Output Current: Typ. 1.5 A,

$$
(\mathrm{PVIN}=3 \mathrm{~V}, \mathrm{VOUT}=3.3 \mathrm{~V})
$$

- Maximum Burst Current: Typ. 2.7 A, (PVIN=3 V, VOUT=3.3 V, Duty=10\%, t=2.0 ms)
- Overcurrent Limit Protection: Typ. 4.2 A
- Oscillator Frequency: Typ. 2.6 MHz
- Built-in Driver ON Resistance:

Typ. Pch. $80 \mathrm{~m} \Omega$, Nch. $80 \mathrm{~m} \Omega$

- Operating Quiescent Current: Typ. $27.5 \mu \mathrm{~A}$,
(VFM mode, Non-switching)
- UVLO Detector Threshold: Typ. 2.0 V
- Soft-start Time: Typ. 1.0 ms
- Thermal Shutdown Temperature:Typ. $150^{\circ} \mathrm{C}$
- Protection Feature: Overvoltage, Overcurrent

PACKAGE

RP602Z
RP602K

DFN(PLP)2730-12 $2.7 \mathrm{~mm} \times 3.0 \mathrm{~mm}$

TYPICAL CHARACTERISTICS

Efficiency Characterisitcs (RP602Z330x, MODE = H)

OPTIONAL FUNCTION

The following functions are user-selectable options.

Code	Auto-discharge Function	Latch Protection	Reset Protection
A/E	Yes	Yes	No
B/F	No	Yes	No
C/G	Yes	No	Yes
D/H	No	No	Yes

APPLICATIONS

- Power source for portable equipment such as laptops, PDAs, DSCs, cellular phones, and smartphones
- Power source for Li-ion battery-used equipment

RP602x

No. JA-353-190507

SELECTION GUIDE

Selection Guide

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
RP602Zxxx\$-E2-F	WLCSP-20-P1	$5,000 \mathrm{pcs}$	Yes	Yes
RP602Kxxx\#-TR	DFN(PLP)2730-12	$5,000 \mathrm{pcs}$	Yes	Yes

xxx : Specify the set output voltage $\left(\mathrm{V}_{\mathrm{SET}}\right)$ within the range of 2.7 V to 4.2 V in $0.1 \mathrm{~V}{ }^{(1)}$ steps.
\$: Specify the combination of the auto-discharge option and the protection function option.

Symbol	Auto-discharge Function	Latch-type Protection	Reset-type Protection	Short-circuit Protection
A	Yes	Yes	No	Yes
B	No	Yes	No	Yes
C	Yes	No	Yes	Yes
D	No	No	Yes	Yes

\#: Specify the combination of the auto-discharge option and the protection function option.

Symbol	Auto-discharge Function	Latch-type Protection	Reset-type Protection	Short-circuit Protection
E	Yes	Yes	No	Yes
F	No	Yes	No	Yes
G	Yes	No	Yes	Yes
H	No	No	Yes	Yes

(1) 0.05 V step is also available as a custom code.

BLOCK DIAGRAM

RP602x Block Diagram

RP602x

No. JA-353-190507

PIN DESCRIPTION

RP602Z Pin Description

WLCSP-20-P1 Pin Configuration

Pin No.	Symbol	Pin Description
A5, B5, C5	VOUT $^{(1)}$	Output Voltage Pin
A4, B4, C4	BOLX $^{(1)}$	Boost Switching Output Pin
A3, B3, C3	PGND $^{(2)}$	Power GND Pin
A2, B2, C2	BULX $^{(1)}$	Buck Switching Output Pin
A1, B1, C1	PVIN $^{(1)}$	Power Input Voltage Pin
D1	AVIN $^{(1)}$	Analog Power Input Voltage Pin
D2	CE	Chip Enable Pin, Active-high
D3	MODE	Mode Control Pin, Forced PWM Control: L, PWM/VFM Auto Switching Control: H
D4	AGND ${ }^{(2)}$	Analog GND Pin
D5	VFB	Output Voltage Feedback Pin

Pin Truth Table

CE Pin	MODE Pin ${ }^{(3)}$	Operation
L	-	OFF
H	H	PWM/ VFM Auto Switching Control Mode
	L	Forced PWM Control Mode

[^0]
RP602K Pin Description

Top View

Bottom View

DFN(PLP)2730-12 Pin Configuration

Pin No.	Symbol	Pin Description
1	AVIN $^{(1)}$	Analog Power Input Voltage Pin
2	CE	Chip Enable Pin, Active-high
3	MODE	Mode Control Pin, Forced PWM Control: L, PWM/VFM Auto Switching Control: H
4	NC	No Connection
5	AGND ${ }^{(2)}$	Analog GND Pin
6	VFB	Output Voltage Feedback Pin
7	VOUT	Output Voltage Pin
8	BOLX	Boost Switching Output Pin
9,10	PGND ${ }^{(2)}$	Power GND Pin
11	BULX	Buck Switching Output Pin
12	PVIN ${ }^{(1)}$	Power Input Voltage Pin

* The tab on the bottom of the package must be connected to the ground plane on the board to enhance thermal performance.

Pin Truth Table

CE Pin	MODE Pin ${ }^{(3)}$	Operation
L	-	OFF
H	H	PWM/ VFM Auto Switching Control Mode
	L	Forced PWM Control Mode

[^1]
RP602x

No. JA-353-190507

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings			$(\mathrm{AGND}=\mathrm{PGND}=0 \mathrm{~V})$	
Symbol		Item	Rating	Unit
Vin	AVIN/ PVIN Pin Voltage		-0.3 to 6.5	V
Vbulx	BULX Pin Voltage		-0.3 to $\mathrm{V}_{\mathbf{1}}+0.3$	V
Vbolx	BOLX Pin Voltage		-0.3 to $\mathrm{V}_{\text {Out }}+0.3$	V
$V_{\text {ce }}$	CE Pin Voltage		-0.3 to 6.5	V
Vmode	MODE Pin Voltage		-0.3 to 6.5	V
Vout	VOUT Pin Voltage		-0.3 to 6.5	V
$V_{\text {fb }}$	VFB Pin Voltage		-0.3 to 6.5	V
ILX	BULX/ BOLX Pin Output Current		4.2	A
PD	Power Dissipation ${ }^{(1)}$	WLCSP-20-P1 (JEDEC STD.51-9)	1400	mW
		$\begin{aligned} & \text { DFN(PLP)2730-12 } \\ & \text { (JEDEC STD.51-7) } \end{aligned}$	3100	
Tj	Junction Temperature Range		-40 to 125	${ }^{\circ} \mathrm{C}$
Tstg	Storage Temperature Range		-55 to 125	${ }^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause permanent damage and may degrade the life time and safety for both device and system using the device in the field.
The functional operation at or over these absolute maximum ratings are not assured.

RECOMMENDED OPERATING CONDITIONS

Symbol	Item	Rating	Unit
$\mathrm{V}_{\mathbb{N}}$	Input Voltage	2.3 to 5.5	V
Ta	Operating Temperature Range	-40 to 85	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Abstract

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if they are used over such ratings by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

[^2]
ELECTRICAL CHARACTERISTICS

Open-loop Measurement GND $=0 \mathrm{~V}$, unless otherwise noted.

RP602Z Electrical Characteristics		$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$					
Symbol	Item	Condit	tions	Min.	Typ.	Max.	Unit
Ido	Power Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\text {MOde }}=5.5 \mathrm{~V}$		27.5	60	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {OUT }}=4.2 \mathrm{~V}$	$\mathrm{V}_{\text {Mode }}=0 \mathrm{~V}$		1000	1400	
Istandby	Standby Current	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}$	$\mathrm{V}_{\text {CE }}=0 \mathrm{~V}$		0.1	5.0	$\mu \mathrm{A}$
Vout	Output Voltage	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$		x0.985		$\times 1.015$	V
Δ Vout $I \Delta T a$	Output Voltage Temperature Coefficient	$-40^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 85^{\circ} \mathrm{C}$			± 50		$\mathrm{ppm}^{\circ} \mathrm{C}$
Vovp	OVP Detection Voltage	$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$, Rising		4.5	5.0	5.5	V
	OVP Release Voltage	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$, Falling		4.3	4.8	5.3	V
fosc	Switching Frequency	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$		2.4	2.6	2.9	MHz
lııмнS	BULX Current Limit ${ }^{(1)}$	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$		3.7	4.2		A
Ron	High \& Low Switch On-resistance	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$			80		$\mathrm{m} \Omega$
R ${ }_{\text {dis }}$	On-resistance of Discharge Tr. (RP602ZxxxA/C)	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=0 \mathrm{~V}$			80		Ω
Ifbe	$V_{\text {FB }}$ Input Current, High	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{FB}}=5.5 \mathrm{~V} \end{aligned}$				1	$\mu \mathrm{A}$
Ifbl	$V_{\text {FB }}$ Input Current, Low	$\begin{aligned} & V_{\mathbb{I N}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{FB}}=0 \mathrm{~V} \end{aligned}$				1	$\mu \mathrm{A}$
V_{H}	CE / MODE Pins Input Voltage, High	$\mathrm{V}_{1 \mathrm{I}}=5.5 \mathrm{~V}$		1.0			V
V_{L}	CE / MODE Pins Input Voltage, Low	$\mathrm{V}_{1 \mathrm{~N}}=2.3 \mathrm{~V}$				0.4	V
$\mathrm{IH}^{\text {r }}$	CE / MODE Pins Input Current, High	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CE }}=5.5 \mathrm{~V}$		-1	0	1	$\mu \mathrm{A}$
IL	CE / MODE Pins Input Current, Low	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=0 \mathrm{~V}$		-1	0	1	$\mu \mathrm{A}$
Vuvlo1	UVLO Detection Voltage	$\mathrm{V}_{\mathrm{IN}}=$ Falling		1.83	2.00		V
Vuvioz	UVLO Release Voltage	$\mathrm{V}_{\text {IN }}=$ Rising			2.05	2.25	V
TTSD	Thermal Shutdown Threshold Temperature	Tj, Rising			150		${ }^{\circ} \mathrm{C}$
TTSR		Tj, Falling			110		${ }^{\circ} \mathrm{C}$
tstart	Soft-start Time	$\mathrm{V}_{1 \times}=3.6 \mathrm{~V}$			1		ms
tprot	Protection Delay Time (RP602ZxxxA/B/C/D)	$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$			1.6		ms
$t_{\text {RSt }}$	Reset Protection Delay Time (RP602ZxxxC/D)	$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$			12		ms

All test items listed under ELECTRICAL CHARACTERISTICS are done under the pulse load condition $\left(\mathrm{Tj} \approx \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$.
${ }^{(1)}$ BULX Current Limit vary according to the switching duty ratio.

RP602x

No. JA-353-190507
Open-loop Measurement GND $=0 \mathrm{~V}$, unless otherwise noted.

RP602K Electrical Characteristics						$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$	
Symbol	Item	Conditions		Min.	Typ.	Max.	Unit
lod	Power Current	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\text {MODE }}=5.5 \mathrm{~V}$		27.5	60	$\mu \mathrm{A}$
		$V_{\text {out }}=4.2 \mathrm{~V}$,	$\mathrm{V}_{\text {mode }}=0 \mathrm{~V}$		1000	1400	
Istanoby	Standby Current	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}$	E $=0 \mathrm{~V}$		0.1	5.0	$\mu \mathrm{A}$
Vout	Output Voltage	$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$		x0.985		$\times 1.015$	V
Δ Vout $I \Delta \mathrm{Ta}$	Output Voltage Temperature Coefficient	$-40^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 85^{\circ} \mathrm{C}$			± 50		$\begin{aligned} & \hline \mathrm{ppm} / \\ & { }^{\circ} \mathrm{C} \end{aligned}$
Vovp	OVP Detection Voltage	$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$, Rising		4.5	5.0	5.5	V
	OVP release Voltage	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$, Falling		4.3	4.8	5.3	V
fosc	Switching Frequency	$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$		2.4	2.6	2.9	MHz
lııмнS	BULX Current Limit ${ }^{(1)}$	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$		3.7	4.2		A
Ron	High \& Low Switch On-resistance	$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$			120		$\mathrm{m} \Omega$
Rois	On-resistance of Discharge Tr. (RP602KxxxE/G)	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=0 \mathrm{~V}$			80		Ω
Іfвн	$V_{\text {FB }}$ Input Current, High	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{FB}}=5.5 \mathrm{~V} \end{aligned}$				1	$\mu \mathrm{A}$
Ifbl	VFb Input Current, Low	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{FB}}=0 \mathrm{~V} \end{aligned}$				1	$\mu \mathrm{A}$
V_{H}	CE / MODE Pins Input Voltage, High	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$		1.0			V
VL	CE / MODE Pins Input Voltage, Low	$\mathrm{V}_{1 \times}=2.3 \mathrm{~V}$				0.4	V
$\mathrm{IH}^{\text {}}$	CE / MODE Pins Input Current, High	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CE }}=5.5 \mathrm{~V}$		-1	0	1	$\mu \mathrm{A}$
IL	CE / MODE Pins Input Current, Low	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {ce }}=0 \mathrm{~V}$		-1	0	1	$\mu \mathrm{A}$
Vuvlo1	UVLO Detection Voltage	$\mathrm{V}_{\mathrm{IN}}=$ Falling		1.83	2.00		V
Vuvior	UVLO Release Voltage	$\mathrm{V}_{\text {IN }}=$ Rising			2.05	2.25	V
T TsD	Thermal Shutdown Threshold Temperature	Tj, Rising			150		${ }^{\circ} \mathrm{C}$
TTSR		Tj, Falling			110		${ }^{\circ} \mathrm{C}$
tstart	Soft-start Time	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$			1		ms
tprot	Protection Delay Time (RP602KxxxE/F/G/H)	$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$			1.6		ms
trst	Reset Protection Delay Time (RP602KxxxG/H)	$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$			12		ms

All test items listed under ELECTRICAL CHARACTERISTICS are done under the pulse load condition ($\mathrm{T} \boldsymbol{\mathrm { j }} \approx \mathrm{Ta}=25^{\circ} \mathrm{C}$).
${ }^{(1)}$ BULX Current Limit vary according to the switching duty ratio.
8

RP602x
No. JA-353-190507
Product-specific Electrical Characteristics
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Product Name	Vout (V)		
	Min.	Typ.	Max.
RP602x270x	2.660	2.700	2.740
RP602x280x	2.758	2.800	2.842
RP602x290x	2.857	2.900	2.943
RP602x300x	2.955	3.000	3.045
RP602x310x	3.054	3.100	3.146
RP602x320x	3.152	3.200	3.248
RP602x330x	3.251	3.300	3.349
RP602x340x	3.349	3.400	3.451
RP602x350x	3.448	3.500	3.552
RP602x360x	3.546	3.600	3.654
RP602x370x	3.645	3.700	3.755
RP602x380x	3.743	3.800	3.857
RP602x390x	3.842	3.900	3.958
RP602x400x	3.940	4.000	4.060
RP602x410x	4.137	4.100	4.161
RP602x420x	4.200	4.263	

RP602x

No. JA-353-190507

THEORY OF OPERATION

Soft-start Time

Starting-up with CE Pin

The IC starts to operate when the CE pin voltage (V_{CE}) exceeds the threshold voltage. The threshold voltage is preset between CE "High" input voltage (V сен) and CE "Low" input voltage ($\mathrm{V}_{\text {cel }}$). After the start-up of the IC, soft-start circuit starts to operate. Then, after a certain period of time, the reference voltage (VREF) in the IC gradually increases up to the specified value. Soft-start time (tstart) starts when soft-start circuit is activated, and ends when the reference voltage reaches the specified voltage. Soft start time is not always equal to the turn-on speed of the DC/DC converter. Note that the turn-on speed could be affected by the power supply capacity, the output current, the inductance value and the Cout value.

Timing Chart: Starting-up with CE Pin

Starting-up with Power Supply

After the power-on, when VIN exceeds the UVLO release voltage (VuvLO2), the IC starts to operate. Then, softstart circuit starts to operate and after a certain period of time, Vref gradually increases up to the specified value. Soft-start time starts when soft-start circuit is activated, and ends when $V_{\text {REF }}$ reaches the specified voltage. Note that the turn-on speed of Vout could be affected by the power supply capacity, the output current, the inductance value, the Cout value and the turn-on speed of $\mathrm{V}_{\text {IN }}$ determined by C_{IN}.

Timing Chart: Starting-up with Power Supply

Undervoltage Lockout (UVLO) Circuit

If the Vin becomes lower than the UVLO detection voltage (Vuvlo1), the UVLO circuit starts to operate, Vref stops, and P-channel and N -channel built-in switch transistors turn "OFF". As a result, Vout drops according to the Cout capacitance value and the load. To restart the operation, Vin needs to be higher than Vuvloz.

Overvoltage Protection (OVP) Circuit

If the Vout becomes higher than the OVP detection voltage (Vovp), the OVP circuit starts to operate, P-channel and N -channel built-in switch transistors turn "OFF". As a result, Vout drops according to the Cout capacitance value and the load.

Overcurrent Protection Circuit

Overcurrent protection circuit supervises the inductor peak current (the peak current flowing through Pch Tr (SW1) in each switching cycle, and if the current exceeds the BULX current limit (lıxLIm), it turns off Pch Tr (SW1). ILxLim of the RP602x is set to Typ. 4200 mA.

Simplified Diagram of Output Switches

Short Protection Circuit

If the Vout becomes lower than a certain threshold, the BULX current limit is reduced.

Timing Chart: Overcurrent Protection Circuit \& Short Protection Circuit

RP602x

No. JA-353-190507

Latch Type Protection Circuit: RP602xxxxA/B/E/F

The latch type protection circuit latches the built-in drivers of SW1, SW2, SW3 and SW4 off to stop the operation of the device if the overcurrent state continues more than the protection delay time ($t_{\text {PRot }}$).

To release the latch-type protection, reset the device by switching the CE pin from High to Low or making the input voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$ lower than the UVLO detection voltage (VuvLo1).

Timing Chart: RP602xxxxA/B/E/F Latch Protection Circuit

Reset Type Protection Circuit: RP602xxxxC/D/G/H

When the overcurrent state continues more than the protection delay time (tprot), the reset type protection circuit operates and switching stops. The built-in drivers of SW1, SW2, SW3 and SW4 turn off and restarts after the reset protection delay time (tRST). When the overcurrent state is released, the operation is automatically released and returns to normal operation.

Timing Chart: RP602xxxxC/D/G/H Reset Protection Circuit

RP602x

No. JA-353-190507

APPLICATION INFORMATION

RP602x Typical Application Circuit
Recommended External Components

Symbol	Description
$\mathrm{C}_{\text {IN }}{ }^{(1)}$	$10 \mu \mathrm{~F}$, Ceramic, GRM188R60J106ME47, Murata
Cout $^{(2)}$	$22 \mu \mathrm{~F} \times$ 2, Ceramic, GRM188R60J226MEA0, Murata
L	$1.0 \mu \mathrm{H}$, Inductor, DFE201610P- 1R0M, TOKO
	$1.0 \mu \mathrm{H}$, Inductor, XAL4020- 102ME, Coilcraft

Technical Notes on External Components Selection

- Use ceramic capacitors having a low equivalent series resistance (ESR). Cout should be paralleled with another Cout. When selecting the capacitors, consider the bias characteristics and input/ output voltage.
- When the built-in switches are turned off, the inductor may generate a spike-shaped high voltage. Use the high-breakdown voltage capacitor (Cout) which output voltage is 1.5 times or more than the set output voltage.
- Use an inductor that has a low DC resistance, has an enough tolerable current and is less likely to cause magnetic saturation. If the inductance value is extremely small, the peak current of LX may increase. When the peak current of LX reaches to the LX limit current (LLxLIM), overcurrent protection circuit starts to operate. When selecting the inductor, consider the peak current of LX pin (lıxmax). Refer to Calculation Method of Peak Current of LX Pin (ILхмах) in Continuous Mode for details.

[^3]
Calculation Method of Peak Current of LX Pin (llxmax) in Continuous Mode

The peak current of LX pin (lıXMAX) can be calculated as follows, in the case of an ideal buck converter operating in steady conditions, using the components listed in Recommended External Components of APPLICATION INFORMATION.

Ripple Current P-P value is described as IRP, ON resistance of Pch. Tr. is described as RonP, ON resistance of Nch. Tr. is described as Ronn, and DC resistor of the inductor is described as RL.

First, when Pch. Tr. is "ON", the following equation is satisfied.
$V_{I N}=V_{\text {OUT }}+\left(R_{\text {ONP }}+R_{L}\right) \times I_{\text {OUT }}+L \times I_{R P} /$ ton.
Equation 1

Second, when Pch. Tr. is "OFF" (Nch. Tr. is "ON"), the following equation is satisfied.
$L \times I_{R P} /$ tofF $=R_{\text {ONN }} \times$ lout $+V_{\text {OUT }}+R_{L} \times$ lout.. Equation 2

Put Equation 2 into Equation 1 to solve ON duty of Pch. Tr. (Don $=$ ton $/($ toff + ton $)$):

Ripple Current is described as follows:
$I_{R P}=\left(V_{\text {IN }}-V_{\text {OUT }}-R_{\text {ONP }} \times\right.$ lout $-R_{L} \times$ lout $) \times D_{\text {ON }} /$ fosc $/ L$
Equation 4

Peak current that flows through L, and LX Tr. is described as follows:
$I_{\text {Lx }} \max =\mathrm{l}_{\mathrm{OUT}}+\mathrm{I}_{\mathrm{RP}} / 2$.
Equation 5

RP602x

No. JA-353-190507

The peak current of LX pin (llxmax) can be calculated as follows, in the case of an ideal boost converter operating in steady conditions, using the components listed in Recommended External Components of APPLICATION INFORMATION.

Ripple Current P-P value is described as IRP, Average inductor current is described as ILx, ON resistance of Pch. Tr. and ON resistance of Nch. Tr. is described as Ronp and Ronn respectively, and DC resistor of the inductor is described as RL.

First, when Nch. Tr. is "ON", the following equation is satisfied.
$L \times I_{R P} /$ ton $=V_{I N}-\left(R_{L}+R_{o n N}\right) \times I_{L x}$
Equation 6

Second, when Nch. Tr. is "OFF" (Pch. Tr. is "ON"), the following equation is satisfied.
$L \times I_{\text {RP }} /$ toff $=V_{\text {OUT }}+\left(R_{L}+R_{\text {ONP }}\right) \times I_{L X}-V_{I N}$ Equation 7

Put Equation 7 into Equation 6 to solve ON duty of Nch . Tr. ($\mathrm{Don}_{\mathrm{on}}=\mathrm{ton} /(\mathrm{tofF}+\mathrm{t}$ ton $)$):
$\mathrm{D}_{\text {ON }}=\left(\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\mathrm{IN}}+\mathrm{R}_{\mathrm{L}} \times \mathrm{I}_{\mathrm{LX}}+\mathrm{R}_{\text {ONP }} \times \mathrm{I}_{\mathrm{LX}}\right) /\left(\mathrm{V}_{\text {OUT }}+\mathrm{R}_{\text {ONP }} \times \mathrm{I}_{\mathrm{LX}}-\mathrm{R}_{\text {ONN }} \times \mathrm{I}_{\mathrm{LX}}\right)$
Equation 8

Ripple Current is described as follows:
$I_{R P}=\left(V_{I N}-R_{L} \times I_{L X}-R_{\text {ONN }} \times I_{L X}\right) \times D_{\text {oN }} / f_{\text {OSc }} / L$
Equation 9

Peak current that flows through L (llmax), and LX Tr. is described as follows:
$I_{\text {LXMAX }}=I_{\text {LX }}+I_{\text {RP }} / 2$. Equation 10

Also, the average peak current (lout and Don) in the boost circuit is described as follows:

ILX $=$ lout $/(1-$ Don $)$
Equation 11

16

TECHNICAL NOTES

The performance of a power source circuit using this device is highly dependent on a peripheral circuit. A peripheral component or the device mounted on PCB should not exceed a rated voltage, a rated current or a rated power. When designing a peripheral circuit, please be fully aware of the following points.

- Place the bypass capacitor ($\mathrm{C}_{\mathrm{IIN}}$) between the PVIN pin and the GND pin with shortest-distance wiring.
- Place the output capacitor (Cout) between the Vоит pin and the GND pin with shortest-distance wiring. Connect GND of Cout to the GND pin with shortest-distance wiring.
- Make the GND plane wide.
- Ensure the PVIN and GND lines are firmly connected. A large switching current flows through the PVIN, GND, inductor, BOLX, BULX and Vout lines. If their impedance is too high, noise pickup or unstable operation may result.
- Connect the BOLX pin and the inductor and the BULX pin with shortest-distance wiring.

RP602x

No. JA-353-190507

PCB LAYOUT CONSIDERATIONS

Current Paths on PCB

Figure 1 and Figure 2 show the current pathways of step-up circuit when NMOSFET is turned on. Figure 3 and Figure 4 show the current pathways of step-down circuit when PMOSFET is turned on.
The currents flow in the directions of blue or green arrows. The parasitic components, such as impedance, inductance or capacitance, formed in the pathways indicated by the red arrows affect the stability of the system and become the cause of noise. Reduce the parasitic components as much as possible. The current pathways should be made by short and thick wirings.

Figure 1. NMOSFET-ON (Step-up)

Figure 3. NMOSFET-ON (Step-down)

Figure 2. PMOSFET-ON (Step-up)

Figure 4. PMOSFET-ON (Step-down)

PCB LAYOUT

RP602x

No. JA-353-190507

TYPICAL CHARACTERISTICS

Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.

2) Output Current vs. Efficiency (for Different Input Voltages)

RP602Z330x, MODE = H

3) Output Current vs. Output Voltage RP602Z330x, MODE $=\mathrm{H}$

RP602Z330x, MODE $=\mathrm{L}$

RP602Z330x, MODE = L

4) Temperature vs. Output Voltage RP602Z330x

6) Input Voltage vs. Output Current RP602Z330x, MODE = L

8) CE Start-up Waveform RP602Z330x, $\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$, MODE $=\mathrm{H}$ lout $=0 \mathrm{~mA}$

5) Temperature vs. Standby Current RP602Z330x, $\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$

7) Temperature vs. Soft-start Time RP602Z330x

RP602Z330x, $\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{MODE}=\mathrm{H}$
lout $=0 \mathrm{~mA}$

RP602x

No. JA-353-190507

RP602Z330x, $\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{MODE}=\mathrm{L}$ lout $=0 \mathrm{~mA}$

9) Vout Waveform

RP602Z270x, $\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$, $\mathrm{MODE}=\mathrm{H}$
lout $=10 \mathrm{~mA}$

RP602Z330x, $\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{MODE}=\mathrm{H}$ lout $=10 \mathrm{~mA}$

RP602Z330x, $\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{MODE}=\mathrm{L}$
lout $=0 \mathrm{~mA}$

RP602Z270x, $\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{MODE}=\mathrm{L}$
lout $=0 \mathrm{~mA}$

RP602Z330x, $\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{MODE}=\mathrm{L}$ lout $=0 \mathrm{~mA}$

RP602Z420x, $\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$, MODE $=\mathrm{H}$ lout $=10 \mathrm{~mA}$

10) Load Transient Response Waveform RP602Z330x, $\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$, MODE $=\mathrm{H}$
lout $=1 \mathrm{~mA} \longleftrightarrow 500 \mathrm{~mA}$

RP602Z330x, $\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$, $\mathrm{MODE}=\mathrm{H}$ lout $=\mathbf{5 0} \mathbf{~ m A} \longleftrightarrow \mathbf{9 0 0} \mathrm{mA}$

RP602Z420x, $\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{MODE}=\mathrm{L}$
lout $=0 \mathrm{~mA}$

RP602Z330x, $\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{MODE}=\mathrm{L}$
lout $=1 \mathrm{~mA} \longleftrightarrow 500 \mathrm{~mA}$

RP602Z330x, $\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{MODE}=\mathrm{L}$
lout $=\mathbf{5 0} \mathbf{~ m A} \longleftrightarrow 900 \mathrm{~mA}$

RP602x

No. JA-353-190507

RP602Z330x, $\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$, $\mathrm{MODE}=\mathrm{H}$ lout $=1000 \mathrm{~mA} \longleftrightarrow 1500 \mathrm{~mA}$

11) CE Turn off Waveform RP602Z330x, $\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$, $\mathrm{MODE}=\mathrm{H}$ lout $=0 \mathrm{~mA}$

12) Input Transient Response Waveform RP602Z330x, MODE = H
lout $=500 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=2.5 \mathrm{~V} \longleftrightarrow 4.5 \mathrm{~V}$

RP602Z330x, $\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$, MODE $=\mathrm{L}$ lout $=1000 \mathrm{~mA} \longleftrightarrow 1500 \mathrm{~mA}$

RP602Z330x, $\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{MODE}=\mathrm{L}$
lout $=0 \mathbf{~ m A}$

RP602Z330x, MODE = L
lout $=500 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=2.5 \mathrm{~V} \longleftrightarrow 4.5 \mathrm{~V}$

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-9.

Measurement Conditions

Item	Measurement Conditions
Environment	Mounting on Board (Wind Velocity $=0 \mathrm{~m} / \mathrm{s}$)
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)
Board Dimensions	$101.5 \mathrm{~mm} \times 114.5 \mathrm{~mm} \times 1.6 \mathrm{~mm}$
Copper Ratio	Outer Layers (First and Fourth Layers): 60% Inner Layers (Second and Third Layers): 100%

Measurement Result
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Tjmax}=125^{\circ} \mathrm{C}\right)$

Item	Measurement Result
Power Dissipation	1400 mW
Thermal Resistance $(\theta j \mathrm{ja})$	$\theta \mathrm{ja}=\left(125-25^{\circ} \mathrm{C}\right) / 1.4 \mathrm{~W}=71^{\circ} \mathrm{C} / \mathrm{W}$

日ja: Junction-to-Ambient Thermal Resistance

Power Dissipation vs. Ambient Temperature

Measurement Board Pattern

WLCSP-20-P1 Package Dimensions (Unit: mm)

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7.

Measurement Conditions

Item	Measurement Conditions
Environment	Mounting on Board (Wind Velocity $=0 \mathrm{~m} / \mathrm{s}$)
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)
Board Dimensions	$76.2 \mathrm{~mm} \times 114.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$
Copper Ratio	Outer Layer (First Layer): Less than 95\% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100\% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square
Through-holes	$\quad 0.3 \mathrm{~mm} \times 23 \mathrm{pcs}$

Measurement Result
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Tjmax}=125^{\circ} \mathrm{C}\right)$

Item	Measurement Result
Power Dissipation	3100 mW
Thermal Resistance ($\theta \mathrm{ja}$)	$\theta \mathrm{ja}=32^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Characterization Parameter ($\psi \mathrm{j} \mathrm{t})$	$\psi j \mathrm{j}=8^{\circ} \mathrm{C} / \mathrm{W}$

日ja: Junction-to-Ambient Thermal Resistance
ψj t: Junction-to-Top Thermal Characterization Parameter

Power Dissipation vs. Ambient Temperature

Measurement Board Pattern

DFN(PLP)2730-12 Package Dimensions (Unit: mm)

1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
7. Anti-radiation design is not implemented in the products described in this document.
8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOI.
11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment.
Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012

RICOH RICOH ELECTRONIC DEVICES CO., LTD.

https://www.e-devices.ricoh.co.jp/en/

Sales \& Support Offices

Ricoh Electronic Devices Co., Ltd.

Shin-Yokohama Office (International Sales)
2-3, Shin-Yokohama 3-chome, Kohoku-ku, Yokohama-shi, Kanagawa, 222-8530, Japan Phone: +81-50-3814-7687 Fax: +81-45-474-0074
Ricoh Americas Holdings, Inc.
675 Campbell Technology Parkway, Suite 200 Campbell, CA 95008, U.S.A.
Phone: +1 -408-610-3105
Ricoh Europe (Netherlands) B.V.
Semiconductor Support Centre
Prof. W.H. Keesomlaan 1, 1183 DJ Amstelveen, The Netherlands
Phone: +31-20-5474-309
Ricoh International B.V. - German Branch
Semiconductor Sales and Support Centre
Oberrather Strasse 6, 40472 Düsseldorf, Germany
Phone: +49-211-6546-0
Ricoh Electronic Devices Korea Co., Ltd. 3F, Haesung Bldg, 504, Teheran-ro, Gangnam-gu, Seoul, 135-725, Korea Phone: +82-2-2135-5700 Fax: +82-2-2051-5713
Ricoh Electronic Devices Shanghai Co., Ltd.

Ricoh Electronic Devices Shanghai Co., Ltd.
Shenzhen Branch
1205, Block D(Jinlong Building), Kingkey 100, Hongbao Road, Luohu District
henzhen, China
Ricoh Electronic Devices Co., Ltd.
Taipei office
Room 109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan
Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623 \square

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switching Voltage Regulators category:
Click to view products by Nisshinbo manufacturer:
Other Similar products are found below :
FAN53610AUC33X FAN53611AUC123X FAN48610BUC33X FAN48610BUC45X FAN48617UC50X R3 430464BB KE177614
FAN53611AUC12X MAX809TTR NCV891234MW50R2G NCP81103MNTXG NCP81203PMNTXG NCP81208MNTXG NCP81109GMNTXG SCY1751FCCT1G NCP81109JMNTXG AP3409ADNTR-G1 NCP81241MNTXG LTM8064IY LT8315EFE\#TRPBF LTM4664EY\#PBF LTM4668AIY\#PBF NCV1077CSTBT3G XCL207A123CR-G MPM54304GMN-0002 MPM54304GMN-0004 MPM54304GMN-0003 AP62300Z6-7 MP8757GL-P MIC23356YFT-TR LD8116CGL HG2269M/TR OB2269 XD3526 U6215A U6215B U6620S LTC3412IFE LT1425IS MAX25203BATJA/VY+ MAX77874CEWM+ XC9236D08CER-G MP3416GJ-P MP5461GC-Z MPQ4590GS-Z MAX38640BENT18+T MAX77511AEWB+ MAX20406AFOD/VY+ MAX20408AFOC/VY+

[^0]: ${ }^{(1)}$ The pin numbers sharing the same pin symbol must be connected together: $\mathrm{A} 4, \mathrm{~B} 4$, and C 4 of the BOLX pin, $\mathrm{A} 2, \mathrm{~B} 2$, and C2 of the BULX pin, A5, B5, and C5 of the VOUT pin. D1 of the AVIN pin and A1, B1, and C1 of the PVIN pin must be connected together.
 ${ }^{(2)}$ D4 of the AGND pin and A3, B3, and C3 of the PGND pin must be connected to the ground.
 ${ }^{(3)}$ The logic to the MODE pin should not be changed while $\mathrm{CE}=\mathrm{H} \mathrm{H}$ ".

[^1]: ${ }^{(1)}$ The AVIN pin and the PVIN pin must be connected together.
 ${ }^{(2)}$ The AGND pin and the PGND pin must be connected to the ground.
 ${ }^{(3)}$ The logic to the MODE pin should not be changed while CE = "H".

[^2]: ${ }^{(1)}$ Refer to POWER DISSIPATION for detailed information

[^3]: ${ }^{(1)}$ Place Cin as close as possible to the PVIn pin.
 ${ }^{(2)}$ Place Cout as close as possible to the Vout pin.

