NJM2122M

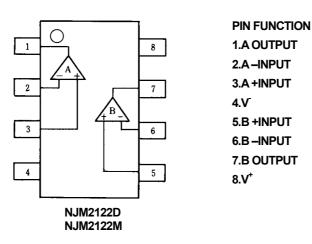
ULTRA LOW NOISE DUAL OPERATIONAL AMPLIFIER

■ GENERAL DESCRIPTION

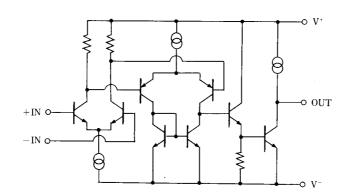
■ PACKAGE OUTLINE

The NJM2122 is an ultra low noise dual operational amplifier.

The features of ultra low noise, low operating voltage, and low saturation voltage are suitable for microphone amplifier of digital audio items such as portable MD,DAT,and others.


• Ultra Low Noise Voltage $(1.5 \text{nV}/\sqrt{\text{Hz}} \text{ typ.} @ \text{f=1kHz})$ • Low Saturation Output Voltage (0.3V typ.)

• Bipolar Technology


■ FEATURES

 Package Outline DIP8, DMP8

■ PIN CONFIGURATION

■ EQUIVALENT CIRCUIT (1/2 Shown)

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺ /V ⁻	± 10	V
Differential Input Voltage	V _{ID}	± 0.5	V
Input Voltage	V _{IC}	± 10 (note)	V
Power Dissipation	P _D	(DIP8) 500 (DMP8) 300	mW
Operating Temperature Range	Topr	-20~+75	°C
Storage Temperature Range	T _{stg}	-40~+125	°C

(note) When the supply voltage is less than ± 10 V, the absolute maximum input voltage is equal to the supply voltage.

■ ELECTRICAL CHARACTERISTICS

 $(V^{\dagger}=5V,Ta=25^{\circ}C)$

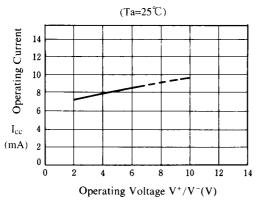
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Voltage 1	Vope1	DIP Package	± 2.0	-	± 10.0	V
Operating Voltage 2	Vope2	DMP Package	± 2.0	-	± 7.0	V
Operating Current	Icc	V _{IN} =0V,R _L =∞Ω		7.0	9.5	mA
Input Offset Voltage	V _{IO}	R _S =500Ω		1.0	6.0	mV
Input Offset Current	I _{IO}		-	0.45	1.50	μA
Input Bias Current	lΒ			3.6	8.0	μA
Large Signal Voltage Gain	A_V	R _L ≥10kΩ	80	100	-	dB
Input Common Mode Voltage Range	V_{ICM}		± 0.7	± 1.0	-	V
Common Mode Rejection Ratio	CMR		60	74	-	dB
Supply Voltage Rejection Ratio	SVR		60	80	-	dB
Maximum Output Voltage	V_{OM}	R _L ≥2.5kΩ	± 2.0	± 2.2	-	V
Slew Rate	SR	$G_V = 20 dB, V_{IN} = \pm 0.1 V$	-	2.4	-	V/µs
Gain Bandwidth Product	GB		-	12	-	MHz
Equivalent Input Noise Voltage 1	e _{n1}	$R_S=10\Omega, f=1kHz$	-	1.5	-	nV√Hz
Equivalent Input Noise Voltage 2	e _{n2}	*Figure1	-	0.56	0.75	μVrms
Channel Separation	CS	f=1kHz	-	90	-	dB
Total Harmonic Distortion	THD	V _O =1Vrms,f=1kHz	-	0.003	-	%
		G_V =20dB, R_L =2.5k Ω				

(note) Between 30 to 50dB voltage gain is recommended.

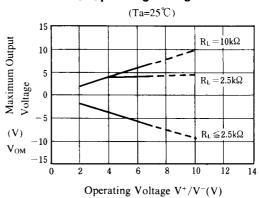
In case of voltage gain less than 30dB, phase compensation by external circuit is required.

The voltage follower circuit must not be used.

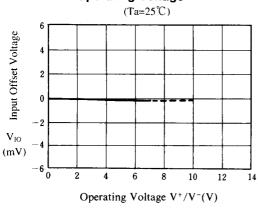
DMP package should be used in operating voltage less than $\pm 7 \text{V}$, because of the P_D limitation.

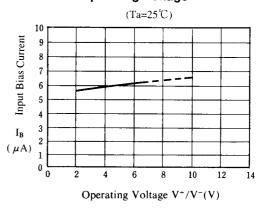

Figure 1

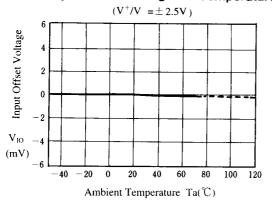
B. P. F.
20 ~ 20000Hz

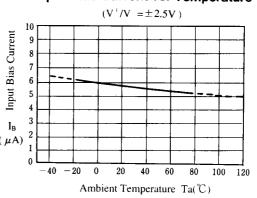

Vo

■ TYPICAL CHARACTERISTICS

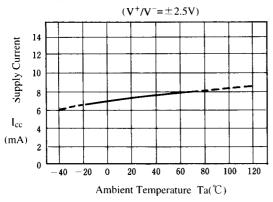

Operating Current vs. Operating Voltage


Maximum Output Voltage vs. Operating Voltage


Input Offset Voltage vs. Operating Voltage

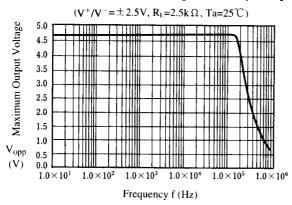

Input Bias Current vs.
Operating Voltage

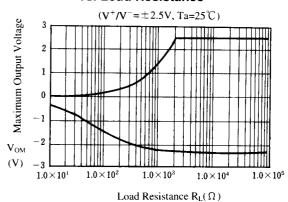
Input Offset Voltage vs. Temperature

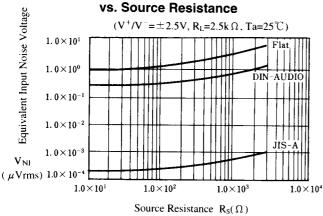


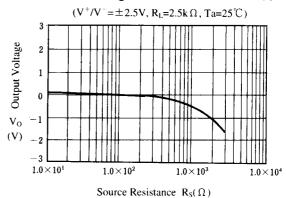
Input Bias Current vs. Temperature

■ TYPICAL CHARACTERISTICS

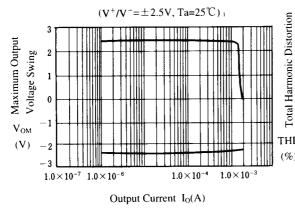

Operating Current vs. Temperature


Maximum Output Voltage vs. Temperature

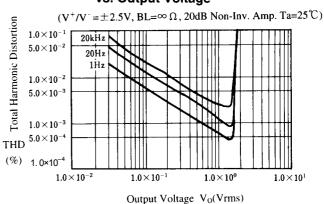

Maximum Output Voltage vs. Frequency


Maximum Output Voltage vs. Load Resistance

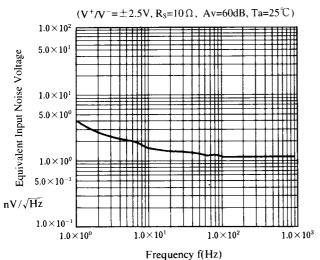
Equivalent Input Noise Voltage



Output Voltage vs. Source Resistance



■ TYPICAL CHARACTERISTICS


Maximum Output Voltage Swing vs. Output Current

Total Harmonic Distortion vs. Output Voltage

Equivalent Input Noise Voltage vs. Frequency

[CAUTION]

The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Operational Amplifiers - Op Amps category:

Click to view products by NJR manufacturer:

Other Similar products are found below:

OPA2991IDSGR OPA607IDCKT 007614D 633773R 635798C 635801A 702115D 709228FB 741528D NCV33072ADR2G

SC2902DTBR2G SC2903DR2G SC2903VDR2G LM258AYDT LM358SNG 430227FB 430228DB 460932C AZV831KTR-G1 409256CB

430232AB LM2904DR2GH LM358YDT LT1678IS8 042225DB 058184EB 070530X SC224DR2G SC239DR2G SC2902DG

SCYA5230DR2G 714228XB 714846BB 873836HB MIC918YC5-TR TS912BIYDT NCS2004MUTAG NCV33202DMR2G

M38510/13101BPA NTE925 SC2904DR2G SC358DR2G LM358EDR2G AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E

NJM358CG-TE2 HA1630S01LPEL-E LM324AWPT HA1630Q06TELL-E