DISTINCTIVE CHARACTERISTICS

Standard with Enhanced Illumination:

Programmable to display graphics, alphanumeric characters and animated sequences.

Standard SMARTDISPLAY ${ }^{\top M}$ can be used alone or in conjunction with electromechanical switches.

Integrated liquid crystal display provides wide viewing angle with high contrast and clarity.

RGB LED provides numerous color variations.
Viewing area $14.4 \mathrm{~mm} \times 11.8 \mathrm{~mm}$ (horizontal \times vertical) at 36×24 pixels.

Actual Size

PART NUMBER \& DESCRIPTION

Part Number	Terminals	LCD Mode	LED Color
IS0 1 BBFRGB	Straight PC	Black \& White FSTN Positive	$*$ Red/Green/Blue

* Simultaneous RGB illumination achieves infinite colors.

LCD \& LED SPECIFICATIONS

Characteristics of Display	
Display Operation Mode	STN positive, FSTN positive
Display Condition	Transflective with built-in LED backlight
Viewing Angle	6 o'clock $^{\text {D }}$ Driving Method
Viewing Area	$1 / 24$ duty. $1 / 5$ bias (built-in driving circuit)
Pixel Format	$14.4 \mathrm{~mm} \times 11.8 \mathrm{~mm}$ (horizontal \times vertical)
Pixel Size	36×24 pixels (horizontal \times vertical)
Operating Temp. Range	$-20^{\circ} \mathrm{C} \sim+60^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F} \sim+140^{\circ} \mathrm{F}\right)$
Storage Temp. Range	$-30^{\circ} \mathrm{C} \sim+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F} \sim+158^{\circ} \mathrm{F}\right)$
Backlight LED	$\mathrm{RGB}:$ red $/$ green $/ b l u e$

Recommended Operating Conditions (Temperature at $25^{\circ} \mathrm{C}$)

Items	Symbols	Minimum	Typical	Maximum
Supply Voltage for Logics	V_{DD}	4.5 V	5.0 V	5.5 V
Supply Voltage LCD	V_{LC}	7.1 V	7.3 V	7.5 V
Input Voltage	V_{I}	0 V	-	V_{DD}
Driving Frequency	$\mathrm{f}_{\mathrm{FLM}}$	-	150 Hz	-

LED Absolute Maximum Ratings (Temperature at $25^{\circ} \mathrm{C}$)

Items			Symbols
Ratings			
Forward Current	I_{F}	20 mA	
Power Dissipation			
Red/Green/Blue			
Color	P_{d}	mW	
	Red	Green	Blue
Unicolor			
40 mW			
LED Overall	60 mW	60 mW	

Wide View LCD 36×24 Display

LCD \& LED SPECIFICATIONS

DC Characteristics of LCD Drive IC (Temperature at $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ and $\mathrm{V}_{D D}=5.0 \mathrm{~V} \pm 10 \%$)

Items	Symbols	Test Conditions	Minimum	Typical	Maximum	Unit
High Level Input Voltage	$\mathrm{V}_{1 \mathrm{H}}$		$0.7 \mathrm{~V}_{\text {D }}$		$V_{D D}$	V
Low Level Input Voltage	V_{IL}		0		$0.3 \mathrm{~V}_{\text {DD }}$	V
High Level Input Leakage Current	$\mathrm{I}_{\text {LIH }}$	$V_{1}=V_{D D}$			10	$\mu \mathrm{A}$
Low Level Input Leakage Current	$\mathrm{I}_{\text {LIL }}$	$V_{1}=0 \mathrm{~V}$			-10	$\mu \mathrm{A}$
High Level Output Voltage	V_{OH}	$\mathrm{I}_{\text {OH }}=-500 \mu \mathrm{~A}$	$V_{D D}-0.5$			V
Low Level Output Voltage	$\mathrm{V}_{\text {OL }}$	$\mathrm{I}_{\mathrm{OH}}=500 \mu \mathrm{~A}$			0.5	V
High Level Output Leakage Current	$\mathrm{I}_{\mathrm{LOH}}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}$			10	$\mu \mathrm{A}$
Low Level Output Leakage Current	$\mathrm{I}_{\text {LOL }}$	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$			-10	$\mu \mathrm{A}$
Supply Current	$I_{\text {D }}$	$\mathrm{f}_{\text {SPP }}=1.0 \mathrm{MHz}$			500	$\mu \mathrm{A}$
LCD Drive Current	$\mathrm{I}_{\text {LC }}$	$\mathrm{f}_{\mathrm{LP}}=2.4 \mathrm{kHz} \quad \mathrm{V}_{\mathrm{LC}}=7.3 \mathrm{~V}$		500	2,000	$\mu \mathrm{A}$

Timing Characteristics of LCD Drive IC			
(Temperature at $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$)			
Items	Symbols	Minimum	Maximum
Clock Operation Frequency	$\mathrm{f}_{\text {SCP }}$		6.0 MHz
Latch Pulse Frequency	$\mathrm{f}_{\text {LP }}$		50 kHz
Clock High Level Pulse Width	${ }_{\text {cwh }}$	70ns	
Clock Low Level Pulse Width	${ }_{\text {t }}^{\text {W }}$ L	70ns	
Data Setup Time	$t_{\text {DSD }}$	45ns	
Data Hold Time	$t_{\text {DHD }}$	50ns	
Data Output Delay Time	$t_{\text {PDO }}$		25ns
Latch Setup Time	$t_{\text {DSL }}$	50ns	
Latch Hold Time	$\mathrm{t}_{\text {DHL }}$	50 ns	
Latch High Level Width	$t_{\text {twh }}$	200ns	
FLM Setup Time	$t_{\text {DSF }}$	50 ns	
FLM Hold Time	$\mathrm{t}_{\text {DHF }}$	50 ns	
SCP, LP Rise/Fall Time	$\mathrm{t}_{\mathrm{r}} / \mathrm{t}_{\mathrm{f}}$		15ns

*1 Last data on first line
*2 Beginning data on second line
*3 Location of LP signal on first line

Display Electrical Characteristics

Items			Symbols	Test Condition	Minimum	Typical	Maximum	
LCD	Supply Voltage	Logic Circuit	$V_{D D}$		4.5	5.0	5.5	
		LCD Circuit	$V_{\text {LC }}$		7.1	7.3	7.5	
	Input Voltage	H	$\mathrm{V}_{\text {IH }}$		$0.7 \mathrm{~V}_{\text {D }}$	-	$V_{D D}$	
		L	V_{1}		0	-	$0.3 \mathrm{~V}_{\text {D }}$	
	Output Voltage	H	$\mathrm{V}_{\text {OH }}$	$\mathrm{D}_{\text {OUt, }} \mathrm{I}_{\text {OH }}=500 \mu \mathrm{~A}$	$V_{D D}-0.5$	-	-	
		L	$\mathrm{V}_{\text {OL }}$	$\mathrm{D}_{\text {OUt, }} \mathrm{I}_{\text {OL }}=500 \mu \mathrm{~A}$	-	-	0.5	
	Power	Logic Circuit	$I_{\text {D }}$	$\mathrm{f}_{\text {scp }}=1.0 \mathrm{MHz}$	-	-	500	
		LCD Circuit	$I_{\text {LC }}$	$\mathrm{f}_{\mathrm{LP}}=2.4 \mathrm{kHz} \quad \mathrm{V}_{\mathrm{LC}}=7.3 \mathrm{~V}$	-	500	2,000	
Items			Symbols	Test Condition	Red/Green/Blue			
LED	Forward Current		I_{F}		Red	Green	Blue	
				10 mA	8.5 mA	8 mA		
	Forward Voltage			V_{F}	$\begin{gathered} \mathrm{I}_{\mathrm{F}}=\begin{array}{c} \text { Forward Current } \\ \mathrm{Ta}=25^{\circ} \mathrm{C} \end{array} \end{gathered}$	Red	Green	Blue
			2.0 V			2.8 V	2.8 V	
	Current Reduction Rate		$\Delta I_{\text {F }}(\mathrm{DC})$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$ above	$-0.33 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$			

(3) GND

Pin No. Symbol

(1)	V LC	Power
(2)	BL-LED (-)	Terminal of Backlight LED
(3)	GND	Ground
(4)	V $_{\text {DD }}$	Power
(5)	Din	Data Input
(6)	SCP	Serial Clock Pulse
(7)	LP	Latch Pulse
(8)	BL-LED (-)	Terminal of Backlight LED
(9)	FLM	First Line Marker
(10)	BL-LED (+)	Terminal of Backlight LED
(11)	Dout	Data Output
(12)	BL-LED (-)	Terminal of Backlight LED

Function

Power source for LCD drive
Cathode for green

Power source for logic circuit
Display serial data bit. Note: to map the display data, because of the difference between the number of internal shift register data (40) and the single line of LCD pixels (36), the first four bits of data shifted will be dummy bits.
Clock used by 40-bit internal shift register of the switch, shiffing the display data bit presented at Din at falling edge.
Line data latch pulse will latch content of internal 40 -bit shift register at falling edge for one line of display. LP will also increment the display line by one.
Cathode for red
The marking signal for the first line data of LCD display. The first line of LCD will be selected by the falling edge of LP signal during the high level (FLM).
Anode for common
Display serial output. Can be used to connect to Din of the next SMARTDISPLAY. As a result, many SMARTDISPLAYS can be controlled with one clock and data signal.
Cathode for blue

SUPER BRIGHT RGB LED SPECIFICATIONS

Typical Electrical Characteristics (Temperature at $25^{\circ} \mathrm{C}$)

Backlight Color	Symbols	Red	Green	Blue	Unit
Forward Current	I_{F}	10	8.5	8.0	mA
Forward Voltage	V_{F}	2.0	2.8	2.8	V

ABSOLUTE MAXIMUM FOR RGB LED

Electrical Characteristics (Temperature at $25^{\circ} \mathrm{C}$)

Backlight Color	Symbols	Red	Green	Blue	Unit
Forward Current	I_{F}	20	20	20	mA
Forward Voltage	V_{F}	2.0 $\left(I_{\mathrm{F}}=10 \mathrm{~mA}\right)$	2.8 $\left(\mathrm{I}_{\mathrm{F}}=8.5 \mathrm{~mA}\right)$	2.8 $\left(\mathrm{I}_{\mathrm{F}}=8.0 \mathrm{~mA}\right)$	V
Reverse Voltage	V_{R}	4.0	4.0	4.0	V
Current Reduction Rate Above $\mathbf{2 5}{ }^{\circ} \mathrm{C}$	$\Delta \mathrm{I}_{\mathrm{F}}(\mathrm{DC})$	-0.33	-0.33	-0.33	$\mathrm{~mA} /{ }^{\circ} \mathrm{C}$
*Power Dissipation (LED Overall 115 mW$)$	P_{D}	40	60	60	mW

*For uniform light emission, Power Dissipation should not exceed the Absolute Maximum Rating, and the Forward Current should not exceed the derated Absolute Forward Current.

TYPICAL DISPLAY DIMENSIONS WITH RGB LED

Terminal numbers are not on the device.

Pixel Detail

Footprint

PRECAUTIONS FOR HANDLING \& STORAGE OF LCD 36×24 DEVICES

Handling

1. The IS Series devices are electrostatic sensitive.
2. Limit operating force to keytop to 100.0 N maximum, as excessive pressure may damage the LCD device.
3. The IS series devices are not process sealed.
4. If the LCD is accidentally broken, avoid contact with the liquid and wash off any liquid spills to the skin or clothing.
5. Clean cap surface with dry cloth. If further cleaning is needed, wipe with dampened cloth using neutral cleanser and dry with clean cloth. Do not use organic solvent.
6. Recommended soldering time and temperature limits:

Do not exceed $70^{\circ} \mathrm{C}$ at the LCD level.
Wave Soldering: see Profile B in the Supplement section.
Manual Soldering: see Profile B in the Supplement section.
7. Recommendation for backlight color uniformity: Use constant current driver. For current limiting resistor method, the power source should be at least twice the backlight LED forward voltage.
8. The VLC voltage should not be applied before logic voltage. If VLC voltage is present before logic voltage, it may cause the driver logic to freeze and damage the LCD, and the driver logic may become damaged.
9. Backlight Forward Current should not exceed the derated Absolute Maximum Forward Current based on the temperature.
10. Excessive images may result after the same image is emitted continuously for an extended period of time.

Storage

1. Store in original container and away from direct sunlight.
2. Keep away from static electricity.
3. Avoid extreme temperatures, high humidity, gaseous substances, and all forms of chemical contamination.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Display Switches category:
Click to view products by NKK Switches manufacturer:
Other Similar products are found below :
CTHS15CIC07ARROW CTHS15CIC04ONOFF CTHS15CIC07ALARM CTHS15CIC01ONOFF CTHS15CIC01ARROW CTHS15CIC07
CTHS15CIC04ARROW CTHS15CIC07ONOFF CTHS15CIC06ARROW CTHS15CIC05ONOFF CTHS15CIC05ARROW
CTHS15CIC05ALARM CTHS15CIC05 CTHS15CIC01 CSMS15CIC04 IS01BBFRGB IS01EBFRGB IS15BBFP4RGB IS15EBFP4RGB
IS15EBFP4RGB-09YN IS15ESBFP4RGB IS18WWC1W ISC15ANP4 ISF15ACP4 CSMS15CIC01 CSMS15CIC05 CSMS15CIC06 CSMS15CIC07 CTHS15CIC01ALARM CTHS15CIC06ONOFF CTHS15CIC06ALARM CTHS15CIC06 CTHS15CIC04ALARM IS15SBCP4EF IS15SBFP4B IS15SBCP4CF

