High Speed, 5A Dual-Channel, Low-Side Gate Driver with Enable Pins

Product Overview

NSD1025 is a wide supply, non-inverting, dual-channel, high speed, low side gate driver for both MOSFET, and IGBT. It has capability to deliver 5A sink and source current to the capacitive load along with rail-to-rail output to reduce the Miller effect during MOSFET's switching transition. Fast rise and fall times as well as matched propagation delay of both output channels enable the NSD1025 suitable for high frequency power converter application.
Both the input and enable pins of NSD1025 has ability to handle -10V which enhance the noise immunity and robustness of the device. Driver inputs are compatible with CMOS and TTL logic hence it provides easy interface with analog and digital controllers.
The internal circuitry provides an under voltage lockout (UVLO) function by holding the output low until the supply voltage is under the UVLO threshold values. Wide band of VDD hysteresis between high and low thresholds offers excellent noise immunity. The NSD1025 device is available in SOP8, EP-SOP8, and EP-MSOP8 package with operating temperature range from $-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$.

Key Features

- Wide supply voltage range: 4.5 to 24 V
- Source/Sink drive current: $\pm 5 \mathrm{~A}$ (Peak)
- Two independent enable pins to control channel output
- Industry-standard Pin out
- Ability to handle negative swing of (-10 V) at each input pin
- Offer High drive current by parallel connection of outputs
- CMOS/TTL compatible logic inputs
- 5 A reverse current feature eliminates the need of output protection circuitry
- Operating temperature range: $-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
- Low supply current
- Short propagation delays: 21ns (typical)
- Automotive qualified to AEC-Q100 Class 1

Applications

- Typical SMPS (Solar, Server, Telecom, Industrial)
- Motor Controllers
- Pulse Transformer Driver
- DC-DC Converters
- Class-D switching amplifier
- Line-drivers

Topologies

- Synchronous rectifiers
- Single and interleaved PFC
- LLC
- ZVS with pulsed transformer

Device Information ${ }^{(1)}$

Part Number	Package	Body Size
NSD1025-DSPR	SOP8	$4.9 \mathrm{~mm} \times 3.9 \mathrm{~mm}$
NSD1025-Q1HSPR	EP-SOP8	$4.9 \mathrm{~mm} \times 3.9 \mathrm{~mm}$
NSD1025-Q1HMSR	EP-MSOP8	$3.0 \mathrm{~mm} \times 3.0 \mathrm{~mm}$
NSD1025-DHMSR	EP-MSOP8	$3.0 \mathrm{~mm} \times 3.0 \mathrm{~mm}$

1) For all available packages, and order information refer to the end of datasheet.

Block Diagram

NSD1025 Block Diagram

INDEX

1. PIN CONFIGURATION AND FUNCTIONS 3
2. ABSOLUTE MAXIMUM RATINGS 4
3. RECOMMENDED OPERATING CONDITIONS 4
4. THERMAL INFORMATION 4
5. SPECIFICATIONS 5
5.1 ELECTRICAL CHARACTERISTICS 5
5.2 SWITCHING CHARACTERISTICS 6
5.3 Parameters Measurement Information 6
5.4 TYPICAL Characteristics 7
6. DETAILED DESCRIPTION 9
6.1 Overview 9
6.2 Functional Block Diagram 10
6.3 Feature Description 10
6.3.1 Supply Voltage 10
6.3.2 Under Voltage Lockout (UVLO) 10
6.3.3 Input Stage. 11
6.3.4 Enable Function 11
6.3.5 Device Functional Modes. 12
7. APPLICATIONS AND IMPLEMENTATION 13
7.1 TYPICAL APPLICATIONS 13
7.2 Driver Current and Power Dissipation. 13
7.3 PCB Layout 14
8. PACKAGE INFORMATION 15
9. ORDERING INFORMATION 16
10. DOCUMENTATION SUPPORT 16
11. TAPE AND REEL INFORMATION 17
12. REVISION HISTORY 19

1. Pin Configuration and Functions

Figure. 1.1 NSD1025 Pin Configuration

Table 1.1 NSD1025 Pin Description

NSD1025 PIN NO.	SYMBOL	
1	ENA	Channel A Enable Input: ENA is pulled up through a 180k resistor. if ENA is HIGH or left open OUTA depends on INA; to disable the Channel A the ENA pin drive LOW regardless of the INA state
2	INA	Channel A Logic Input: INA is pulled down through a 180k resistor. OUTA is held LOW if INA is unbiased or floating. This pin should be connected to HIGH state or GND (Not be left unconnected).
3	GND	Ground - Common ground reference for the device
4	INB	Channel B Logic Input: INB is pulled down through a 180k resistor. OUTB is held LOW if INB is unbiased or floating. This pin should be connected to HIGH state or GND (Not be left unconnected).
5	OUTB	Channel B Output - Low impedance output with Source or sink current ability
6	VDD	Supply Voltage - Provides power to the device
7	OUTA	Channel A Output - Low impedance output with Source or sink current ability
8	ENB	Channel B Enable Input: ENB is pulled up to VDD through a 180k resistor. if ENB is HIGH or left open OUTB depends on INB; to disable the Channel B the ENB pin drive LOW regardless of the INB state

2. Absolute Maximum Ratings

Parameters	Symbol	Min	Max	Unit	Comments
Supply Voltage	VDD	-0.3	24	V	
Input and Enable pins Voltage	$\mathrm{V}_{\text {INA }}, \mathrm{V}_{\text {Inb, }}, \mathrm{V}_{\text {ena }}, \mathrm{V}_{\text {enb }}$	-10	24	V	
Output Voltage	$V_{\text {outa }}, \mathrm{V}_{\text {outb }}$	-0.3	VDD +0.3	V	
		-2	VDD +0.3	V	Pulse<200ns
Output Source/Sink pulse current	$I_{\text {SRC }}$, $I_{\text {SNK }}$		± 5	A	Pulse<500ns
Operating Junction Temperature	T	-40	150	${ }^{\circ} \mathrm{C}$	
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-60	150	${ }^{\circ} \mathrm{C}$	
ESD	Human-body model (HBM), per JESD22-C101	-4000	+4000	V	
	Charged-device model (CDM), JESD22-A114	-1000	+1000	V	

3. Recommended Operating Conditions

Parameters	Symbol	Min	Max	Unit
Supply Voltage	VDD	4.5	20	V
Input Pin Voltage	$\mathrm{V}_{\mathrm{INA}, \mathrm{B}}$	-3	14	V
Enable Pin Voltage	$\mathrm{V}_{\mathrm{ENA}, \mathrm{B}}$	-3	20	V
Operating Ambient Temperature	T_{A}	-40	125	${ }^{\circ} \mathrm{C}$

4. Thermal Information

| Parameters | Symbol | EP-SOP8 | SOP8 | EP-MSOP8 | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Junction-to-ambient thermal resistance ${ }^{(1)}$ | $\mathrm{R}_{\theta \mathrm{JA}}$ | 80 | 110 | 70 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Junction-to-top Characterization parameters ${ }^{(2)}$ | $\Psi_{\text {JT }}$ | 10 | 18 | 8 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

1) Standard JESD51-3 Low Effective Thermal Conductivity Test Board (1s) in an environment described in JESD51-2a.
2) Obtained by Simulating in an environment described in JESD51-2a

5. Specifications

5.1 Electrical Characteristics

Use VDD $=12 \mathrm{~V}$, and 10 uF capacitor from VDD to GND. Positive and negative symbols represents the current into and out of the specified terminal, $\mathrm{TJ}=-40^{\circ} \mathrm{C}$ to $140^{\circ} \mathrm{C}$ (unless otherwise noted).

Parameters	Symbol	Min	Typ	Max	Unit	Comments
VDD Current						
Startup current	$\mathrm{IDD}_{\text {(off) }}$		363		uA	$\mathrm{V} D \mathrm{D}=3.4 \mathrm{~V}, \mathrm{INA}=I N B=\mathrm{VDD}$
			350		uA	$\mathrm{VDD}=3.4 \mathrm{~V}, \mathrm{INA}=1 \mathrm{NB}=\mathrm{GND}$
Quiescent current	$I_{\text {I }}$ Q	750	950	1150	uA	$\mathrm{VDD}=12 \mathrm{~V}, \mathrm{ENA}=\mathrm{ENB}=\mathrm{VDD}, \mathrm{INA}=I N B=\mathrm{VDD}$
		600	810	1000	uA	ENA, ENB=VDD, INA=INB=GND
Operating current	$1 \mathrm{D}_{\text {(op) }}$		25		mA	$\mathrm{f}=500 \mathrm{kHz}$ Square wave, $\mathrm{VDD}=12 \mathrm{~V}, \mathrm{C}_{\text {outa }}=1.8 \mathrm{nF}$ \& $\mathrm{C}_{\text {outb }}=1.8 \mathrm{nF}$
Under Voltage Lockout (UVLO)						
VDD turn-on threshold	$\mathrm{VDD}_{\text {ON }}$	3.9	4.2	4.5	V	
VDD turn-off threshold	VDD ${ }_{\text {off }}$	3.6	3.9	4.2	V	
VDD hysteresis	VDD ${ }_{\text {HYS }}$		0.3		V	
Input Characteristics						
Input signal for LH transition	VINH	1.7	2.1	2.6	V	Output Turns to High, If EN pin is high or left open
Input signal for HL transition	$\mathrm{V}_{\text {INL }}$	1.0	1.25	1.6	V	Output Turns to low, If EN pin is high or left open
Input signal hysteresis	$\mathrm{V}_{\text {INHYS }}$		0.85		V	
Enable signal for LH transition	$\mathrm{V}_{\text {ENH }}$	1.7	2.1	2.6	V	Output Turns to High, If IN pin is high
Enable signal for HL transition	$\mathrm{V}_{\text {EnL }}$	1.0	1.25	1.6	V	Output Turns to low, If IN pin is high
Enable signal hysteresis	$\mathrm{V}_{\text {ENHYS }}$		0.85		V	
Input pull-up resistance	Ren		180		k Ω	
Input pull-down resistance	RIN		180		k Ω	
Output Characteristics						
Peak Source Current	$I_{\text {SRC }}$		5		A	$\mathrm{t}_{\text {pulse }}=200 \mathrm{~ns}$
Peak Sink Current	$\mathrm{I}_{\text {SNK }}$		-7			$\mathrm{t}_{\text {pulse }}=200 \mathrm{~ns}$
Output pull-up resistance	R ${ }_{\text {OH }}$	0.2	1.0	2.0	Ω	$\mathrm{l}_{\text {OUT }}=-100 \mathrm{~mA}$
Output pulldown resistance	RoL	0.1	0.6	1.5	Ω	$\mathrm{l}_{\text {OUT }}=100 \mathrm{~mA}$

5.2 Switching Characteristics

Parameters	Symbol	Min	Typ	Max	Unit	Comments
Input/Enable to output propagation delay ${ }^{(1)}$	$\mathrm{T}_{\text {PDLH }}$	10	21	27	ns	$\mathrm{C}_{\text {LOAD }}=1.8 \mathrm{Nf}$, low to high transition
	$\mathrm{T}_{\text {PDHL }}$	10	21	27	ns	$\mathrm{C}_{\text {LOAD }}=1.8 \mathrm{Nf}$, high to low transition
Rise time ${ }^{(1)}$	T_{R}		9		ns	$\mathrm{C}_{\text {LOAD }}=1.8 \mathrm{nF}, \mathrm{VDD}=12 \mathrm{~V}$
Fall time ${ }^{(1)}$	T_{F}		8		ns	$\mathrm{C}_{\text {LOAD }}=1.8 \mathrm{nF}, \mathrm{VDD}=12 \mathrm{~V}$
Delay matching between two channels	T_{DM}		1	4	ns	INA $=$ INB, OUTA and OUTB at 50\% transition point
Minimum input pulse width that changes the output state ${ }^{(2)}$	$\mathrm{T}_{\text {PW }}$		20	30	ns	$\mathrm{C}_{\text {LOAD }}=1.8 \mathrm{nF}, \mathrm{VDD}=12 \mathrm{~V}$

1) See the timing diagrams in Figure 5.1
2) See the timing diagrams in Figure 5.2

5.3 Parameters Measurement Information

Figure 5.1 shows the definition of propagation delay, rise and fall time, while the minimum input pulse width that changes the output state in depicted in Figure 5.2. Associated test circuit diagram for specification measurements is shown in Figure 5.3.

Figure 5.1 Propagation Delay, rise and fall time

Figure 5.2 Minimum input pulse width that changes the output state

Figure 5.3 Test circuit diagram

5.4 Typical Characteristics

Figure 5.4 Start-up current (IDD (off) Vs Temperature

Figure 5.5 Operating supply current $\mathrm{IDD}_{(\mathrm{OP})}$ Vs Temperature

Figure 5.6 VDD UVLO Threshold Vs Temperature

Figure 5.8 Enable threshold Vs Temperature

Figure 5.10 Output pull-down Resistance Vs Temperature

Figure 5.7 Input Threshold Vs Temperature

Figure 5.9 Rise and Fall time Vs Temperature

Figure 5.11 Output pull-up Resistance Vs Temperature

6. Detailed Description

6.1 Overview

The NSD1025 is a non-inverting high-speed dual-channel low side gate driver device featuring 5-A source and sink current capability. It has capability to deliver 5A sink and source current to the capacitive load. Fast rise and fall times as well as matched propagation delay of both output channels enable the NSD1025 suitable for high frequency power converter application.
Both the input and enable pins of NSD1025 has ability to handle -10V which enhance the noise immunity of the device. Driver inputs are compatible with CMOS and TTL logic hence it provides easy interface with analog and digital controllers.

The following table 2 ensures the efficient, robust and reliable operation in high frequency switching applications.

Table 6.1 NSD1025 Features and Advantages

FEATURE	ADVANTAGE
1-ns (typ) delay matching between channels	Enables dual channel outputs be stackable when the driven power device required higher driving capability
Wide range of supply voltage (VDD 4.5 to 24 V)	Improves the output stage robustness during switching load transition
Wide range of operating temperature -40 to 150oc	Flexibility in system design
VDD UVLO Protection	Protects power MOSFETs from running into linear mode, lockout function ensures predictable, glitch-free operation at power-up and power-down
Outputs held low when input pins (INx) in floating condition	Safety feature useful in safety certification while passing abnormal condition tests
Outputs enable when enable pins (ENx) in floating condition	Independent enable pins for external control of each channel operation, PIN 1 and PIN 8 are in floating condition
CMOS/TTL compatible input and enable threshold with wide hysteresis	Increased the noise immunity, compatible with input-logic levels from 3.3 V and 5 V microcontroller
Ability to handle -10 V (max) at input and enable pins	Enhanced the robustness in noisy conditions

6.2 Functional Block Diagram

Figure 6.1 Function Block Diagram

6.3 Feature Description

6.3.1 Supply Voltage

NSD1025 operates under a supply voltage of 4.5 V to 24 V . The high voltage range of VDD can be useful to achieve the full current capability while driving very large MOSFETs. Two bypass capacitors from VDD to GND are recommended to get better performance and to prevent supply noise at high switching frequency. A 0.1-uF surface mount ceramic capacitor must be placed as close as possible to the VDD-GND pins. Moreover, in order to prevent the unwanted glitch in the VDD supply a large capacitor of 10uf with a low ESR must be connected in parallel and close to the small value bypass capacitor.

6.3.2 Under Voltage Lockout (UVLO)

NSD1025 under voltage-lockout rising threshold is typically 4.2 V with 0.3 V typical hysteresis. This hysteresis prevents output bouncing when low VDD supply voltage have noise from power supply. It also prevents sags in the VDD cause by sudden increase in IDD current while system commences switching. When VDD is below the UVLO threshold the circuit holds the outputs low regardless of the status of the inputs. The capability to operate at low voltage less than 5 V , is especially suited for driving emerging GaN power semiconductor devices.

At power-up, the NSD1025 output remains low until the VDD reaches the turn-on threshold. The magnitude of output signal rises with VDD until it reached to steady-state value. Figure 14, shows that the output remains low until the UVLO threshold is reached, then the output becomes in phase with the input waveform if the EN pin is active or floating.

Figure 6.2 Function Block Diagram

6.3.3 Input Stage

The input of NSD1025 is compatible to both TTL and CMOS logic threshold that is independent of the supply voltage. The typical value of high input threshold ($\mathrm{V}_{\mathrm{INH}}=2.1 \mathrm{~V}$) whereas the low threshold ($\mathrm{V}_{\mathrm{INL}}=1.25 \mathrm{~V}$). The logic level thresholds are conveniently driven with PWM control signals derived from 3.3 V and 5 V digital power controller device. Wider hysteresis (typ. 0.85 V) offers enhanced noise immunity compared to traditional TTL logic implementations, where the hysteresis less than 0.5 V . NSD1025 also feature tight control of the input pin threshold voltage levels which ease system design consideration and ensure stable operation across temperature as shown in Figure 8.

6.3.4 Enable Function

NSD1025 provides independent enable function for external control of each channel operation. Like the input pins, the enable pins are also based on TTL and CMOS compatible input-threshold logic that is independent of the supply voltage and are effectively controlled using logic signals from 3.3 V and 5 V microcontroller. When the enable pin voltage reaches to higher threshold $\left(\mathrm{V}_{\mathrm{ENH}}=2.1 \mathrm{~V}\right)$ the driver enables all functions and starts gate driver operation. Whereas, the driver operation is disabled when the enable voltage falls below its lower threshold ($\mathrm{V}_{\mathrm{ENL}}=1.25 \mathrm{~V}$). The enable pins are internally pulled up to VDD with 180 k pull-up resistors. Therefore, the ENA \& ENB pins are left floating or not connecting (NC) for standard operation, where the enable feature is not required. This driver also features tight control of the enable-function threshold-voltage levels which ease system design consideration and ensure stable operation with temperature as depicted in Figure 9.

All input pins have ability to handle negative voltage up to -10 V . This feature enhanced the robustness in noisy environments, and also prevent cross current over single wires during GND shift between signal source and driver input.
6.3.5 Device Functional Modes

Table 6.3 NSD1025 Device Logic

ENA	ENB		INB	OUTA	
H	H	L	L	L	OUTB
H	H	L	H	L	L
H	H	H	L	H	H
H	H	H	H	H	L
L	L	Any	Any	L	
Any	Any	Floating	Floating	L	L
Floating	Floating	L	L	L	L
Floating	Floating	L	H	H	H
Floating	Floating	H	L	H	L
Floating	Floating	H	H		

7. Applications and Implementation

7.1 Typical Applications

Typical synchronous rectifier and interleaved PFC power converter configuration by using the driver NSD1025 are shown in Figure 7.1 and 7.2 respectively.

Figure 7.1 Synchronous Rectifier

Figure 7.2 Interleaved PFC Converter

7.2 Driver Current and Power Dissipation

Power dissipation in the gate driver device for fully charged capacitive load depends on the following factors:

- Switching frequency (Fsw)
- Supply Voltage (VDD)
- Load Capacitor (CLOAD)
- External gate resistors $\left(\mathrm{R}_{\mathrm{G}}\right)$

$$
\begin{equation*}
P_{G}=C_{L o a d} * V_{D D}^{2} * F_{S W} \tag{1}
\end{equation*}
$$

Assuming $\mathrm{C}_{\mathrm{LOAD}}=30 \mathrm{nF}, \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$, and $\mathrm{F}_{\mathrm{SW}}=100 \mathrm{kHz}$ the power loss is calculated using Equation 2.

$$
\begin{equation*}
P_{G}=30 \mathrm{nF} * 12 \mathrm{~V} * 12 \mathrm{~V} * 100 \mathrm{kHz}=0.432 \mathrm{~W} \tag{2}
\end{equation*}
$$

For the switching load presented by a power MOSFET, the power loss of each channel is can be calculated by the Equation (4), where the gate charge is determined by Equation 3.

$$
\begin{equation*}
Q_{G}=C_{L O A D} * V_{D D} \tag{3}
\end{equation*}
$$

So, the gate charge (QG) includes the effect of input capacitance and the added charge needed to swing the drain voltage of the power device as it switches between the ON and OFF states. Generally, manufacturer provides the information of gate charge, in nC, to switch the device under specified conditions. Using gate charge QG, and the power that must be dissipated during charging can be determined by the Equation 4.

$$
\begin{equation*}
P_{G}=Q_{G} * V_{D D} * F_{S W} \tag{4}
\end{equation*}
$$

This power PG dissipates in the gate resistor of the circuit during the MOSFET switching transitions. Half of the power dissipates when the load capacitor is charge and the other half dissipates during discharging period of the capacitor. With the use of external gate drive resistor, the power dissipation shares between internal and gate resistance of the gate driver.

By using external gate resistor R_{G}, the power dissipation is calculated as:

$$
\begin{equation*}
P_{G}=0.5 * Q_{G} * V_{D D} * F_{S W} *\left(\frac{R_{O L}}{R_{O L}+R_{G}}+\frac{R_{O H}}{R_{O H}+R_{G}}\right) \tag{5}
\end{equation*}
$$

Where

- Rol is the effective pull down resistance
- Rон is the pull up resistance
- $\quad \mathrm{R}_{\mathrm{G}}$ is the gate resistance between driver output and gate of power MOSFET

7.3 PCB Layout

For design robustness and proper operation at fast switching and high current applications an appropriate PCB layout design is very important. NSD1025 has ability to provide higher current (5 A peak at VDD=12 V) with very small rise and fall time at the gate of the power MOSFET to assist vary fast voltage transition. The high di/dt causes unwanted ringing, if the trace length and impedance of the loop in not well controlled. Below are the recommended guidelines to design the PCB layout of conferred high-speed gate driver. An example of capacitor and gate resistance placed is shown in Figure 7.3.

Guidelines

- Place the driver as close as possible to the power device to minimize the output side high-current trace length
- Put the bypass capacitor (between VDD and GND) very close to the driver pins to minimize the trace length for better noise filtering. Use of SMD type devices with low ESR capacitor are highly recommended.
- For high current driving applications (in case of paralleling both channel outputs), the driver input loop of both input channels must be symmetrical to ensure the equal input propagation delay.
- In order to lower the di/dt transients all the turn-on and turnoff current loop paths must be minimized
- Wherever possible, parallel the source and return traces to take advantage of flux cancellation
- While designing prefer to keep separate power and signal traces
- The star point grounding is recommended to minimize noise coupling from one current loop to the other. The GND of the driver connects to the other circuit nodes such as source of power MOSFET or ground of PWM controller at single point. The connected paths must be short as possible to reduce parasitic inductance and wide as possible to reduce resistance.
- Use ground plane to provide noise shielding and thermal dissipation.

Figure 7.3 PCB layout example

8. Package Information

DETAIL C

* CONTRZLLING DIMENSIDN : MM

SYMBDL	MILLIMETER			INCH		
	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.
A	1.43	1.55	1.68	0.056	0.061	0.066
A1	---	0.05	0.10	---	--	0.004
A2	1.43	1.50	1.58	0.056	0.059	0.062
b	0.35	0.41	0.49	0.014	0.016	0.019
c	0.19	0.20	0.25	0.0075	0.0079	0.010
D	4.8	4.9	5.0	0.189	0.193	0.197
E	3.8	3.9	4.0	0.150	0.154	0.157
Q	0.55	0.65	0.75	0.022	0.026	0.030
Dh	2.95	3.81	3.91	0.116	0.15	0.153
Eh	1.43	2.29	2.39	0.056	0.095	0.094
HE	5.84	5.99	6.2	0.228	0.236	0.244
e	1.27 bsc			0.05 bsc		
L	1.05 bsc			0.041 bsc		
L1	0.41	0.64	0.89	0.016	0.025	0.035
Y	---	0.10	---	---	0.004	---
Z	0.3	0.5	0.7	0.012	0.020	0.028
A3	---	0.25	---	---	0.010	---
θ	0°	$5{ }^{\circ}$	8°	0°	$5{ }^{\circ}$	8°

Notes:

1. Package body surface finish.

All others surface Ra 1.5 um to 1.8 um
2. LF material: CuFe PP +ESH

Figure 8.1 EP-SOP8 Package Shape and Dimension

DESCRIPTION	SYMBOL	INCH			MILLIMETER		
		MIN	NOM	MAX	MIN	NOM	max
TOTAL THICKNESS	A	. 053		. 069	1.35		1.75
STAND OFF	A1	. 004		. 010	0.10		0.25
MOLD THICKNESS	A2	. 049		---	1.25		---
LEAD WIDTH	b	. 014		. 019	0.35		0.49
L/F THICKNESS	c	. 007		. 010	0.19		0.25
BODY SIZE	D	. 189		. 197	4.80		5.00
	E1	. 150		. 157	3.80		4.00
	E	. 228		. 244	5.80		6.20
LEAD PITCH	e	. 050 BSC			1.27 BSC		
	L	. 016		. 049	0.40		1.25
	h	. 010		. 020	0.25		0.50
	θ	0°		$7{ }^{\circ}$	0 *		$7{ }^{\circ}$
	${ }^{1}$	$5{ }^{\circ}$		15°	5 .		15°
	02	2°	$7 \times$	12^{*}	2 .	$7 *$	12°
LEAD EDGE OFFSET	aoa	. 010			0.25		
LEAD OFFSET	bbb	. 010			0.25		
COPLANARITY	ccc	. 004			0.10		

NOTES

1. DIMENSION D AND E1 DO NOT INCLUDE MOLD PROTRUSION
2. MAXIMUM MOLD PROTRUSION . 006 (0.15) PER SIDE.
3. DIMENSION b DOES NOT INCLUDE DAM BAR PROTRUSION. ALLOWABLE DAM BAR PROTRUSION SHALL BE . $005(0.127$) CONDITION

Figure 8.2 SOP8 Package Shape and Dimension

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	0.820	1.100	0.032	0.043
A1	0.020	0.150	0.001	0.006
A2	0.750	0.950	0.030	0.037
b	0.250	0.380	0.010	0.015
c	0.090	0.230	0.004	0.009
D	2.900	3.100	0.114	0.122
D1	1.700	1.900	0.067	0.075
e	0.65	BSC $)$	$0.026($ BSC)	
E	2.900	3.100	0.114	0.122
E2	4.750	5.050	0.187	0.199
L	1.450	1.650	0.057	0.065
θ	0.400	0.800	0.016	0.031
	00°	0	0	$6{ }^{\circ}$

Figure 8.3 EP-MSOP8 Package Shape and Dimension
9. Ordering Information

Part No.	Temperature	Auto-motive	Package Drawing	MSL	SPQ
NSD1025-DSPR	-40 to $125^{\circ} \mathrm{C}$	NO	SOP8	3	2500
NSD1025-Q1HSPR	-40 to $125^{\circ} \mathrm{C}$	YES	EP-SOP8	1	2500
NSD1025-Q1HMSR	-40 to $125^{\circ} \mathrm{C}$	YES	EP-MSOP8	3	3000
NSD1025-DHMSR	-40 to $125^{\circ} \mathrm{C}$	NO	EP-MSOP8	3	3000

10. Documentation Support

Part Number

Product Folder
Datasheet
Technical Documents
Isolator selection guide
NSD1025
Click here
Click here Click here

11. Tape and Reel Information

Figure 11.1 Tape Information

Figure 11.2 Quadrant Designation for Pin1 Orientation in Tape

SECTON x - x

| A_{0} | $6.50+/-0.1$ |
| :--- | ---: | :--- |
| B_{0} | $5.30+/-0.1$ |
| K_{0} | $2.20+/-0.1$ |
| $K 1$ | $1.90+/-0.1$ |
| F | $5.50+/-0.1$ |
| P_{1} | $8.00+/-0.1$ |
| W | $12.00+/-0.3$ |

Meosured from centreline of sprocket nole to centrelfine of pocket.
(II) Curnulative tolerance of 10 sprocket holes is ± 0.20.
(III) Measured from centreline of sprocket hole to centreline of pocket.
(IV) Other materlal avallable.

ALL DIMENSIONS IN MILLIMETRES UNLESS OTHERWSE STATED

Figure 11.3 Reel information of SOP8

SECTIDN $Y-Y$

A_{0}	$5.30+/-0.1$
B_{0}	$3.30+/-0.1$
K_{0}	$1.60+/-0.1$
K_{1}	$1.20+/-0.1$
F	$5.50+/-0.05$
P_{1}	$8.00+/-0.1$
W	$12.00+/-0.3$

(1) Measured from centreline of sprocket hole
to centreline of pocket,
(II) Cumulative tolerance of 10 sprocket holes is ± 0.20
(III) Measured from centreline of sprocket
hale to centreline of pocket.
(IV) Other moteriol ovailable.
(V) Comber not exceed 1 mm in 250 mm .
(VI) Ac \& Bo measurement refer to W14.10-01
(VII) Kc measured from a plane on the inside bottom of the pocket to the top surface
of carrier the
ALL DIMENSIONS IN MILLIMETRES UNLESS OTHERWISE STATED.

Figure 11.4 Reel information of MSOP8

12. Revision History

Revision	Description	Date
1.0	Initial Version	$2021 / 07 / 22$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Gate Drivers category:
Click to view products by NOVOSENSE manufacturer:
Other Similar products are found below :
00053P0231 56956 57.404.7355.5 LT4936 57.904.0755.0 5882900001 00600P0005 $5951900000 \underline{0131700000} \underline{00-2240}$ LTP70N06 LVP640 5J0-1000LG-SIL LY2-US-AC240 LY3-UA-DC24 00576P0020 LZNQ2-US-DC12 LZP40N10 0207100000 0207400000 60100564 60249-1-CUT-TAPE 013422000066035 60713816 M15730061 61161-90 61278-0020 6131-204-23149P 6131-205-17149P 6131-209-15149P 6131-218-17149P 6131-220-21149P 6131-260-2358P 6131-265-11149P CS1HCPU63 6150300002 6150-5001 CSK-3860006 CSK-38-60008 621A 622-4053LF 6273 M37730026 M40N08MA-H M55155/29XH06 64-807 65-1930-6 M82310002 CV500ISB02

