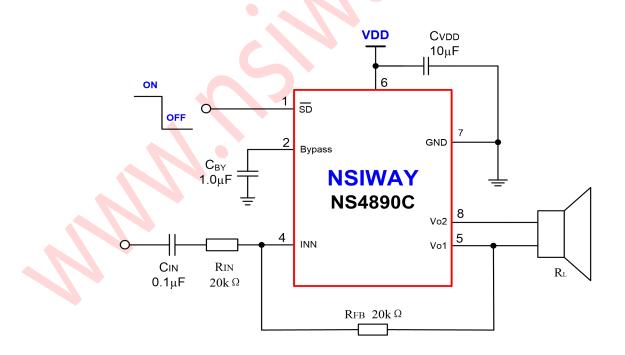
NS4890C 2.4W Mono Class AB audio amplifier

1 Features

- Voltage range:3.0V-5.0V
- Output power: $1.56W@R_1=8\Omega/THD+N=10\%$
- Leakage current in shutdown mode:1uA(typical)
- The \overline{SD} pin is used for low level control to enter shutdown mode.
- Stable unity gain.
- External feedback resistor and input resistor, adjustable gain.
- MSOP8 package.

2 Application

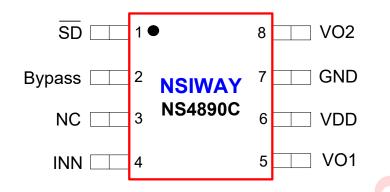
- Smart wear
- Automobile data recorder


4 Typical application circuit

3 Description

NS4890C is a class AB bridge output audio amplifier. Its application circuit is simple and only a few peripheral devices are needed. The output does not require external coupling capacitors or lifting capacitors and buffering networks, it is more suitable for portable systems.

NS4890C can reduce power consumption by controlling the \overline{SD} pin to enter low power shutdown mode. The voltage gain of the amplifier can be adjusted by configuring the peripheral resistor for easy application.


NS4890C is available in MSOP8 package and is rated for operating temperatures ranging from -40 $^\circ C$ to 85 $^\circ C$.

5 Pin configuration

The pin diagram of MSOP8 is shown below.

No.	pin name	description			
1	SD	The device enters in shutdown mode when a low level is applied on this pin			
2	Bypass	Bypass capacitor pin which provides the common mode voltage			
3	NC	-			
4	INN	Negative input of the first amplifier, receives the audio input signal			
5	V01	Negative output			
6	VDD	Positive power supply pin			
7	GND	Power ground			
8	VO2	Positive output			

6 Limit operating parameters

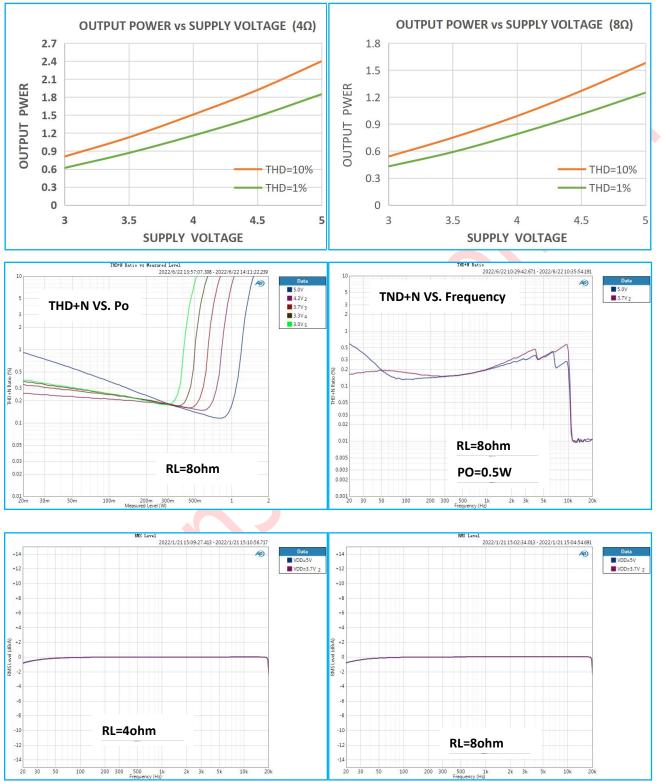
Name	Parameter				
Input Voltage	2.8V ~ 5.5V				
ESD Susceptibility	2kV-HBM				
Storage Temperature	–65°C to +150°C				
Operating Temperature	-40°C to +85°C				
Junction Temperature	150°C				
Lead Temp(Soldering, in 10s)	260°C				
Thermal Resistance					
Αlθ	140°C/W				
θJC	35°C/W				

Note: Exceeding the limit operating parameters above may cause permanent damage to the chip. Prolonged exposure to any of these limiting conditions may affect the reliability and longevity of the chip.

7 Electrical characteristics

Supply voltage					unit
		3.0		5.5	v
Quiescent Power Supply Current	V _{IN} =0V, Io=0A		6	10	mA
Shutdown Current			1	20	μΑ
Dutput offset voltage			5.7	50	m۷
Dutput resistor		7	8.5	10	КΩ
Output power	THD+N=1%,f=1KHz RL=4 Ω RL=8 Ω	- (1.8 1.3		w
	THD+N=10%,f=1KHz RL=4Ω RL=8Ω		2. 36 1.56		w
Fotal distortion+Noise	AVD=2, 20Hz≤f≤20KHz RL=8Ω,PO=0.5W		0.15		%
Power supply rejection ratio		65	80		dB
Signal-to-noise ratio	$RL=4\Omega, Po=1W$		78		dB
SD input at high level		1.4		VDD	v
SD input at low level		0		0.5	v
Start up time	Bypass=1uf		180		ms
	hutdown Current Dutput offset voltage Dutput resistor Dutput power Dutput power Total distortion+Noise Power supply rejection ratio ignal-to-noise ratio Di input at high level	hutdown CurrentImage: Second systemDutput offset voltageImage: Second systemDutput resistorTHD+N=1%,f=1KHzRL=4 Ω RL=8 Ω Dutput powerTHD+N=10%,f=1KHzRL=4 Ω RL=4 Ω RL=8 Ω THD+N=10%,f=1KHzRL=8 Ω AVD=2, 20Hz <f≤20khz< td="">Power supply rejection ratioRL=8Ω,PO=0.5WPower supply rejection ratioRL=4Ω,Po=1WSD input at high levelImage: Second systemSD input at low levelImage: Second system</f≤20khz<>	hutdown CurrentImage: Constraint of the second	hutdown Current1Dutput offset voltage5.7Dutput resistor7Dutput resistor7THD+N=1%,f=1KHz1.8RL=4Q1.3RL=8Q1.3THD+N=10%,f=1KHz2.36RL=8Q1.56rotal distortion+NoiseAVD=2, 20Hz≤f≤20KHzrower supply rejection ratio65ignal-to-noise ratioRL=4Q,Po=1WPD1.4PD1.4PD0	hutdown Current 1 20 Dutput offset voltage 5.7 50 Dutput resistor 7 8.5 10 Dutput power IL=4Ω 1.8 1.3 RL=8Ω 1.3 1.3 1.3 THD+N=10%,f=1KHz IL=8Ω 1.56 1.56 RL=8Ω 1.56 1.56 1.56 rotal distortion+Noise AVD=2, 20Hz≤f≤20KHz 0.15 1.56 rower supply rejection ratio 65 80 1.56 rower supply rejection ratio RL=4Ω,Po=1W 78 1.4 VDD SD input at high level 0 0.5 0.5 1.56

Operating conditions(unless otherwise stated) : T=25 $^\circ\!\mathrm{C}$, V_{DD}=5V.



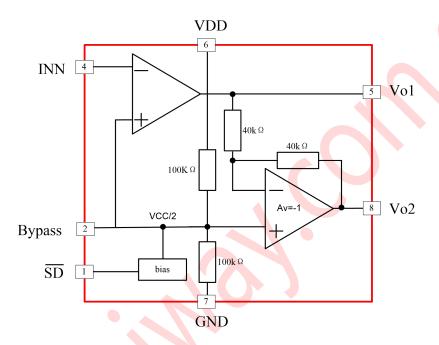
8 Typical characteristic curves

20

100

2k 3k 5k 10

In the following characteristic curves, T=25 $^{\circ}$ C (unless conditions are specified).


300 500 1k Frequency (Hz)

2k 3k

9 Application specifications

9.1 Basic structure description

NS4890C is a class AB audio amplifier with bridge output.Two operational amplifiers are integrated internally.The gain of the first amplifier can be set by feedback resistance, and the second amplifier is followed by voltage inverting, forming an amplifier driving circuit with gain configurable differential output.Its principle block diagram is shown below.

9.2 External resistance configuration

As shown in the application drawing,the gain of the operational amplifier is determined by the external resistors R_{FB} and R_{IN}.The gain calculation formula is as follows: $AV = 2 \cdot \frac{R_{FB}}{R_{IN}}$. The chip is output to the load

through V_{01} and V_{02} , which the bridge connection method is used.

9.3 External capacitance configuration

In fact, in many applications, the speaker cannot reproduce low frequency speech below 100Hz. The input coupling capacitance C_{IN} (C_{IN} and R_{IN} form a first-order high-pass filter) determines the low-frequency

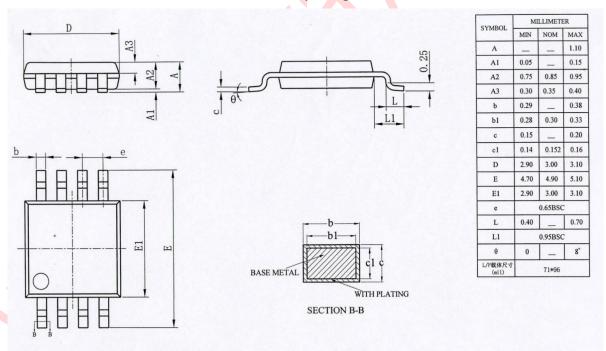
response, the calculation formula is: $fc = \frac{1}{2\pi \cdot R_{IN} \cdot C_{IN}}$. In practice, large input capacitance can not improve

the low frequency performance of the system. In addition to considering the performance of the system, the suppression performance of on-off/switching noise is affected by capacitance. If the coupling capacitance is large, the delay of the feedback network is large, resulting in pop noise. A small coupling capacitance can reduce the

noise.

9.4 Power bypass

In amplifier applications, power bypass design is very important, especially for noise performance and power supply voltage suppression performance. In the design, the bypass capacitor should be as close as possible to the chip and power pin. Typical capacitance is an electrolytic capacitor of 10 uF with a ceramic capacitor of 0.1 uF.


In the NS4890C application circuit, another capacitor C_{BY} (connected to B_{YP} pin) is also critical, affecting PSRR and on-off/switching noise performance. Generally, a ceramic capacitor of 0.1 uF ~ 1 uF is selected.

9.5 Shutdown mode

NS4890C is provided with \overline{SD} control pin, through which the customer can control whether the amplifier is working. When the \overline{SD} pin is high, the audio amplifier is in operation mode. When the \overline{SD} pin is low, the chip enters the shut down mode. At this time, the chip shuts off the current of 1uA, to achieve the purpose of power saving.

10 Package information

MSOP8 package

11 Revision history

Statement:Nsiway company has the right to modify the product information and specifications at any time without notice.Nsiway company reserves the right to interpret this manual and is responsible for the final interpretation.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Audio Amplifiers category:

Click to view products by Nsiway manufacturer:

Other Similar products are found below :

LV47002P-E AZ386MTR-E1 NCP2890AFCT2G LC706200CM IS31AP4915A-QFLS2-TR TDA1591T TS2012EIJT NCP2809BMUTXG NJW1157BFC2 IS31AP4996-GRLS2-TR NCP2823BFCT1G BD88420GUL-E2 LA4450L-E IS31AP2036A-CLS2-TR TDA7563ASMTR BD88400GUL-E2 BD88200GUL-E2 SABRE9601K THAT1646W16-U PAM8965ZLA40-13 TSDP10XX1NLGXZBX TSDP11XX1NBGIZBX TSDP10XX1NBGIZBX NJM4580CV-TE1 TPA3223DDVR LV4910T-MPB-E NCP2890AFCT2 NCV2211DR2G SCY99091FCT2G COS6112 LM4890SS LM4871 NS4890C AW8010BFCR COS4812 MC34018M/TR LM4890MM/TR ME5301ASPG LM386M-1 TAS5720MRSMR BL6281GMM BL6281GSO-R BL6281GSO CS3818E0 CS3817BE0 CS3815E0 TAS5766MDCAR TAS5766MRMTR TPA3136AD2PWP TPA3140D2PWPR