

2N3442 Silicon NPN Transistor High Power Industrial TO-3 Type Package

Description:

The 2N3442 is a silicon NPN power transistor in a TO-3 type package designed for applications in industrial and commercial equipment including high fidelity audio amplifiers, series and shunt regulators and power switches.

Features:

- Collector–Emitter Sustaining Voltage: V_{CEO(sus)} = 140V Min
- Excellent Second Breakdown Capability

Absolute Maximum Ratings:

Collector–Emitter Voltage, V _{CEO}	140V
Collector–Base Voltage, V _{CBO}	
Emitter-Base Voltage, V _{EB}	7V
Collector Current, I _C	
Continuous	10A
Peak	15A
Total Power Dissipation (T _C = +25°C), P _D	
Derate Above 25°C	0.67W/°C
Operating Junction Temperature Range, T _J	. −65° to +200°C
Storage Temperature Range, T _{stq}	. −65° to +200°C
Thermal Resistance, Junction-to-Case, RthJC	1.5°C/W

<u>Electrical Characteristics:</u> (T_C = +25°C unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit			
OFF Characteristics									
Collector-Emitter Sustaining Voltage	V _{CEO(sus)}	I _C = 200mA, I _B = 0	140	_	_	V			
Collector Cutoff Current	I _{CEO}	$V_{CE} = 140V, I_B = 0$	_	_	200	mA			
	I _{CEX}	$V_{CE} = 140V, V_{BE(off)} = 1.5V$	_	_	5	mA			
		$V_{CE} = 140V, V_{BE(off)} = 1.5V, T_{C} = +150^{\circ}C$	_	_	30	mA			
Emitter Cutoff Current	I _{EBO}	$V_{BE} = 7V$, $I_C = 0$	_	_	5	mΑ			

<u>Electrical Characteristics (Cont'd):</u> $(T_C = +25^{\circ}C \text{ unless otherwise specified})$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit			
ON Characteristics (Note 1)									
DC Current Gain	h _{FE}	V _{CE} = 4V, I _C = 3A	20	_	70				
		V _{CE} = 4V, I _C = 10A	7.5	_	_				
Collector-Emitter Saturation Voltage	V _{CE(sat)}	I _C = 10A, I _B = 2A	_	_	5	V			
Base-Emitter On Voltage	V _{BE(on)}	V _{CE} = 4V, I _C = 10A	_	_	5.7	V			
Dynamic Characteristics	•				•				
Current Gain-Bandwidth Product	f _T	$V_{CE} = 4V$, $I_{C} = 2A$, $f_{test} = 40$ kHz, Note 2	80	_	_	kHz			
Small-Signal Current Gain	h _{fe}	V_{CE} = 4V, I_{C} = 2A, f_{test} = 1kHz	12	_	72				

Note 1. Pulse Test: Pulse Width = $300\mu s$, Duty Cycle $\leq 2\%$.

Note 2. $f_T = |h_{fe}| \cdot f_{test}$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by NTE manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460

2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 2N2369ADCSM

2N5769 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E

US6T6TR NJL0281DG 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E IMZ2AT108 UMX21NTR MCH6102-TL-E

NJL0302DG TTA1452B,S4X(S 2N3583 NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13 NTE15 NTE16001 NTE16006

NTE26