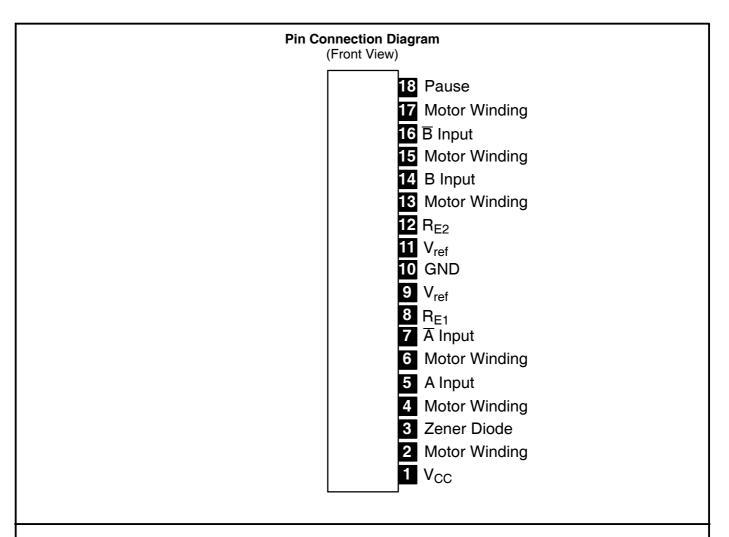


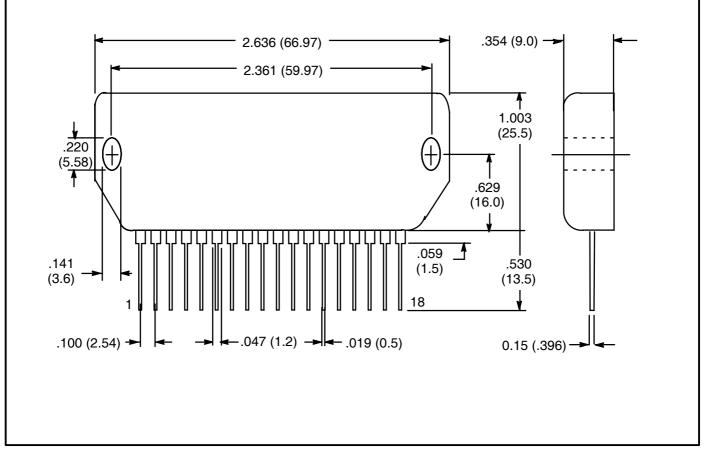
NTE1736 Integrated Circuit Module, 4-Phase Stepping Motor Driver

Features:

- Chopper Operation Capable of Providing Good Rising Characteristic of Motor Current and Low Heat Dissipation due to Constant Current.
- PAUSE Pin can be used to control Pause Action
- Unipolar Drive make it Possible to Drive Hybrid, PM, or VR Type Stepping Motor

Applications:


- Paper Feed Motor Driver and Carriage Motor Driver for Various Types of Printers such as Serial Printer, Line Printer, Etc.
- Pen Driver for X-Y Plotter
- Industrial Robot


Absolute Maximum Ratings : $(T_A = +25^{\circ}C)$ unless otherwise specified)
Maximum Supply Voltage (Quiescent). V _{CC} max
Phase Drive Voltage, V _{CE} 60V
Phase Current (Each Phase), I _O
Phase Input Voltage ($R_G = 1k\Omega$, 1 sec), V_{IN}
Power Dissipation, P _D
No Fin (IMST Substrate)
Each Transistor in Each Phase (T _C = 25°C)
Junction Temperature, T _J
Storage Temperature Range. T _{stg} 40° to +125°C
0 11 01 1 11 11 11 07 0 1 11 1 11 11 11 11 11 11 11 11 11 11

Operating Characteristics: (V_{CC} = 24V, T_A = +25°C unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Output Saturation Voltage I	V _{st} (1)	Across Pin1 & Pin2, Across Pin1 & Pin17, $R_L = 13\Omega$, $R_E = 0\Omega$, $R_O = 4.7k\Omega$, $V_{IN} = 5V$, $R_g = 3.3k\Omega$		1.2	16	V
Output Saturation Voltage II	V _{st} (2)	Across Pin4, Pin6, & Pin8, Across Pin14, Pin16, & Pin12, $R_L = 13\Omega$, $R_E = 0\Omega$, $R_O = 4.7 k\Omega$, $V_{IN} = 5 V$, $R_g = 3.3 k\Omega$	2.15	2.6	_	V
Output Current	ІОН	Each Phase, I_{IN} = 1mA, R_g = 3.3k Ω , R_L = 13 Ω		1.5	-	Α
Stop Voltage	V _{stop}	I _O = 0.5A	1	-	5	V
Diode Forward Voltage I	V _{df} (1)	I _F = 0.3A	-	1.5	1.8	V
Diode Forward Voltage II	V _{df} (2)	I _F = 0.5A	-	1.2	1.8	V
Stop Current	Icco	$R_L = 13\Omega$, $R_O = 4.7k\Omega$, $R_E = 0\Omega$	-	8	13	mA
Voltage I on Pin9 or Pin11	V _H	Quiescent, $R_O = 4.7k\Omega$, $R_E = 0\Omega$	0.35	0.50	0.70	V
Voltage II on Pin9 or Pin11	V_{L}	Quiescent, $R_0 = 4.7k\Omega$, $R_E = 0\Omega$	_	0.08	0.30	V

- Note 1. For power supply, use a constant voltage power supply.
- Note 2. When 100Hz square wave is applied to each phase input at the time of V_{st} measurement, no high frequency parastic oscillation shall occur in output wave.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Motor/Motion/Ignition Controllers & Drivers category:

Click to view products by NTE manufacturer:

Other Similar products are found below:

LV8133JA-ZH LV8169MUTBG LV8774Q-AH LV8860PV-TLM-H MC33931EKR2 MC34GD3000EP FSB50250UTD FSB50550TB2

FSBF15CH60BTH MP6507GR-P MP6508GF MSVCPM2-63-12 MSVGW45-14-2 MSVGW54-14-5 NTE7043 CAT3211MUTAG

LA6245P-CL-TLM-E LA6245P-TLM-E LA6565VR-TLM-E LB11650-E LB1694N-E LB1837M-TLM-E LB1845DAZ-XE LC898111AXB-MH LC898300XA-MH SS30-TE-L-E STK531-345A-E STK581U3A0D-E STK58AUNP0D-E STK621-068C-E STK621-140C STK621-728S-E STK625-728-E STK672-440B-E STK672-432BN-E STK672-440AN-E STK672-442AN-E AMIS30621AUA

FSB50550ASE 26700 LV8161MUTAG LV8281VR-TLM-H LV8702V-TLM-H LV8734VZ-TLM-H LV8773Z-E LV8807QA-MH

MC33932EK MCP8024T-H/MP TND027MP-AZ