

NTE195A Silicon NPN Transistor RF Power Amp/Driver, CB

Description:

The NTE195A is designed primarily for use in large–signal output amplifier stages. Intended for use in Citizen–Band communications equipment operating to 30MHz. High breakdown voltages allow a high percentage of up–modulation in AM circuits.

Features:

• Specified 12.5V, 28MHz Characteristic:

Power Output = 3.5W Power Gain = 10dB Efficiency = 70% Typical

Absolute Maximum Ratings:

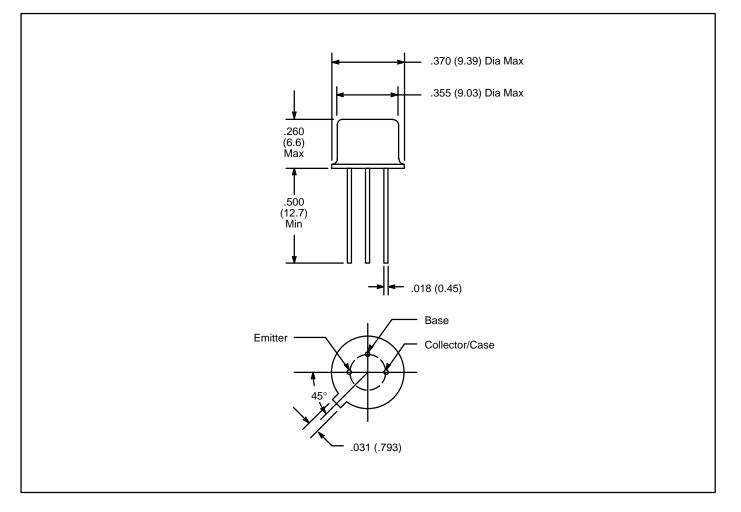
Collector–Emitter Voltage, V _{CER}	/
Collector–Base Voltage, V _{CBO}	/
Emitter–Base Voltage, V _{EBO} 3.0\	/
Collector Current–Continuous, I _C 1.5A	4
Total Device Dissipation ($T_C = +25^{\circ}C$), P_D	V
Derate above 25°C)
Storage Temperature Range, T _{stg} 65° to +200°C	2

<u>Electrical Characteristics</u>: ($T_A = +25^{\circ}C$, unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit				
OFF Characteristics										
Collector–Emitter Breakdown Voltage	V _{(BR)CES}	$I_{\rm C} = 200 {\rm mA}, V_{\rm BE} = 0$	70	-	-	V				
Emitter-Base Breakdown Voltage	V _{(BR)EB} O	$I_{\rm E} = 1 {\rm mA}, I_{\rm C} = 0$	4	-	-	V				
Collector Cutoff Current	I _{CBO}	$V_{CB} = 15V, I_E = 0$	-	-	0.01	mA				
ON Characteristics										
DC Current Gain	h _{FE}	$V_{CE} = 2V, I_{C} = 400 \text{mA}$	30	-	-	-				
Dynamic Characteristics										
Capacitance	C _{ob}	V _{CB} = 12.5V, I _E = 0, f = 1MHz	-	35	70	pF				

Electrical Characteristics (Cont'd): (T_A = +25°C, unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit				
Functional Test										
Common Emitter Amplifier Power Gain	G _{PE}	$P_{OUT} = 3.5W, V_{CC} = 12.5V, f = 27MHz$	10	—	—	dB				
Collector Efficiency	η	$P_{OUT} = 3.5W, V_{CC} = 12.5V, f = 27MHz, Note 1$	62.5	70.0	_	%				
Percent Up–Modulation	_	f = 27MHz, Note 2	-	85	-	%				
Parallel Equivalent Input Resistance	R _{in}	P _{OUT} = 3.5W, V _{CC} = 12.5V, f = 27MHz	-	21	-	Ω				
Parallel Equivalent Input Capacitance	C _{in}	$P_{OUT} = 3.5W, V_{CC} = 12.5V, f = 27MHz$	-	900	-	pF				
Parallel Equivalent Output Capaciatnce	C _{out}	P _{OUT} = 3.5W, V _{CC} = 12.5V, f = 27MHz	-	200	-	pF				


Note 1. $\eta = R_F P_{OUT} \cdot 100$

 $(\mathsf{V}_{\mathsf{C}\mathsf{C}})\;(\mathsf{I}_{\mathsf{C}})$

Note 2. Percentage Up–Modulation is measured by setting the Carrier Power (P_C) to 3.5 Watts with $V_{CC} = 12.5$ Vdc and noting the power input. The peak envelope power (PEP) is noted after doubling the original power input to simulate driver modulation (at a 25% duty cycle for thermal considerations) and raising the V_{CC} to 25Vdc (to simulate the modulating voltage). Percentage Up–Modulation is then determined by the relation:

Percentage Up–Modulation = (PEP)
$$1/2_{-1} \cdot 100$$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by NTE manufacturer:

Other Similar products are found below :

619691C MCH4017-TL-H MJ15024/WS MJ15025/WS BC546/116 BC556/FSC BC557/116 BSW67A HN7G01FU-A(T5L,F,T NJVMJD148T4G NSVMMBT6520LT1G NTE187A NTE195A NTE2302 NTE2330 NTE2353 NTE316 IMX9T110 NTE63 NTE65 C4460 SBC846BLT3G 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA1727TLP 2SA2126-E 2SB1202T-TL-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMC5AT148 2N2369ADCSM 2SB1202S-TL-E 2SC2412KT146S 2SC4618TLN 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E BC557B TTC012(Q) BULD128DT4 JANTX2N3810 Jantx2N5416 US6T6TR KSF350 068071B