

NTE2670 (NPN) & NTE2671 (PNP) Silicon Complementary Transistors Silicon Perforated Emitter Technology Audio Power Output TO3PBL Type Package

Description:

The NTE2670 and NTE2671 are silicon complementary transistors in a TO3PBL type package that utilize Perforated Emitter technology specifically designed for high power audio output, disk head positioners and linear applications.

Features:

- High DC Current Gain h_{FE} = 25 Min @ I_C = 8A
- Excellent Gain Linearity

Absolute Maximum Ratings:

Collector–Base Voltage, V _{CBO}	400V
Collector–Emitter Voltage, V _{CEO}	250V
Collector–Emitter Voltage (1.5V), V _{CEX}	400V
Emitter-Base Voltage, V _{EBO}	
Collector Current, I _C	
Continuous	
Peak (Note 1)	30A
Base Current-Continuous, IB	5A
Total Power Dissipation ($T_C = +25^{\circ}C$), P_D	200W
Derate Above 25°C	1.43W/°C
Operating Junction Temperature Range, T _J	55° to +150°C
Storage Temperature Range, T _{stq}	55° to +150°C
Thermal Resistance, Junction-to-Case, RthJC	

Note 1. Pulse Test: Pulse Width = 5.0 μs, Duty Cycle ≤10%.

Note 2. Matched complementary pairs are available upon request (NTE2671MCP). Matched complementary pairs have their gain specification (h_{FF}) matched to within 10% of each other.

<u>Electrical Characteristics:</u> $(T_A = +25^{\circ}C \text{ unless otherwise specified})$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit		
OFF Characteristics								
Collector Emitter Sustaining Voltage	V _{CEO(sus)}	I _C = 100mA, I _B = 0	250	-	_	V		
Collector Cutoff Current	I _{CEO}	V _{CE} = 200V, I _B = 0	_	_	100	μΑ		
	I _{CEX}	V _{CE} = 250V, V _{BE(off)} = 1.5V	-	-	100	μΑ		
Emitter Cutoff Current	I _{EBO}	V _{CE} = 5V, I _C = 0	_	_	100	μΑ		

<u>Electrical Characteristics (Cont'd)</u>: $(T_A = +25^{\circ}C \text{ unless otherwise specified})$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Second Breakdown	I					
Second Breakdown Collector Current with Base Forward Biased	I _{S/b}	V _{CE} = 50V, t = 1s (non-repetitive)	4.0	_	_	Α
		V _{CE} = 80V, t = 1s (non-repetitive)	2.25	-	_	Α
ON Characteristics			•	•	•	
DC Current Gain	h _{FE}	I _C = 8A, V _{CE} = 5V	25	_	75	
		I _C = 16A, V _{CE} = 5V	8	_	_	
Base-Emitter Voltage	V _{BE(on)}	I _C = 8A, V _{CE} = 5V	_	_	2.2	V
Collector-Emitter Saturation Voltage	V _{CE(sat)}	I _C = 8A, I _B = 800mA	_	_	1.4	V
		I _C = 16A, I _B = 3.2A	_	_	4.0	V
Dynamic Characteristics	•					
Total Harmonic Distortion at the Output (hFE unmatched)	THD	V _{RMS} = 28.3V, f = 1kHz, P _{LOAD} = 100W _{RMS}	_	0.8	_	%
(h _{FE} matched)	1	Matched pair h _{FE} = 50 @ 5A/5V	_	0.08	_	%
Current Gain Bandwidth Product	f _T	$I_C = 1A$, $V_{CE} = 1-V$, $f_{test} = 1MHz$	4	_	_	MHz
Collector Output Capacitance	C _{ob}	$V_{CB} = 10V$, $I_E = 0$, $f_{test} = 1MHz$	_	_	500	pF

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by NTE manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H MJ15024/WS MJ15025/WS BC546/116 BC556/FSC BC557/116 BSW67A HN7G01FU-A(T5L,F,T NJVMJD148T4G NSVMMBT6520LT1G NTE187A NTE195A NTE2302 NTE2302 NTE2330 NTE2353 NTE316 IMX9T110 NTE63 NTE65 C4460 SBC846BLT3G 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA1727TLP 2SA2126-E 2SB1202T-TL-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMC5AT148 2N2369ADCSM 2SB1202S-TL-E 2SC2412KT146S 2SC4618TLN 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E BC557B TTC012(Q) BULD128DT4 JANTX2N3810 Jantx2N5416 US6T6TR KSF350 068071B