

NTE63 Silicon NPN Transistor High Gain, Low Noise Amp

Description:

The NTE63 is a silicon NPN high frequency transistor designed primarily for use in high–gain, low noise tuned and wiseband small–signal amplifiers and applications requiring fast switching times.

Features:

- High Current Gain

 Bandwidth Product: f_T = 5GHz Typ @ f = 1GHz
- High Power Gain: $G_{pe} = 12.5 dB Min @ f = 1 GHz$

Absolute Maximum Ratings:

Collector–Emitter Voltage, V _{CEO}	12V
Collector–Base Voltage, V _{CBO}	20V
Emitter–Base Voltage, V _{EBO}	2V
Continuous Collector Current, I _C	40mA
Total Device Dissipation ($T_L = +50^{\circ}C$), P_D	
Storage Temperature Range, T _{stg}	–65° to +150°C
Thermal Resistance, Junction-to-Lead, R _{thJL}	250°C/W

<u>Electrical Characteristics:</u> (T_C = +25°C unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
OFF Characteristics							
Collector–Emitter Breakdown Voltage	V _{(BR)CEO}	$I_C = 1 \text{mA}, I_B = 0$	12	_	_	V	
Collector-Base Breakdown Voltage	V _{(BR)CBO}	$I_C = 0.1 \text{mA}, I_E = 0$	20	_	_	V	
Emitter-Base Breakdown Voltage	$V_{(BR)EBO}$	$I_E = 0.1 \text{mA}, I_C = 0$	2	_	_	V	
Collector Cutoff Current	I _{CBO}	$V_{CB} = 15V, I_E = 0$	_	_	50	nA	

Electrical Characteristics (Cont'd): $(T_C = +25^{\circ}C \text{ unless otherwise specified})$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit			
ON Characteristics									
DC Current Gain	h _{FE}	I _C = 30mA, V _{CE} = 10V	30	_	200				
Dynamic Characteristics									
Current Gain-Bandwidth Product	f _T	$I_C = 30$ mA, $V_{CE} = 10$ V, $f = 1$ GHz	_	5.0	_	GHz			
Collector–Base Capacitance	C _{cb}	$V_{CB} = 10V, I_E = 0, f = 1MHz$	_	0.6	1.0	pF			
Functional Tests									
Noise Figure	NF _{MIN}	$I_C = 5$ mA, $V_{CE} = 10$ V, $f = 1$ GHz	_	2.5	_	dB			
		$I_C = 5$ mA, $V_{CE} = 10$ V, $f = 2$ GHz	_	4.0	_	dB			
Power Gain at Optimum Noise Figure	G _{NF}	$I_C = 5$ mA, $V_{CE} = 10$ V, $f = 1$ GHz	_	10	_	dB			
		$I_C = 5$ mA, $V_{CE} = 10$ V, $f = 2$ GHz	_	6	_	dB			
Maximum Available Power Gain (Note 1)	G _{max}	$I_C = 30$ mA, $V_{CE} = 10$ V, $f = 1$ GHz	_	12.5	_	dB			
		$I_C = 30$ mA, $V_{CE} = 10$ V, $f = 2$ GHz	_	7.5	_	dB			

Note1.G_{max} = $|S_{21}|^2 / (I - |S_{11}|^2) (I - |S_{22}|^2)$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by NTE manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H MJ15024/WS MJ15025/WS BC546/116 BC556/FSC BC557/116 BSW67A HN7G01FU-A(T5L,F,T NJVMJD148T4G NSVMMBT6520LT1G NTE187A NTE195A NTE2302 NTE2302 NTE2330 NTE2353 NTE316 IMX9T110 NTE63 NTE65 C4460 SBC846BLT3G 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA1727TLP 2SA2126-E 2SB1202T-TL-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMC5AT148 2N2369ADCSM 2SB1202S-TL-E 2SC2412KT146S 2SC4618TLN 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E BC557B TTC012(Q) BULD128DT4 JANTX2N3810 Jantx2N5416 US6T6TR KSF350 068071B