NTE6410 Unijunction Transistor (UJT) #### **Description:** The NTE6410 is a PN unijunction transistor in a TO92 type package designed for use in pulse and timing circuits, sensing circuits and thyristor trigger circuits. #### Absolute Maximum Ratings: (T_A = +25°C unless other specified) | RMS Power Dissipation, P _D | 300mW
3.0mW/°C | |--|-------------------| | RMS Emitter Current, I _E | | | Peak–Pulse Emitter Current (Note 1), I _E | 1.5A | | Emitter Reverse Voltage, V _{B2E} | 30V | | Interbase Voltage (Note 2), V _{B2B1} | 35V | | Operating Junction Temperature Range, T _J | –65° to +125°C | | Storage Temperature Range, T _{stg} | –65° to +150°C | | | | Note 1. Duty cycle \leq 1%, PRR = 10 PPS Note 2. Based upon power dissipation at $T_A = +25^{\circ}C$ ### **<u>Electrical Characteristics</u>**: (T_A = +25°C unless other specified) | Parameter | Symbol | Test Conditions | Min | Тур | Max | Unit | |--|-----------------------|--|------|-------|------|------| | Intrinsic Standoff Ratio | η | V _{B2B1} = 10V, Note 3 | 0.70 | _ | 0.85 | | | Interbase Resistance | R _{BB} | | 4.0 | 6.0 | 9.1 | kΩ | | Interbase Resistance Temperature Coefficient | αR_{BB} | | 0.1 | _ | 0.9 | %/°C | | Emitter Saturation Voltage | V _{BE1(sat)} | $V_{B2B1} = 10V$, $I_E = 50mA$, Note 4 | _ | 2.5 | _ | V | | Modulated Interbase Current | I _{B2(Mod)} | $V_{B2B1} = 10V, I_E = 50mA$ | _ | 15 | _ | mA | | Emitter Reverse Current | I _{EB2O} | $V_{B2E} = 30V, I_{B1} = 0$ | _ | 0.005 | 1.0 | μΑ | | Peak-Point Emitter Current | Ι _Ρ | V _{B2B1} = 25V | _ | 1.0 | 5.0 | μΑ | | Valley-Point Current | I _V | $V_{B2B1} = 20V, R_{B2} = 100\Omega, Note 4$ | 4.0 | 7.0 | _ | mA | | Base-One Peak Pulse Voltage | V _{OB1} | | 5.0 | 8.0 | _ | V | - Note 3. Intrinsic standoff ratio, is defined in terms of peak–point voltage, V_P , by means of the equation: $V_P = \eta \ V_{B2B1} \ V_F$, where V_F is approximately 0.49 volts at +25°C @ $I_F = 10\mu A$ and decreases with temperature at approximately 2.5mV/°C. Components R_1 , C_1 , and the UJT form a relaxation oscillator, the remaining circuitry serves as a peak–voltage detector. The forward drop of Diode D_1 compensates for V_F . To use, the "call" button is pushed, and R_3 is adjusted to make the current meter, M_1 , read full scale. When the "call" button is released, the value of η is read directly from the meter, if full scale on the meter reads 1.0. - Note 4. Use pulse techniques: PW $\sim 300\mu s$, duty cycle $\leq 2.0\%$ to avoid internal heating, which may result in erroneous readings. ## **X-ON Electronics** Largest Supplier of Electrical and Electronic Components Click to view similar products for MOSFET category: Click to view products by NTE manufacturer: Other Similar products are found below: 614233C 648584F MCH3443-TL-E MCH6422-TL-E FDPF9N50NZ FW216A-TL-2W FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237 2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T) 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0#T2 RJK60S5DPK-M0#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3 2SK2614(TE16L1,Q)