

NTE87 (NPN) & NTE88 (PNP) Silicon Complementary Transistors High Power Audio, Disk Head Positioner for Linear Applications

Description:

The NTE87 (NPN) and NTE88 (PNP) are complementary silicon power transistors in a TO3 type package designed for high power audio, disk head positioners, and other linear applications. These devices can also be used in power switching circuits such as relay or solenoid drivers, DC–to–DC converters or inverters.

Features:

High Safe Operating Area: 1.2A @ 100V

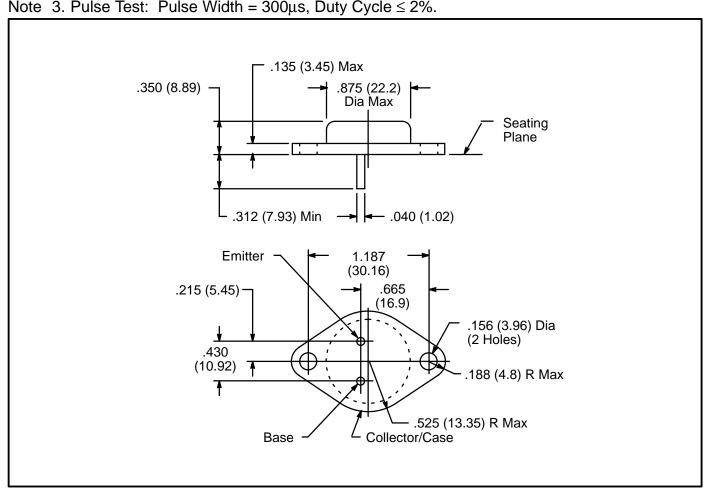
• Completely Characterized for Linear Operation

• High DC Current Gain: h_{FE} = 20 Min @ I_C = 2A

Low Saturation Voltage: 2V

For Low Distortion Complementry Designs

Collector-Emitter Voltage, V _{CEO(sus)}
Collector Current, I _C Continuous 10A Peak (Note 2) 15A
Base Current, IB Continuous 2A Peak (Note 2) 5A
Emitter Current, I _E Continuous
Operating Junction Temperature Range, T _J
Storage Temperature Range, T _{stg} –65° to +200°C
Thermal Resistance, Junction–to–Case, R _{thJC}
Lead Temperature (During Soldering), T _L


Note 1. Matched complementary pairs are available upon request (NTE88MCP). Matched complementary pairs have their gain specification (h_{FE}) matched to within 10% of each other.

Note 2. Pulse Test: Pulse Width = 5ms, Duty Cycle \leq 10%.

Electrical Characteristics: $(T_C = +25^{\circ}C \text{ unless otherwise specified})$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
OFF Characteristics							
Collector–Emitter Breakdown Voltage	V _{CEO(sus)}	I _C = 100mA, Note 3	250	_	_	V	
Collector Cutoff Current	I _{CEO}	V _{CE} = 250V	_	_	1	mA	
	I _{CEX}	$V_{CE} = 250V, V_{BE(off)} = 1.5V$	_	_	500	μΑ	
Emitter Cutoff Current	I _{EBO}	V _{EB} = 5V	_	_	500	μΑ	
Second Breakdown							
Second Breakdown Collector Current with Base Forward Bias	I _{S/b}	V _{CE} = 40V, t = 0.5s (non-repetitive)	5	_	_	Α	
		V _{CE} = 100V, t = 0.5s (non-repetitive)	1.4	_	_	Α	
ON Characteristics (Note 3)							
DC Current Gain	h _{FE}	$V_{CE} = 2V$, $I_C = 2A$	20	_	100		
		$V_{CE} = 2V$, $I_C = 4A$	5	_	_		
Collector–Emitter Saturation Voltage	V _{CE(sat)}	I _C = 2A, I _B = 200mA	_	_	0.8	V	
		I _C = 4A, I _B = 400mA	_	_	2.5	V	
Base-Emitter On Voltage	V _{BE(on)}	V _{CE} = 2V, I _C = 4A	_	_	2	V	
Dynamic Characteristics							
Current Gain-Bandwidth Product	f _T	$V_{CE} = 10V$, $I_{C} = 1A$, $f_{test} = 1MHz$	4	_	_	MHz	
Output Capacitance	C _{ob}	$V_{CB} = 10V$, $I_E = 0$, $f_{test} = 1MHz$	_	_	500	pF	

Note 3. Pulse Test: Pulse Width = $300\mu s$, Duty Cycle $\leq 2\%$.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by NTE manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460

2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 2N2369ADCSM

2N5769 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E

US6T6TR NJL0281DG 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E IMZ2AT108 UMX21NTR MCH6102-TL-E

NJL0302DG TTA1452B,S4X(S 2N3583 NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13 NTE15 NTE16001 NTE16006

NTE26