DATA SHEET

74ALVC74
Dual D-type flip-flop with set and reset; positive-edge trigger

Product specification

Dual D-type flip-flop with set and reset; positive-edge trigger

74ALVC74

FEATURES

- Wide supply voltage range from 1.65 to 3.6 V
- Complies with JEDEC standard:

JESD8-7 (1.65 to 1.95 V) JESD8-5 (2.3 to 2.7 V) JESD8B/JESD36 (2.7 to 3.6 V).

- 3.6 V tolerant inputs/outputs
- CMOS low power consumption
- Direct interface with TTL levels (2.7 to 3.6 V)
- Power-down mode
- Latch-up performance exceeds 250 mA
- ESD protection:

HBM EIA/JESD22-A114-A exceeds 2000 V MM EIA/JESD22-A115-A exceeds 200 V

DESCRIPTION

The 74ALVC74 is a dual positive-edge triggered, D-type flip-flop with individual data (D), clock (CP), set (SD) and reset ($\overline{R D}$) inputs and complementary Q and \bar{Q} outputs.

The set and reset are asynchronous active LOW inputs and operate independently of the clock input. Information on the data input is transferred to the Q output on the LOW-to-HIGH transition of the clock pulse. The D inputs must be stable one set-up time prior to the LOW-to-HIGH clock transition for predictable operation.

Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.

QUICK REFERENCE DATA

GND $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $n C P$ to $n Q, n \bar{Q}$	$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	3.7	ns
		$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$	2.6	ns
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$	2.8	ns
		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$	2.7	ns
$\mathrm{t}_{\text {PHL }} / t_{\text {PLH }}$	propagation delay $n \bar{S} D$, $n \bar{R} D$ to $n Q, n \bar{Q}$	$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	3.5	ns
		$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$	2.5	ns
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.1	ns
		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$	2.3	ns
$\mathrm{f}_{\text {max }}$	maximum clock frequency		425	MHz
C_{1}	input capacitance		3.5	pF
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance per buffer	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$; notes 1 and 2	35	pF

Notes

1. $C_{P D}$ is used to determine the dynamic power dissipation $\left(P_{D}\right.$ in $\left.\mu \mathrm{W}\right)$.
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i} \times N+\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in Volts;
$\mathrm{N}=$ total load switching outputs;
$\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)=$ sum of the outputs.
2. The condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{Cc}.

Dual D-type flip-flop with set and reset; positive-edge trigger

ORDERING INFORMATION

TYPE NUMBER	PACKAGE				
	TEMPERATURE RANGE	PINS	PACKAGE	MATERIAL	CODE
	-40 to $+85^{\circ} \mathrm{C}$	14	SO14	plastic	SOT108-1
74ALVC74PW	-40 to $+85^{\circ} \mathrm{C}$	14	TSSOP14	plastic	SOT402-1
74ALVC74BQ	-40 to $+85^{\circ} \mathrm{C}$	14	DHVQFN14	plastic	SOT762-1

FUNCTION TABLES

Table 1 See note 1

INPUT			OUTPUT		
$\mathbf{n} \overline{\mathbf{S}} \mathbf{D}$	$\mathbf{n} \overline{\mathbf{R}} \mathbf{D}$	$\mathbf{n C P}$	$\mathbf{n D}$	$\mathbf{n Q}$	$\mathbf{n} \overline{\mathbf{Q}}$
L	H	X	X	H	L
H	L	X	X	L	H
L	L	X	X	H	H

Table 2 See note 1

INPUT			OUTPUT		
$\mathbf{n} \overline{\mathbf{S} D}$	$\mathbf{n} \overline{\mathbf{R} D}$	$\mathbf{n C P}$	$\mathbf{n D}$	$\mathbf{n Q}_{\mathbf{n + 1}}$	$\mathbf{n}_{\mathbf{n}}^{\mathbf{n + 1}}$
H	H	\uparrow	L	L	H
H	H	\uparrow	H	H	L

Note

1. $\mathrm{H}=\mathrm{HIGH}$ voltage level;

L = LOW voltage level;
X = don't care;
$\uparrow=$ LOW-to-HIGH CP transition;
$Q_{n+1}=$ state after the next LOW-to-HIGH transition of CP.

Dual D-type flip-flop with set and reset; positive-edge trigger

PINNING

PIN	SYMBOL	DESCRIPTION
1	$1 \bar{R} D$	asynchronous reset-direct input (active LOW)
2	1 D	data input
3	1 CP	clock input (LOW-to-HIGH, edge-triggered)
4	$1 \overline{\mathrm{SD}}$	asynchronous set-direct input (active LOW)
5	1 Q	true flip-flop output
6	$1 \overline{\mathrm{Q}}$	complement flip-flop output
7	GND	ground (0 V)
8	$2 \overline{\mathrm{Q}}$	complement flip-flop output
9	2 Q	true flip-flop output
10	$2 \overline{\mathrm{SD}}$	asynchronous set-direct input (active LOW)
11	2 CP	clock input (LOW-to-HIGH, edge-triggered)
12	2 D	data input
13	$2 \overline{\mathrm{R} D}$	asynchronous reset-direct input (active LOW)
14	$\mathrm{~V}_{\mathrm{CC}}$	supply voltage

(1) The die substrate is attached to this pad using conductive die attach material. It can not be used as a supply pin or input.

Fig. 2 Pin configuration DHVQFN14.

Dual D-type flip-flop with set and reset; positive-edge trigger

Fig. 4 IEC logic symbol.

Fig. 5 Functional diagram.

Fig. 6 Logic diagram (one flip-flop).

Dual D-type flip-flop with set and reset; positive-edge trigger

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{CC}	supply voltage		1.65	3.6	V
$\mathrm{~V}_{\mathrm{I}}$	input voltage		0	3.6	V
$\mathrm{~V}_{\mathrm{O}}$	output voltage	$\mathrm{V}_{\mathrm{CC}}=1.65$ to 3.6 V	0	$\mathrm{~V}_{\mathrm{CC}}$	V
		$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} ;$ Power-down mode	0	3.6	V
$\mathrm{~T}_{\mathrm{amb}}$	operating ambient temperature		-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	input rise and fall times	$\mathrm{V}_{\mathrm{CC}}=1.65$ to 2.7 V	0	20	$\mathrm{~ns} / \mathrm{V}$
		$\mathrm{V}_{\mathrm{CC}}=2.7$ to 3.6 V	0	10	$\mathrm{~ns} / \mathrm{V}$

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134); voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{CC}	supply voltage		-0.5	+4.6	V
I_{IK}	input diode current	$\mathrm{V}_{\mathrm{I}}<0$	-	-50	mA
$\mathrm{~V}_{\mathrm{I}}$	input voltage		-0.5	+4.6	V
I_{OK}	output diode current	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{V}_{\mathrm{O}}<0$	-	± 50	mA
$\mathrm{~V}_{\mathrm{O}}$	output voltage	note 1	-0.5	$\mathrm{~V}_{\mathrm{CC}}+0.5$	V
		Power-down mode; note 2	-0.5	+4.6	V
I_{O}	output source or sink current	$\mathrm{V}_{\mathrm{O}}=0$ to V_{CC}	-	± 50	mA
$\mathrm{I}_{\mathrm{CC}}, \mathrm{I}_{\mathrm{GND}}$	V_{CC} or GND current		-	± 100	mA
$\mathrm{~T}_{\text {Stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	power dissipation		-	500	mW

Notes

1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. When $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ (Power-down mode), the output voltage can be 3.6 V in normal operation.
3. For SO14 packages: above $70^{\circ} \mathrm{C}$ the value of $P_{\text {tot }}$ derates linearly with $8 \mathrm{~mW} / \mathrm{K}$.

For TSSOP14 packages: above $60^{\circ} \mathrm{C}$ the value of $\mathrm{P}_{\text {tot }}$ derates linearly with $5.5 \mathrm{~mW} / \mathrm{K}$.
For DHVQFN14 packages: above $60^{\circ} \mathrm{C}$ the value of $\mathrm{P}_{\text {tot }}$ derates linearly with $4.5 \mathrm{~mW} / \mathrm{K}$.

Dual D-type flip-flop with set and reset; positive-edge trigger

DC CHARACTERISTICS

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	TEST CONDIT	ONS	MIN.	TYP. ${ }^{(1)}$	MAX.	UNIT
		OTHER	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$				
$\mathrm{T}_{\text {amb }}=-40$ to $+85{ }^{\circ} \mathrm{C}$							
V_{IH}	HIGH-level input voltage		1.65 to 1.95	$0.65 \times \mathrm{V}_{\text {CC }}$	-	-	V
			2.3 to 2.7	1.7	-	-	V
			2.7 to 3.6	2	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage		1.65 to 1.95	-	-	$0.35 \times \mathrm{V}_{\mathrm{CC}}$	V
			2.3 to 2.7	-	-	0.7	V
			2.7 to 3.6	-	-	0.8	V
V_{OL}	LOW-level output voltage	$\begin{aligned} \mathrm{V}_{\mathrm{I}} & =\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{I}_{\mathrm{O}} & =100 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{O}} & =6 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{O}} & =12 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{O}} & =18 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{O}} & =12 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{O}} & =18 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{O}} & =24 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 1.65 \text { to } 3.6 \\ & 1.65 \\ & 2.3 \\ & 2.3 \\ & 2.7 \\ & 3.0 \\ & 3.0 \end{aligned}$		$\begin{aligned} & - \\ & 0.11 \\ & 0.17 \\ & 0.25 \\ & 0.16 \\ & 0.23 \\ & 0.30 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.3 \\ & 0.4 \\ & 0.6 \\ & 0.4 \\ & 0.4 \\ & 0.55 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
V_{OH}	HIGH-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{O}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{O}}=-6 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{O}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{O}}=-18 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{O}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{O}}=-18 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{O}}=-24 \mathrm{~mA} \\ & \end{aligned}$	$\begin{aligned} & 1.65 \text { to } 3.6 \\ & 1.65 \\ & 2.3 \\ & 2.3 \\ & 2.7 \\ & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}-0.2 \\ & 1.25 \\ & 1.8 \\ & 1.7 \\ & 2.2 \\ & 2.4 \\ & 2.2 \end{aligned}$	$\begin{aligned} & - \\ & 1.51 \\ & 2.10 \\ & 2.01 \\ & 2.53 \\ & 2.76 \\ & 2.68 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
I_{LI}	input leakage current	$\mathrm{V}_{\mathrm{I}}=3.6 \mathrm{~V}$ or GND	3.6	-	± 0.1	± 5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {ff }}$	power OFF leakage current	$\mathrm{V}_{\text {I }}$ or $\mathrm{V}_{\mathrm{O}}=3.6 \mathrm{~V}$	0.0	-	± 0.1	± 10	$\mu \mathrm{A}$
ICC	quiescent supply current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{I}_{\mathrm{O}}=0$	3.6	-	0.2	10	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{CC}}$	additional quiescent supply current per input pin	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=0$	3.0 to 3.6	-	5	750	$\mu \mathrm{A}$

Note

1. All typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Dual D-type flip-flop with set and reset; positive-edge trigger

AC CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS		MIN.	TYP. ${ }^{(1)}$	MAX.	UNIT
		OTHER	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$				
$\mathrm{T}_{\text {amb }}=-40$ to $+85{ }^{\circ} \mathrm{C}$							
$\mathrm{tPHL} / \mathrm{tpLH}$	propagation delay $n C P$ to $n Q, n \bar{Q}$	see Figs 6 and 8	1.65 to 1.95	1.0	3.7	6.2	ns
			2.3 to 2.7	1.0	2.6	4.2	ns
			2.7	1.0	2.8	4.2	ns
			3.0 to 3.6	1.0	2.7	3.8	ns
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	$\begin{aligned} & \text { propagation delay } \\ & n \overline{S D} \text { to } n Q, n \bar{Q} \end{aligned}$	see Figs 7 and 8	1.65 to 1.95	1.0	3.4	5.4	ns
			2.3 to 2.7	1.0	2.4	3.8	ns
			2.7	1.0	3.2	4.2	ns
			3.0 to 3.6	1.0	2.3	3.5	ns
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $n \bar{R} D$ to $n Q, n \bar{Q}$	see Figs 7 and 8	1.65 to 1.95	1.0	3.5	5.4	ns
			2.3 to 2.7	1.0	2.5	3.8	ns
			2.7	1.0	3.1	4.3	ns
			3.0 to 3.6	1.0	2.3	3.5	ns
tw	clock pulse width HIGH or LOW	see Figs 6 and 8	1.65 to 1.95	2.5	0.9	-	ns
			2.3 to 2.7	2.5	0.6	-	ns
			2.7	2.5	1.3	-	ns
			3.0 to 3.6	2.5	1.3	-	ns
tw	set or reset pulse width LOW	see Figs 7 and 8	1.65 to 1.95	2.5	0.9	-	ns
			2.3 to 2.7	2.5	0.9	-	ns
			2.7	2.5	1.0	-	ns
			3.0 to 3.6	2.5	0.7	-	ns
$\mathrm{t}_{\text {rem }}$	removal time set or reset	see Figs 7 and 8	1.65 to 1.95	0.7	-0.2	-	ns
			2.3 to 2.7	0.7	-0.1	-	ns
			2.7	0.7	-0.1	-	ns
			3.0 to 3.6	0.7	-0.1	-	ns
$\mathrm{t}_{\text {su }}$	set-up time nD to nCP	see Figs 6 and 8	1.65 to 1.95	1.2	0.6	-	ns
			2.3 to 2.7	1.2	0.8	-	ns
			2.7	0.9	0.5	-	ns
			3.0 to 3.6	0.8	0.4	-	ns
t_{h}	hold time nD to nCP	see Figs 6 and 8	1.65 to 1.95	0.6	-0.4	-	ns
			2.3 to 2.7	0.6	-0.3	-	ns
			2.7	0.7	-0.4	-	ns
			3.0 to 3.6	0.8	-0.1	-	ns

Dual D-type flip-flop with set and reset; positive-edge trigger

SYMBOL	PARAMETER	TEST CONDITIONS		MIN.	TYP. ${ }^{(1)}$	MAX.	UNIT
		OTHER	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$				
$\mathrm{f}_{\text {max }}$	maximum clock pulse frequency	see Figs 6 and 8	1.65 to 1.95	150	275	-	MHz
			2.3 to 2.7	200	325	-	MHz
			2.7	250	375	-	MHz
			3.0 to 3.6	300	425	-	MHz

Note

1. All typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

AC WAVEFORMS

$\mathbf{V}_{\mathbf{C C}}$	$\mathbf{V}_{\mathbf{M}}$	INPUT	
		$\mathbf{V}_{\mathbf{I}}$	$\mathbf{t}_{\mathbf{r}}=\mathbf{t}_{\mathbf{f}}$
1.65 to 1.95 V	$0.5 \times \mathrm{V}_{\mathrm{CC}}$	V_{CC}	$\leq 2.0 \mathrm{~ns}$
2.3 to 2.7 V	$0.5 \times \mathrm{V}_{\mathrm{CC}}$	V_{CC}	$\leq 2.0 \mathrm{~ns}$
2.7 V	1.5 V	2.7 V	$\leq 2.5 \mathrm{~ns}$
3.0 to 3.6 V	1.5 V	2.7 V	$\leq 2.5 \mathrm{~ns}$

Fig. 6 The clock ($n C P$) to output ($n Q, n \bar{Q}$) propagation delays, the clock pulse width, the $n D$ to $n C P$ set-up, the nCP to nD hold times, the output transition times and the maximum clock pulse frequency.

Dual D-type flip-flop with set and reset; positive-edge trigger

$\mathbf{V}_{\mathbf{c c}}$	$\mathbf{V}_{\mathbf{M}}$	INPUT	
		$\mathbf{V}_{\mathbf{I}}$	$\mathbf{t}_{\mathbf{r}}=\mathbf{t}_{\mathbf{f}}$
1.65 to 1.95 V	$0.5 \times \mathrm{V}_{\mathrm{CC}}$	V_{CC}	$\leq 2.0 \mathrm{~ns}$
2.3 to 2.7 V	$0.5 \times \mathrm{V}_{\mathrm{CC}}$	V_{CC}	$\leq 2.0 \mathrm{~ns}$
2.7 V	1.5 V	2.7 V	$\leq 2.5 \mathrm{~ns}$
3.0 to 3.6 V	1.5 V	2.7 V	$\leq 2.5 \mathrm{~ns}$

Fig. 7 The set ($n \bar{S} D$) and reset ($n \bar{R} D$) input to output ($n Q, n \bar{Q}$) propagation delays, the set and reset pulse widths and the $\mathrm{n} \overline{\mathrm{R}} \mathrm{D}$ to nCP removal time.

Dual D-type flip-flop with set and reset;

 positive-edge trigger

$\mathbf{V}_{\mathbf{C C}}$	$\mathbf{V}_{\mathbf{I}}$	$\mathbf{C}_{\mathbf{L}}$	$\mathbf{R}_{\mathbf{L}}$	$\mathbf{V}_{\mathbf{E X T}}$		
				$\mathbf{t}_{\mathbf{P L H}} / \mathbf{t}_{\mathbf{P H L}}$	$\mathbf{t}_{\mathbf{P Z H}} / \mathbf{t}_{\mathbf{P H Z}}$	$\mathbf{t}_{\mathbf{P Z L}} / \mathbf{t}_{\mathbf{P L Z}}$
1.65 to 1.95 V	$\mathrm{~V}_{\mathrm{CC}}$	30 pF	$1 \mathrm{k} \Omega$	open	GND	$2 \times \mathrm{V}_{\mathrm{CC}}$
2.3 to 2.7 V	$\mathrm{~V}_{\mathrm{CC}}$	30 pF	500Ω	open	GND	$2 \times \mathrm{V}_{\mathrm{CC}}$
2.7 V	2.7 V	50 pF	500Ω	open	GND	6 V
3.0 to 3.6 V	2.7 V	50 pF	500Ω	open	GND	6 V

Definitions for test circuits:
$\mathrm{R}_{\mathrm{L}}=$ Load resistor.
$C_{L}=$ Load capacitance including jig and probe capacitance.
$R_{T}=$ Termination resistance should be equal to the output impedance Z_{0} of the pulse generator.
Fig. 8 Load circuitry for switching times.

Dual D-type flip-flop with set and reset; positive-edge trigger

PACKAGE OUTLINES

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$\mathrm{Z}^{(1)}$	θ
mm	1.75	$\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 8.75 \\ & 8.55 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$	1.27	$\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$	1.05	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.7 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.069	$\begin{aligned} & \hline 0.010 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.057 \\ & 0.049 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.0100 \\ & 0.0075 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.34 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$	0.05	$\begin{aligned} & 0.244 \\ & 0.228 \end{aligned}$	0.041	$\begin{aligned} & 0.039 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.028 \\ & 0.024 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.028 \\ & 0.012 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT108-1	076E06	MS-012		$\square \oplus$	$\begin{aligned} & -99-12-27 \\ & 03-02-19 \end{aligned}$

Dual D-type flip-flop with set and reset; positive-edge trigger

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} $\mathbf{m a x}$.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(\mathbf{1})}$	$\mathbf{E}^{(2)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(\mathbf{1})}$	$\boldsymbol{\theta}$
mm	1.1	0.15	0.95	0.25	0.30	0.2	5.1	4.5	0.6	6.6	1	0.75	0.4	0.2	0.13	0.1	0.72	8°
0.05	0.80	0.25	0.19	0.1	4.9	4.3	0.65	6.2	1	0.50	0.3	0.2	0.13	0.38	0°			

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

outline VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT402-1		MO-153		\square	$\begin{aligned} & -99-12-27 \\ & 03-02-18 \end{aligned}$

Dual D-type flip-flop with set and reset; positive-edge trigger

DHVQFN14: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body $2.5 \times 3 \times 0.85 \mathrm{~mm}$

Dual D-type flip-flop with set and reset; positive-edge trigger

SOLDERING

Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (document order number 9398652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In these situations reflow soldering is recommended.

Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. Driven by legislation and environmental forces the worldwide use of lead-free solder pastes is increasing.

Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 to $270^{\circ} \mathrm{C}$ depending on solder paste material. The top-surface temperature of the packages should preferably be kept:

- below $220^{\circ} \mathrm{C}\left(\mathrm{SnPb}\right.$ process) or below $245{ }^{\circ} \mathrm{C}$ (Pb-free process)
- for all the BGA packages
- for packages with a thickness $\geq 2.5 \mathrm{~mm}$
- for packages with a thickness < 2.5 mm and a volume $\geq 350 \mathrm{~mm}^{3}$ so called thick/large packages.
- below $235^{\circ} \mathrm{C}\left(\mathrm{SnPb}\right.$ process) or below $260^{\circ} \mathrm{C}$ (Pb-free process) for packages with a thickness $<2.5 \mathrm{~mm}$ and a volume $<350 \mathrm{~mm}^{3}$ so called small/thin packages.

Moisture sensitivity precautions, as indicated on packing, must be respected at all times.

Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
- larger than or equal to 1.27 mm , the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
- smaller than 1.27 mm , the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.
The footprint must incorporate solder thieves at the downstream end.
- For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time of the leads in the wave ranges from 3 to 4 seconds at $250^{\circ} \mathrm{C}$ or $265^{\circ} \mathrm{C}$, depending on solder material applied, SnPb or Pb -free respectively.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$.

When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and $320^{\circ} \mathrm{C}$.

Dual D-type flip-flop with set and reset; positive-edge trigger

Suitability of surface mount IC packages for wave and reflow soldering methods

PACKAGE ${ }^{(1)}$	SOLDERING METHOD	
	WAVE	REFLOW ${ }^{(2)}$
BGA, LBGA, LFBGA, SQFP, TFBGA, VFBGA	not suitable	suitable
DHVQFN, HBCC, HBGA, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, HVQFN, HVSON, SMS	not suitable ${ }^{(3)}$	suitable
PLCC(4), SO, SOJ	suitable	suitable
LQFP, QFP, TQFP	not recommended ${ }^{(4)(5)}$	suitable
SSOP, TSSOP, VSO, VSSOP	not recommended ${ }^{(6)}$	suitable

Notes

1. For more detailed information on the BGA packages refer to the "(LF)BGA Application Note" (AN01026); order a copy from your Philips Semiconductors sales office.
2. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the "Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods".
3. These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side, the solder might be deposited on the heatsink surface.
4. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
5. Wave soldering is suitable for LQFP, TQFP and QFP packages with a pitch (e) larger than 0.8 mm ; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm .
6. Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger than 0.65 mm ; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm .

Dual D-type flip-flop with set and reset; positive-edge trigger

DATA SHEET STATUS

LEVEL	DATA SHEET STATUS ${ }^{(1)}$	PRODUCT STATUS ${ }^{(2)(3)}$	DEFINITION
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

Notes

1. Please consult the most recently issued data sheet before initiating or completing a design.
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

DEFINITIONS

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes - Philips Semiconductors reserves the right to make changes in the products including circuits, standard cells, and/or software described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Dual D-type flip-flop with set and reset; positive-edge trigger

Dual D-type flip-flop with set and reset; positive-edge trigger

Philips Semiconductors - a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 402724825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for nxp manufacturer:
Other Similar products are found below :
MC13211R2 PCA9518PW,112 LFSTBEB865X MC33399PEFR2 PCA9551PW,112 MC34825EPR2 PCF8583P MC68340AB16E MC8640DTVJ1250HE EVBCRTOUCH MC9S08PT16AVLC MC9S08PT8AVTG MC9S08SH32CTL MCF54415CMJ250 MCIMX6Q-SDB MCIMX6SX-SDB 74ALVC125BQ,115 74HC4050N 74HC4514N MK21FN1M0AVLQ12 MKV30F128VFM10 FRDM-K66F FRDMKW40Z FRDM-MC-LVBLDC PESD18VF1BSFYL PMF63UNEX PSMN4R0-60YS,115 HEF4028BPN RAPPID-567XFSW MPC565MVR56 MPC574XG-176DS MPC860PCVR66D4 BT137-600E BT139X-600.127 BUK7628-100A118 BUK765R0-100E. 118 BZT52H-B9V1.115 BZV85-C3V9.113 BZX79-C47.113 P5020NSE7VNB S12ZVML12EVBLIN SCC2692AC1N40 LPC1785FBD208K LPC2124FBD64/01 LS1020ASN7KQB LS1020AXN7HNB LS1020AXN7KQB LS1043ASE7PQA T1023RDB-PC FRDM-KW24D512

