

74ALVT16245
 2.5V/3.3V ALVT 16-bit transceiver (3-State)

Product specification
Supersedes data of 1995 Nov 01 IC23 Data Handbook

FEATURES

- 16-bit bidirectional bus interface
- 5 V I/O Compatible
- 3-State buffers
- Output capability: $+64 \mathrm{~mA} /-32 \mathrm{~mA}$
- TTL input and output switching levels
- Bus-hold data inputs eliminate the need for external pull-up resistors to hold unused inputs
- Live insertion/extraction permitted
- Power-up 3-State
- No bus current loading when output is tied to 5 V bus
- Latch-up protection exceeds 500mA per JEDEC Std 17
- ESD protection exceeds 2000V per MIL STD 883 Method 3015 and 400 V per Machine Model

DESCRIPTION

The 74ALVT16245 is a high-performance BiCMOS product designed for V_{CC} operation at 2.5 V or 3.3 V with I / O compatibility up to 5 V .

This device is a 16 -bit transceiver featuring non-inverting 3-State bus compatible outputs in both send and receive directions. The control function implementation minimizes external timing requirements. The device features an Output Enable (OE) input for easy cascading and a Direction (DIR) input for direction control.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	$\begin{aligned} & \text { CONDITIONS } \\ & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{aligned}$	TYPICAL		UNIT
			2.5 V	3.3 V	
$\begin{aligned} & \hline t_{\text {PLH }} \\ & t_{\text {tPHL }} \end{aligned}$	Propagation delay $n A x$ to $n B x$ or $n B x$ to $n A x$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$\begin{aligned} & 1.7 \\ & 1.9 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	ns
$\mathrm{C}_{\text {IN }}$	Input capacitance DIR, $\overline{\text { OE }}$	$\mathrm{V}_{1}=0 \mathrm{~V}$ or V_{CC}	3	3	pF
$\mathrm{C}_{1 / \mathrm{O}}$	I/O pin capacitance	$\mathrm{V}_{\text {I/O }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {CC }}$	9	9	pF
ICCz	Total supply current	Outputs disabled	40	70	$\mu \mathrm{A}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
48 -Pin Plastic SSOP Type III	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$74 \mathrm{ALVT16245} \mathrm{DL}$	AV16245 DL	SOT370-1
48 -Pin Plastic TSSOP Type II	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$74 \mathrm{ALVT16245} \mathrm{DGG}$	AV16245 DGG	SOT362-1

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

PIN CONFIGURATION

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
1,24	nDIR	Direction control input
$47,46,44,43$, $41,40,38,37$, $36,35,3,32$, $30,29,27,26$	nAO - nA7	Data inputs/outputs (A side)
$2,3,5,6,8,9$, $11,12,13,14$, $16,17,19,20$, 22,23	$\mathrm{nB0}-\mathrm{nB7}$	Data inputs/outputs (B side)
25,48	nOE	Output enable input (active-Low)
$4,10,15,21$, $28,34,39,45$	GND	Ground (OV)
$7,18,31,42$	$\mathrm{~V}_{\mathrm{CC}}$	Positive supply voltage

FUNCTION TABLE

INPUTS		INPUTS/OUTPUTS	
$n \overline{\mathrm{E}}$	nDIR	nAx	nBx
L	L	$\mathrm{nAx}=\mathrm{nBx}$	Inputs
L	H	Inputs	$\mathrm{nBx}=\mathrm{nAx}$
H	X	Z	Z

H = High voltage level
L = Low voltage level
X = Don't care
Z = High Impedance "off" state

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V_{CC}	DC supply voltage		-0.5 to +4.6	V
I_{IK}	DC input diode current		-50	mA
$\mathrm{~V}_{\mathrm{I}}$	DC input voltage ${ }^{3}$		-0.5 to +7.0	V
I_{OK}	DC output diode current	$\mathrm{V}_{\mathrm{O}}<0$	-50	mA
$\mathrm{~V}_{\text {OUT }}$	DC output voltage ${ }^{3}$	Output in Off or High state	-0.5 to +7.0	V
$\mathrm{I}_{\text {OUT }}$	DC output current	Output in Low state	128	mA
	Storage temperature range	Output in High state	-64	
			-65 to +150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed $150^{\circ} \mathrm{C}$.
3. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	2.5V RANGE LIMITS		3.3V RANGE LIMITS		UNIT
		MIN	MAX	MIN	MAX	
V_{CC}	DC supply voltage	2.3	2.7	3.0	3.6	V
V_{1}	Input voltage	0	5.5	0	5.5	V
V_{IH}	High-level input voltage	1.7		2.0		V
$\mathrm{V}_{\text {IL }}$	Input voltage		0.7		0.8	V
IOH	High-level output current		-8		-32	mA
loL	Low-level output current		8		32	mA
	Low-level output current; current duty cycle $\leq 50 \%$; f $\geq 1 \mathrm{kHz}$		24		64	
$\Delta \mathrm{t} / \Delta \mathrm{v}$	Input transition rise or fall rate; Outputs enabled		10		10	ns/V
$\mathrm{T}_{\text {amb }}$	Operating free-air temperature range	-40	+85	-40	+85	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS ($3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ RANGE)

SYMBOL	PARAMETER	TEST CONDITIONS		LIMITS			UNIT
				Temp $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
				MIN	TYP ${ }^{1}$	MAX	
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$\mathrm{V}_{\text {CC }}=3.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{IK}}=-18 \mathrm{~mA}$			-0.85	-1.2	V
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=3.0$ to $3.6 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$		$\mathrm{V}_{\mathrm{Cc}}-0.2$	$\mathrm{V}_{\text {cc }}$		V
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-32 \mathrm{~mA}$		2.0	2.3		
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$			0.07	0.2	V
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$			0.25	0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=32 \mathrm{~mA}$			0.3	0.5	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=64 \mathrm{~mA}$			0.4	0.55	
1	Input leakage current	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND	Control pins		0.1	± 1	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=0$ or 3.6 V ; $\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$			0.1	10	
		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$	Data pins ${ }^{4}$		0.1	20	
		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} ; \mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$			0.5	10	
		$\mathrm{V}_{C C}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=0$			0.1	-5	
loff	Off current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} ; \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}}=0$ to 4.5 V			0.1	± 100	$\mu \mathrm{A}$
Inold	Bus Hold current A or B ports ${ }^{6}$	$\mathrm{V}_{\text {CC }}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=0.8 \mathrm{~V}$		75	130		$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=2.0 \mathrm{~V}$		-75	-140		
		$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ to 3.6V; $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$		± 500			
$l_{\text {EX }}$	Current into an output in the High state when $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$			50	125	$\mu \mathrm{A}$
IPU/PD	Power up/down 3-State output current ${ }^{3}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \leq 1.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{OE} / \mathrm{OE}=\text { Don't care } \end{aligned}$			40	± 100	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{CCH}}$	Quiescent supply current	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$; Outputs High, $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{I}_{\mathrm{O}}=0$			0.07	0.1	mA
ICCL		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$; Outputs Low, $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{l}_{\mathrm{O}}=0$			3.2	5	
ICCz		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$; Outputs Disabled; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{I}_{\mathrm{O}}=0^{5}$			0.07	0.1	
$\Delta_{\text {cc }}$	Additional supply current per input pin ${ }^{2}$	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V ; One input at $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$, Other inputs at V_{CC} or GND			0.2	0.4	mA

NOTES:

1. All typical values are at $\mathrm{V}_{C C}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
2. This is the increase in supply current for each input at the specified voltage level other than V_{CC} or GND
3. This parameter is valid for any $\mathrm{V}_{C C}$ between 0 V and 1.2 V with a transition time of up to 10 msec . From $\mathrm{V}_{C C}=1.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ a transition time of $100 \mu \mathrm{sec}$ is permitted. This parameter is valid for $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ only.
4. Unused pins at V_{cc} or GND.
5. $\mathrm{I}_{C C Z}$ is measured with outputs pulled up to $\mathrm{V}_{C C}$ or pulled down to ground.
6. This is the bus hold overdrive current required to force the input to the opposite logic state.

AC CHARACTERISTICS (3.3V $\pm 0.3 \mathrm{~V}$ RANGE)
$G N D=0 V ; t_{R}=t_{F}=2.5 n s ; C_{L}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega ; \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

SYMBOL	PARAMETER	WAVEFORM	LIMITS			UNIT
			$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$			
			MIN	TYP1	MAX	
$\begin{aligned} & \hline \mathrm{tPLH} \\ & \mathrm{t}_{\mathrm{PPHL}} \end{aligned}$	Propagation delay $n A x$ to $n B x$ or $n B x$ to $n A x$	1	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$	ns
$\begin{aligned} & \text { tpzH } \\ & \text { tpZL } \end{aligned}$	Output enable time to High and Low level	2	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 2.1 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.9 \end{aligned}$	ns
$\begin{aligned} & \text { tphz } \\ & \text { tpLZ } \end{aligned}$	Output disable time from High and Low Level	2	1.5 1.5	$\begin{aligned} & 3.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.7 \end{aligned}$	ns

NOTE:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

DC ELECTRICAL CHARACTERISTICS ($2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$ RANGE)

SYMBOL	PARAMETER	TEST CONDITIONS			IMITS		UNIT
				Temp $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
				MIN	TYP ${ }^{1}$	MAX	
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{I}_{\mathrm{IK}}=-18 \mathrm{~mA}$			-0.85	-1.2	V
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=2.3$ to $3.6 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$		$\mathrm{V}_{\mathrm{CC}}-0.2$			V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$		1.8	2.1		
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A}$			0.07	0.2	V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$			0.3	0.5	
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA}$				0.4	
1	Input leakage current	$\mathrm{V}_{C C}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND	Control pins		0.1	± 1	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=0$ or 2.7 V ; $\mathrm{V}_{\text {I }}=5.5 \mathrm{~V}$			0.1	10	
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$	Data pins ${ }^{4}$		0.1	20	
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$			0.1	10	
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=0$			0.1	-5	
IOFF	Off current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}$ or $\mathrm{V}_{\mathrm{O}}=0$ to 4.5 V			0.1	± 100	$\mu \mathrm{A}$
IHOLD	Bus Hold current Data inputs ${ }^{6}$				90		$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=1.7 \mathrm{~V}$			-10		
$l_{\text {ex }}$	Current into an output in the High state when $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$			50	125	$\mu \mathrm{A}$
IPU/PD	Power up/down 3-State output current ${ }^{3}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \leq 1.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{OE} / \mathrm{OE}=\text { Don't care } \end{aligned}$			40	100	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{CCH}}$	Quiescent supply current	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$; Outputs High, $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{I}_{\mathrm{O}}=0$			0.04	0.1	mA
$\mathrm{I}_{\text {CCL }}$		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$; Outputs Low, $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{l}_{\mathrm{O}}=0$			2.3	45	
ICCz		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$; Outputs Disabled; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{l} \mathrm{I}=0^{5}$			0.04	0.1	
$\Delta_{\text {cc }}$	Additional supply current per input pin ${ }^{2}$	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} \text { to } 2.7 \mathrm{~V} \text {; One input at } \mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V} \text {, }$$\text { Other inputs at } \mathrm{V}_{\mathrm{CC}} \text { or GND }$			0.1	0.4	mA

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ and $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$.
2. This is the increase in supply current for each input at the specified voltage level other than V_{CC} or GND
3. This parameter is valid for any $\mathrm{V}_{C C}$ between 0 V and 1.2 V with a transition time of up to 10 msec . From $\mathrm{V}_{C C}=1.2 \mathrm{~V}$ to $\mathrm{V}_{C C}=2.5 \mathrm{~V} \pm 0.3 \mathrm{~V}$ a transition time of $100 \mu \mathrm{sec}$ is permitted. This parameter is valid for $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ only.
4. Unused pins at V_{CC} or GND.
5. $\mathrm{I}_{\mathrm{CCZ}}$ is measured with outputs pulled up to V_{CC} or pulled down to ground.
6. Not guaranteed.

DYNAMIC SWITCHING THRESHOLD

Dynamic switching threshold is the change in $\mathrm{V}_{I H}$ and V_{IL} when the device is operated in various switching and output loading conditions. The cause of this variation is due to extra load placed on internal circuit structures. $\mathrm{V}_{\text {IHD }}$ and $\mathrm{V}_{\text {ILD }}$ are measures of the dynamic switching threshold. $\mathrm{V}_{\text {IHD }}$ is the input high switching level when the device is heavily loaded. $\mathrm{V}_{\text {ILD }}$ is the input low switching level when the device is heavily loaded.

GROUND/V ${ }_{c c}$ BOUNCE

$\mathrm{V}_{\text {OLP }}$ vs Temperature

$\mathrm{V}_{\text {OHV }}$ vs Temperature

$\mathrm{V}_{\mathrm{ILD}} / \mathrm{V}_{\text {IHD }}$ vs Frequency
Temp $=25^{\circ} \mathrm{C}$

$\mathrm{V}_{\text {OLP }}$ vs Capacitive Load

$\mathrm{V}_{\mathrm{OHV}}$ vs Capacitive Load

AC CHARACTERISTICS ($2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$ RANGE)
$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega ; \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

SYMBOL	PARAMETER	WAVEFORM	LIMITS			UNIT
			$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$			
			MIN	TYP ${ }^{1}$	MAX	
$\begin{aligned} & \text { tpLH } \\ & t_{\text {tPHL }} \end{aligned}$	Propagation delay nAx to $n B x$ or nBx to nAx	1	$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.9 \end{aligned}$	$\begin{aligned} & \hline 2.8 \\ & 2.8 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{tpzH}^{\mathrm{t}} \mathrm{tPLL} \\ & \hline \end{aligned}$	Output enable time to High and Low level	2	$\begin{aligned} & \hline 1.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.5 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \hline \text { tpHZ } \\ & t_{\text {tpLZ }} \end{aligned}$	Output disable time from High and Low Level	2	1.5 1.0	$\begin{aligned} & \hline 3.0 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 4.6 \\ & 3.5 \end{aligned}$	ns

NOTE:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

SKEW DATA

$\mathrm{t}_{\text {ps }}$ (Pin Skew or Transition Skew)
$t_{\text {PS }}=\mid t_{\text {PHL }}-$ t $_{\text {PLH }} \mid$

$\mathbf{t}_{\text {PS Max }}$	$\mathrm{V}_{\mathbf{C C}}=\mathbf{2 . 3}$	$\mathrm{V}_{\mathbf{C C}}=\mathbf{2 . 5}$	$\mathrm{V}_{\mathbf{C C}}=\mathbf{2 . 7}$	$\mathrm{V}_{\mathbf{C C}}=\mathbf{3 . 0}$	$\mathrm{V}_{\mathbf{C C}}=\mathbf{3 . 3}$	$\mathrm{V}_{\mathbf{C C}}=\mathbf{3 . 6}$	UNITS
	429	469	430	426	267	336	ps

$\mathrm{t}_{\mathrm{OST}}=\left|\mathrm{t}_{\mathrm{P} \Phi \mathrm{m}}-\mathrm{t}_{\mathrm{P} \Phi_{\mathrm{n}}}\right|$
Where Φ is any edge transition (high-to-low or low-to-high)
measured between any two outputs (m or n) within any given
device.

$\mathbf{t}_{\text {OST }} \mathbf{n A n - n B n}$	$\mathbf{V}_{\mathbf{C C}}=\mathbf{2 . 3}$	$\mathbf{V}_{\mathbf{C C}}=\mathbf{2 . 5}$	$\mathbf{V}_{\mathbf{C C}}=\mathbf{2 . 7}$	$\mathbf{V}_{\mathbf{C C}}=\mathbf{3 . 0}$	$\mathbf{V}_{\mathbf{C C}}=\mathbf{3 . 3}$	$\mathbf{V}_{\mathbf{C C}}=\mathbf{3 . 6}$	UNITS
	546	625	586	546	427	397	ps
	508	547	586	506	427	417	

NOTE:
One output switching, $\mathrm{Temp}=25^{\circ} \mathrm{C}$.
$\mathrm{t}_{\mathrm{OsHL}}$, tosth, (Common Edge Skew)
$\mathrm{t}_{\mathrm{OSHL}}=\mid \mathrm{t}_{\text {PHL }}$ max $-\mathrm{t}_{\text {PHL min }} \mid$ (Output Skew for Low-to-High Transitions)
$\mathrm{t}_{\mathrm{OSLH}}=\mid \mathrm{t}_{\text {PLH }}$ max $-\mathrm{t}_{\text {PLH }}$ min \mid (Output Skew for High-to-Low Transitions)

tosth nAn-nBn	$\mathrm{V}_{\mathrm{CC}}=2.3$	$\mathrm{V}_{\mathrm{CC}}=2.5$	$\mathrm{V}_{\mathrm{cc}}=2.7$	$\mathrm{V}_{\mathrm{Cc}}=3.0$	$\mathrm{V}_{\mathrm{cc}}=3.3$	$\mathrm{V}_{\mathrm{CC}}=3.6$	UNITS
	312	312	313	276	267	257	ps
toshl nAn-nBn	312	352	352	297	289	267	
tosth nBn-nAn	235	273	312	274	296	326	
toshl nBn-nAn	234	235	274	248	287	267	

NOTE:
One output switching, $\mathrm{Temp}=25^{\circ} \mathrm{C}$.

EXTENDED DATA

TPHL vs TEMP
$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$, one output switching

TPLH vs TEMP

$V_{C C}=3.3 \mathrm{~V}$, one output switching

TPLH vs OUTPUT LOAD
Outputs also loaded with 500 ohms to ground, $\mathrm{T}=25^{\circ} \mathrm{C}$

TPLH vs NUMBER of OUTPUTS SWITCHING
$\mathrm{T}=25^{\circ} \mathrm{C}, 50 \mathrm{pF} / 500$ ohm load

TPHL vs NUMBER of OUTPUTS SWITCHING
$\mathrm{T}=25^{\circ} \mathrm{C}, 50 \mathrm{pF} / 500$ ohm load

TPHL vs OUTPUT LOAD
Outputs also loaded with 500 ohms to ground, $\mathrm{T}=25^{\circ} \mathrm{C}$

AC WAVEFORMS

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}} \geq 3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{M}}=\mathrm{V}_{\mathrm{CC}} / 2$ at $\mathrm{V}_{\mathrm{CC}} \leq 2.7 \mathrm{~V}$
$\mathrm{V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}} \geq 3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{OL}}+0.15 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}} \leq 2.7 \mathrm{~V}$
$\mathrm{V}_{\mathrm{Y}}=\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}} \geq 3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{Y}}=\mathrm{V}_{\mathrm{OH}}-0.15 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}} \leq 2.7 \mathrm{~V}$

Waveform 1. Input to Output Propagation Delays

Waveform 2. 3-State Output Enable and Disable Times

TEST CIRCUIT AND WAVEFORMS

Dimensions in mm.

Dimensions in mm.

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support - These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes - Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors

811 East Arques Avenue
P.O. Box 3409

Sunnyvale, California 94088-3409
Telephone 800-234-7381

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bus Transceivers category:

Click to view products by NXP manufacturer:

Other Similar products are found below :
74LS645N DS8838 FXL4TD245UMX IDT74CBTLV3257PGG 74LVT245BBT20-13 5962-8683401DA PCA9617ADMR2G 5962-
8953501KA 5962-86834012A 5962-7802301Q2A 5962-7802002MFA 5962-7802001MFA 74VHCV245FT(BJ) NCV7349D13R2G
TC74VCX164245(EL,F MC74LCX245MNTWG TC7WPB8306L8X,LF(S TC7WPB9307FC(TE85L 74FCT16245CTPVG8
74FCT16543CTPVG 74FCT245CTPYG8 MM74HC245AMTCX 74LVCH16245APVG 74LVX245MTC 5962-9221405M2A NTS0102DP-
Q100H 74ALVC16245MTDX 74ALVCH32245BF 74FCT163245APVG 74FCT245ATPYG8 74FCT245CTQG 74FCT3245AQG
74LCXR162245MTX 74VHC245M 74VHC245MX TC7WPB9306FC(TE85L TC7WPB9306FK(T5L,F JM38510/65553BRA ST3384EBDR
74LVC1T45GF,132 74AVC4TD245BQ,115 PQJ7980AHN/C0JL,51 MC100EP16VBDG FXL2TD245L10X 74LVC1T45GM,115
TC74AC245P(F) PSB21150F S LLHR SNJ54LS245FK SNJ54AHC245J SNJ54ABT245AFK

