Low-power D-type transparent latch; 3-state Rev. 2 — 27 March 2020

Product data sheet

1. General description

The 74AUP1G373-Q100 provides the single D-type transparent latch with 3-state output. While the latch-enable (LE) input is high, the Q output follows the data (D) input. When pin LE is LOW, the latch stores the information that was present at the D-input one set-up time preceding the HIGH-to-LOW transition of pin LE. When pin \overline{OE} is LOW, the contents of the latch is available at the (Q) output. When pin \overline{OE} is HIGH, the output goes to the high-impedance OFF-state. Operation of input pin \overline{OE} does not affect the state of the latch. Schmitt trigger action at all inputs makes the circuit tolerant to slower input rise and fall times across the entire V_{CC} range from 0.8 V to 3.6 V. This device ensures a very low static and dynamic power consumption across the entire V_{CC} range from 0.8 V to 3.6 V. This device is fully specified for partial power-down applications using I_{OFF}. The I_{OFF} circuitry disables the output, preventing the damaging backflow current through the device when it is powered down.

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

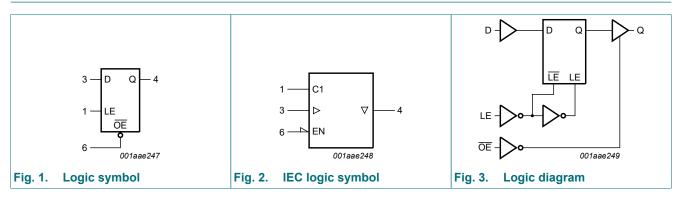
2. Features and benefits

- Automotive product qualification in accordance with AEC-Q100 (Grade 1)

 Specified from -40 °C to +85 °C and from -40 °C to +125 °C
- Wide supply voltage range from 0.8 V to 3.6 V
- High noise immunity
- Complies with JEDEC standards:
 - JESD8-12 (0.8 V to 1.3 V)
 - JESD8-11 (0.9 V to 1.65 V)
 - JESD8-7 (1.2 V to 1.95 V)
 - JESD8-5 (1.8 V to 2.7 V)
 - JESD8-B (2.7 V to 3.6 V)
- ESD protection:
 - MIL-STD-883, method 3015 Class 3A. Exceeds 5000 V
 - HBM JESD22-A114F Class 3A. Exceeds 5000 V
 - MM JESD22-A115-A exceeds 200 V (C = 200 pF, R = 0 Ω)
- Low static power consumption; $I_{CC} = 0.9 \ \mu A$ (maximum)
- Latch-up performance exceeds 100 mA per JESD 78 Class II
- Inputs accept voltages up to 3.6 V
- Low noise overshoot and undershoot < 10 % of V_{CC}
- I_{OFF} circuitry provides partial Power-down mode operation

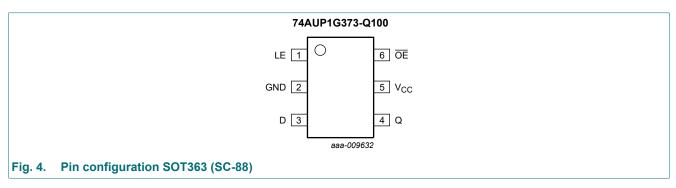
ne<mark>x</mark>peria

3. Ordering information


Table 1. Ordering information							
Type number	Package						
	Temperature range	Name	Description	Version			
74AUP1G373GW-Q100	-40 °C to +125 °C	SC-88	plastic surface-mounted package; 6 leads	SOT363			

4. Marking

Table 2. Marking	
Type number	Marking code [1]
74AUP1G373GW-Q100	aW


[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

5. Functional diagram

6. Pinning information

6.2. Pin description

Table 3. Pin description					
Symbol	Pin	Description			
LE	1	latch enable input (active HIGH)			
GND	2	ground (0 V)			
D	3	data input			
Q	4	latch output			
V _{CC}	5	supply voltage			
ŌĒ	6	output enable input (active LOW)			

7. Functional description

Table 4. Function table

H = HIGH voltage level; h = HIGH voltage level one setup time prior to the HIGH-to-LOW LE transition;

L = LOW voltage level; I = LOW voltage level one setup time prior to the HIGH-to-LOW LE transition;

X = Don't care; Z = high-impedance OFF-state.

Operating modes	Input	nput			Output
	OE	LE	D		Q
Enable and read register (transparent mode)	L	Н	L	L	L
	L	Н	Н	Н	Н
Latch and read register	L	L	I	L	L
	L	L	h	Н	Н
Latch register and disable outputs	Н	Х	Х	Х	Z

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

				·		
Symbol	Parameter	Conditions		Min	Мах	Unit
V _{CC}	supply voltage			-0.5	+4.6	V
I _{IK}	input clamping current	V ₁ < 0 V		-50	-	mA
VI	input voltage		[1]	-0.5	+4.6	V
Ι _{ΟΚ}	output clamping current	V _O < 0 V		-50	-	mA
Vo	output voltage	Active mode and Power-down mode	[1]	-0.5	+4.6	V
lo	output current	$V_{O} = 0 V$ to V_{CC}		-	±20	mA
I _{CC}	supply current			-	50	mA
I _{GND}	ground current			-50	-	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation	T _{amb} = -40 °C to +125 °C	[2]	-	250	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] For SOT363 (SC-88) package: P_{tot} derates linearly with 3.7 mW/K above 83 °C.

9. Recommended operating conditions

Table 6. I	Recommended operating conditi	ons			
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		0.8	3.6	V
VI	input voltage		0	3.6	V
Vo	output voltage	Active mode	0	V _{CC}	V
		Power-down mode; V _{CC} = 0 V	0	3.6	V
T _{amb}	ambient temperature		-40	+125	°C
Δt/ΔV	input transition rise and fall rate	V _{CC} = 0.8 V to 3.6 V	-	200	ns/V

10. Static characteristics

Table 7. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 2	5 °C		I			
V _{IH}	HIGH-level input	V _{CC} = 0.8 V	0.70 × V _{CC}	-	-	V
	voltage	V _{CC} = 0.9 V to 1.95 V	0.65 × V _{CC}	-	-	V
		V _{CC} = 2.3 V to 2.7 V	1.6	-	-	V
		V _{CC} = 3.0 V to 3.6 V	2.0	-	-	V
V _{IL}	LOW-level input	V _{CC} = 0.8 V	-	-	0.30 × V _{CC}	V
	voltage	V _{CC} = 0.9 V to 1.95 V	-	-	0.35 × V _{CC}	V
		V_{CC} = 2.3 V to 2.7 V	-	-	0.7	V
		V _{CC} = 3.0 V to 3.6 V	-	-	0.9	V
	HIGH-level output	$V_{I} = V_{IH} \text{ or } V_{IL}$				
	voltage	I_{O} = -20 µA; V_{CC} = 0.8 V to 3.6 V	V _{CC} - 0.1	-	-	V
		I _O = -1.1 mA; V _{CC} = 1.1 V	0.75 × V _{CC}	-	-	V
		I _O = -1.7 mA; V _{CC} = 1.4 V	1.11	-	-	V
		I _O = -1.9 mA; V _{CC} = 1.65 V	1.32	-	-	V
		I _O = -2.3 mA; V _{CC} = 2.3 V	2.05	-	-	V
		I _O = -3.1 mA; V _{CC} = 2.3 V	1.9	-	-	V
		I _O = -2.7 mA; V _{CC} = 3.0 V	2.72	-	-	V
		I _O = -4.0 mA; V _{CC} = 3.0 V	2.6	-	-	V
V _{OL}	LOW-level output	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
	voltage	I_{O} = 20 µA; V_{CC} = 0.8 V to 3.6 V	-	-	0.1	V
		I _O = 1.1 mA; V _{CC} = 1.1 V	-	-	0.3 × V _{CC}	V
		I _O = 1.7 mA; V _{CC} = 1.4 V	-	-	0.31	V
		I _O = 1.9 mA; V _{CC} = 1.65 V	-	-	0.31	V
		I _O = 2.3 mA; V _{CC} = 2.3 V	-	-	0.31	V
		I _O = 3.1 mA; V _{CC} = 2.3 V	-	-	0.44	V
		I _O = 2.7 mA; V _{CC} = 3.0 V	-	-	0.31	V
V _{OH} F V _{OH} V V _{OL} L		I _O = 4.0 mA; V _{CC} = 3.0 V	-	-	0.44	V

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
l _l	input leakage current	V_1 = GND to 3.6 V; V_{CC} = 0 V to 3.6 V	-	-	±0.1	μA
I _{OZ}	OFF-state output current	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{O} = 0 \text{ V to } 3.6 \text{ V};$ $V_{CC} = 0 \text{ V to } 3.6 \text{ V}$			±0.1	μA
I _{OFF}	power-off leakage current	V_{I} or V_{O} = 0 V to 3.6 V; V_{CC} = 0 V	-	-	±0.2	μA
ΔI _{OFF}	additional power-off leakage current	V_{I} or V_{O} = 0 V to 3.6 V; V_{CC} = 0 V to 0.2 V	-	-	±0.2	μA
I _{CC}	supply current	$V_{I} = GND \text{ or } V_{CC}; I_{O} = 0 \text{ A};$ $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$	-	-	0.5	μA
ΔI _{CC}	additional supply current	$V_{I} = V_{CC} - 0.6 V; I_{O} = 0 A; V_{CC} = 3.3 V$ [1]	-	-	40	μA
CI	input capacitance	V_{CC} = 0 V to 3.6 V; V ₁ = GND or V _{CC}	-	0.8	-	pF
Co	output capacitance	output enabled; V_0 = GND; V_{CC} = 0 V	-	1.7	-	pF
		output disabled; V _{CC} = 0 V to 3.6 V; V _O = GND or V _{CC}	-	1.5	-	pF
T _{amb} = -4	40 °C to +85 °C				1	
VIH	HIGH-level input	V _{CC} = 0.8 V	0.70 × V _{CC}	-	-	V
	voltage	V _{CC} = 0.9 V to 1.95 V	0.65 × V _{CC}	-	-	V
		V _{CC} = 2.3 V to 2.7 V	1.6	-	-	V
		V _{CC} = 3.0 V to 3.6 V	2.0	-	-	V
	LOW-level input	V _{CC} = 0.8 V	-	-	0.30 × V _{CC}	V
	voltage	V _{CC} = 0.9 V to 1.95 V	-	-	0.35 × V _{CC}	V
		V _{CC} = 2.3 V to 2.7 V	-	-	0.7	V
		V _{CC} = 3.0 V to 3.6 V	-	-	0.9	V
V _{OH}	HIGH-level output	$V_{I} = V_{IH} \text{ or } V_{IL}$				
	voltage	I_{O} = -20 µA; V_{CC} = 0.8 V to 3.6 V	V _{CC} - 0.1	-	-	V
		I _O = -1.1 mA; V _{CC} = 1.1 V	0.7 × V _{CC}	-	-	V
		I _O = -1.7 mA; V _{CC} = 1.4 V	1.03	-	-	V
		I _O = -1.9 mA; V _{CC} = 1.65 V	1.30	-	-	V
		I_0 = -2.3 mA; V_{CC} = 2.3 V	1.97	-	-	V
		I _O = -3.1 mA; V _{CC} = 2.3 V	1.85	-	-	V
		I _O = -2.7 mA; V _{CC} = 3.0 V	2.67	-	-	V
		I_{O} = -4.0 mA; V_{CC} = 3.0 V	2.55	-	-	V
V _{OL}	LOW-level output	$V_{I} = V_{IH} \text{ or } V_{IL}$				
	voltage	I_{O} = 20 µA; V_{CC} = 0.8 V to 3.6 V	-	-	0.1	V
		I _O = 1.1 mA; V _{CC} = 1.1 V	-	-	$0.3 \times V_{CC}$	V
		I _O = 1.7 mA; V _{CC} = 1.4 V	-	-	0.37	V
		I _O = 1.9 mA; V _{CC} = 1.65 V	-	-	0.35	V
		I _O = 2.3 mA; V _{CC} = 2.3 V	-	-	0.33	V
		I _O = 3.1 mA; V _{CC} = 2.3 V	-	-	0.45	V
		I _O = 2.7 mA; V _{CC} = 3.0 V	-	-	0.33	V
		I _O = 4.0 mA; V _{CC} = 3.0 V	-	-	0.45	V

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
l _l	input leakage current	V_1 = GND to 3.6 V; V_{CC} = 0 V to 3.6 V	-	-	±0.5	μA
I _{OZ}	OFF-state output current	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{O} = 0 \text{ V to } 3.6 \text{ V};$ $V_{CC} = 0 \text{ V to } 3.6 \text{ V}$	-	-	±0.5	μA
I _{OFF}	power-off leakage current	V_{I} or V_{O} = 0 V to 3.6 V; V_{CC} = 0 V	-	-	±0.5	μA
ΔI _{OFF}	additional power-off leakage current	V_{I} or V_{O} = 0 V to 3.6 V; V_{CC} = 0 V to 0.2 V	-	-	±0.6	μA
I _{CC}	supply current	$V_{I} = GND \text{ or } V_{CC}; I_{O} = 0 \text{ A};$ $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$	Image: Constraint of the sector of the s		0.9	μA
ΔI _{CC}	additional supply current	$V_{I} = V_{CC} - 0.6 \text{ V}; I_{O} = 0 \text{ A}; V_{CC} = 3.3 \text{ V}$ [1]	-	-	50	μA
T _{amb} = -	40 °C to +125 °C					
V _{IH}	HIGH-level input	V _{CC} = 0.8 V	0.75 × V _{CC}	-	-	V
	voltage	V _{CC} = 0.9 V to 1.95 V	0.70 × V _{CC}	-	-	V
		V _{CC} = 2.3 V to 2.7 V	1.6	-	-	V
	LOW-level input $V_{CC} = 0.8 V$ 0.25	-	V			
V _{IL}		V _{CC} = 0.8 V	-	-	0.25 × V _{CC}	V
	voltage	V _{CC} = 0.9 V to 1.95 V	-	-	0.30 × V _{CC}	V
		V _{CC} = 2.3 V to 2.7 V	-	-	0.7	V
		V _{CC} = 3.0 V to 3.6 V	-	-	0.9	V
V _{OH}	HIGH-level output	$V_{I} = V_{IH} \text{ or } V_{IL}$				
	voltage	I_{O} = -20 µA; V_{CC} = 0.8 V to 3.6 V	V _{CC} - 0.11	-	-	V
		I _O = -1.1 mA; V _{CC} = 1.1 V	0.6 × V _{CC}	-	-	V
		I _O = -1.7 mA; V _{CC} = 1.4 V	0.93	-	-	V
		I _O = -1.9 mA; V _{CC} = 1.65 V	1.17	-	-	V
		I _O = -2.3 mA; V _{CC} = 2.3 V	1.77	-	-	V
		I _O = -3.1 mA; V _{CC} = 2.3 V	1.67	-	-	V
		I_{O} = -2.7 mA; V_{CC} = 3.0 V	2.40	-	-	V
		I _O = -4.0 mA; V _{CC} = 3.0 V	2.30	-	-	V
V _{OL}	LOW-level output	$V_{I} = V_{IH} \text{ or } V_{IL}$				
	voltage	I_{O} = 20 µA; V_{CC} = 0.8 V to 3.6 V	-	-	0.11	V
		I _O = 1.1 mA; V _{CC} = 1.1 V	-	-	$0.33 \times V_{CC}$	V
		I _O = 1.7 mA; V _{CC} = 1.4 V	-	-	0.41	V
		I _O = 1.9 mA; V _{CC} = 1.65 V	-	-	0.39	V
		I _O = 2.3 mA; V _{CC} = 2.3 V	-	-	0.36	V
		I _O = 3.1 mA; V _{CC} = 2.3 V	-	-	0.50	V
		I _O = 2.7 mA; V _{CC} = 3.0 V	-	-	0.36	V
		I _O = 4.0 mA; V _{CC} = 3.0 V	-	-	0.50	V

Low-power D-type transparent latch; 3-state

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _I	input leakage current	V_{I} = GND to 3.6 V; V_{CC} = 0 V to 3.6 V	-	-	±0.75	μA
I _{OZ}	OFF-state output current	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{O} = 0 \text{ V to } 3.6 \text{ V};$ $V_{CC} = 0 \text{ V to } 3.6 \text{ V}$	-	-	±0.75	μA
I _{OFF}	power-off leakage current	V_1 or $V_0 = 0$ V to 3.6 V; $V_{CC} = 0$ V	-	-	±0.75	μA
ΔI _{OFF}	additional power-off leakage current	V_{I} or V_{O} = 0 V to 3.6 V; V_{CC} = 0 V to 0.2 V	-	-	±0.75	μA
I _{CC}	supply current	V _I = GND or V _{CC} ; I _O = 0 A; V _{CC} = 0.8 V to 3.6 V	-	-	1.4	μA
ΔI _{CC}	additional supply current	$V_{I} = V_{CC} - 0.6 V; I_{O} = 0 A; V_{CC} = 3.3 V$ [1]	-	-	75	μA

[1] One input at V_{CC} - 0.6 V, other input at V_{CC} or GND.

11. Dynamic characteristics

Table 8. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 9.

Symbol	Parameter	Conditions		25 °C		-40 °C to +85 °C			°C to 5 °C	Unit
			Min	Typ [1]	Мах	Min	Мах	Min	Max	ns ns ns ns ns ns ns ns ns
C _L = 5 pl	F									
t _{pd}	propagation	D to Q; see <u>Fig. 5</u> [2]								
	delay	V _{CC} = 0.8 V	-	21.4	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	2.8	6.6	13.5	2.6	13.8	2.6	15.2	ns
		V _{CC} = 1.4 V to 1.6 V	2.4	4.6	7.8	2.1	8.3	2.1	9.1	ns
		V _{CC} = 1.65 V to 1.95 V	1.9	3.7	6.2	1.6	6.7	1.6	7.3	ns
		V_{CC} = 2.3 V to 2.7 V	1.8	2.9	4.1	1.5	4.5	1.5	4.9	ns
		V _{CC} = 3.0 V to 3.6 V	1.5	2.5	3.5	1.2	4.0	1.2	4.5	ns
		LE to Q; see <u>Fig. 6</u> [2]								
		V _{CC} = 0.8 V	-	20.3	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	2.7	6.2	13.6	2.5	14.0	2.5	15.4	ns
		V _{CC} = 1.4 V to 1.6 V	2.3	4.4	7.6	2.0	8.5	2.0	9.3	ns
		V _{CC} = 1.65 V to 1.95 V	1.8	3.5	5.8	1.5	6.7	1.5	7.3	ns
		V _{CC} = 2.3 V to 2.7 V	1.5	2.6	4.0	1.3	4.4	1.3	4.8	ns
		V _{CC} = 3.0 V to 3.6 V	1.3	2.2	3.3	1.1	3.8	1.1	4.2	ns
t _{en}	enable time	OE to Q; see Fig. 8 [3]								
		V _{CC} = 0.8 V	-	17.9	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	3.2	5.1	9.2	3.0	9.2	3.0	10.1	ns
		V _{CC} = 1.4 V to 1.6 V	2.6	3.8	5.8	2.4	6.1	2.4	6.7	ns
	-	V _{CC} = 1.65 V to 1.95 V	2.2	3.3	4.8	2.0	5.0	2.0	5.5	ns
		V _{CC} = 2.3 V to 2.7 V	2.0	2.7	3.8	1.8	4.0	1.8	4.4	ns
		V _{CC} = 3.0 V to 3.6 V	1.9	2.5	3.4	1.8	3.6	1.8	4.0	ns

Symbol	Parameter	Conditions		25 °C			°C to 5 °C		°C to 5 °C	Unit
			Min	Typ [1]	Max	Min	Max	Min	Max	-
t _{dis}	disable time	OE to Q; see Fig. 8 [4]								
		V _{CC} = 0.8 V	-	9.4	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	2.9	4.2	7.5	2.8	7.9	2.8	8.7	ns
		V _{CC} = 1.4 V to 1.6 V	2.2	3.2	4.9	2.1	5.3	2.1	5.8	ns
		V _{CC} = 1.65 V to 1.95 V	2.2	3.0	4.4	2.1	4.9	2.1	5.4	ns
		V _{CC} = 2.3 V to 2.7 V	1.6	2.2	3.1	1.5	3.4	1.5	3.7	ns
		V _{CC} = 3.0 V to 3.6 V	1.9	2.6	3.3	1.8	3.6	1.8	4.0	ns
C _L = 10	pF	-			I		1	1	1	
t _{pd}	propagation	D to Q; see <u>Fig. 5</u> [2]								
	delay	V _{CC} = 0.8 V	-	24.4	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	3.0	7.5	15.3	2.7	15.9	2.7	17.4	ns
		V _{CC} = 1.4 V to 1.6 V	2.6	5.3	9.0	2.2	9.4	7.92.88.7ns5.32.15.8ns4.92.15.4ns3.41.53.7ns3.61.84.0nsns15.92.717.4ns9.42.210.3ns5.31.85.9ns5.31.85.9ns4.61.75.1ns9.52.110.4ns7.32.08.1ns5.21.65.8ns4.41.44.9ns7.32.08.1ns5.21.65.8ns4.41.44.9ns7.32.08.1ns5.21.65.8ns4.41.44.9ns7.02.87.7ns5.82.56.4ns		
		V _{CC} = 1.65 V to 1.95 V	2.5	4.3	6.9	2.1	7.3	2.1	8.0	ns
		V _{CC} = 2.3 V to 2.7 V	2.0	3.5	4.8	1.8	5.3	1.8	5.9	ns
		V _{CC} = 3.0 V to 3.6 V	1.8	3.1	4.2	1.7	4.6	1.7	5.1	ns
		LE to Q; see Fig. 6 [2]								
		V _{CC} = 0.8 V	-	23.3	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	2.9	7.1	15.4	2.7	16.1	2.7	17.7	ns
		V _{CC} = 1.4 V to 1.6 V	2.5	5.0	8.8	2.1	9.5	2.1	10.4	ns
		V _{CC} = 1.65 V to 1.95 V	2.3	4.1	6.6	2.0	7.3	2.0	8.1	ns
		V _{CC} = 2.3 V to 2.7 V	1.9	3.1	4.7	1.6	5.2	1.6	5.8	ns
		V _{CC} = 3.0 V to 3.6 V	1.7	2.8	4.0	1.4	4.4	1.4	4.9	ns
t _{en}	enable time	OE to Q; see Fig. 8 [3]								
		V _{CC} = 0.8 V	-	21.2	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	3.7	6.0	10.6	3.4	10.6	3.4	11.7	ns
		V _{CC} = 1.4 V to 1.6 V	3.1	4.5	6.7	2.8	7.0	2.8	7.7	ns
		V _{CC} = 1.65 V to 1.95 V	2.7	3.9	5.5	2.5	5.8	2.5	6.4	ns
		V _{CC} = 2.3 V to 2.7 V	2.4	3.3	4.5	2.2	4.7	2.2	5.2	ns
		V _{CC} = 3.0 V to 3.6 V	2.3	3.1	4.1	2.2	4.3	2.2	4.7	ns
t _{dis}	disable time	OE to Q; see <u>Fig. 8</u> [4]								
		V _{CC} = 0.8 V	-	11.3	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	3.9	5.3	8.7	3.8	9.2	3.8	10.1	ns
		V _{CC} = 1.4 V to 1.6 V	3.0	4.1	5.8	2.9	6.2	2.9	6.8	ns
		V _{CC} = 1.65 V to 1.95 V	3.2	4.2	5.7	3.1	6.0	3.1	6.6	ns
		V _{CC} = 2.3 V to 2.7 V	2.3	3.0	4.0	2.2	4.3	2.2	4.7	ns
		V _{CC} = 3.0 V to 3.6 V	3.0	3.8	4.7	2.9	5.0	2.9	5.5	ns

Symbol	Parameter	Conditions		25 °C			°C to 5 °C	-40 °C to +125 °C		Unit
			Min	Typ [1]	Мах	Min	Мах	Min	Мах	-
C _L = 15	pF									
t _{pd}	propagation	D to Q; see <u>Fig. 5</u> [2]								
	delay	V _{CC} = 0.8 V	-	27.3	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	3.5	8.3	16.9	3.2	17.5	3.2	19.2	ns
		V _{CC} = 1.4 V to 1.6 V	3.1	5.9	9.6	2.7	10.5	2.7	11.6	ns
		V _{CC} = 1.65 V to 1.95 V	2.6	4.8	7.6	2.2	8.5	2.2	9.3	ns
		V _{CC} = 2.3 V to 2.7 V	2.5	3.9	5.5	2.2	5.9	2.2	6.5	ns
		V _{CC} = 3.0 V to 3.6 V	2.2	3.6	4.9	1.8	5.5	1.8	6.0	ns
		LE to Q; see <u>Fig. 6</u> [2]								
		V _{CC} = 0.8 V	-	26.1	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	3.3	7.9	17.3	3.0	18.0	3.0	19.8	ns
		V _{CC} = 1.4 V to 1.6 V	3.0	5.6	9.7	2.5	10.7	2.5	11.8	ns
		V _{CC} = 1.65 V to 1.95 V	2.5	4.6	7.4	2.2	8.3	2.2	9.1	ns
		V _{CC} = 2.3 V to 2.7 V	2.3	3.6	5.3	2.0	5.9	2.0	6.4	ns
		V _{CC} = 3.0 V to 3.6 V	2.1	3.2	4.6	1.8	5.1	1.8	5.6	ns
t _{en}	enable time	OE to Q; see Fig. 8 [3]								
		V _{CC} = 0.8 V	-	24.6	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	4.1	6.8	12.1	3.8	12.1	3.8	13.3	ns
		V _{CC} = 1.4 V to 1.6 V	3.5	5.1	7.5	3.2	7.9	3.2	8.7	ns
		V _{CC} = 1.65 V to 1.95 V	3.1	4.4	6.1	2.8	6.5	2.8	7.2	ns
		V _{CC} = 2.3 V to 2.7 V	2.8	3.7	5.0	2.5	5.3	2.5	5.8	ns
		V _{CC} = 3.0 V to 3.6 V	2.6	3.5	4.7	2.5	4.9	2.5	5.4	ns
t _{dis}	disable time	OE to Q; see Fig. 8 [4]								
		V _{CC} = 0.8 V	-	13.1	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	4.9	6.5	9.8	4.8	10.4	4.8	11.4	ns
		V _{CC} = 1.4 V to 1.6 V	3.9	5.0	6.8	3.8	7.3	3.8	8.0	ns
		V _{CC} = 1.65 V to 1.95 V	4.2	5.3	6.9	4.1	7.3	4.1	8.0	ns
		V _{CC} = 2.3 V to 2.7 V	3.0	3.8	4.8	2.9	5.1	2.9	5.6	ns
		V _{CC} = 3.0 V to 3.6 V	4.1	5.0	6.1	4.0	6.4	4.0	7.0	ns

Symbol	Parameter	Conditions	25 °C			-40 °C to +85 °C		-40 °C to +125 °C		Unit
			Min	Typ [1]	Мах	Min	Max	Min	Max	
C _L = 30	pF									
t _{pd}	propagation	D to Q; see <u>Fig. 5</u> [2]								
	delay	V _{CC} = 0.8 V	-	35.9	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	4.0	10.6	22.1	3.7	23.3	3.7	25.6	ns
		V _{CC} = 1.4 V to 1.6 V	3.6	7.5	12.3	3.5	13.6	3.5	15.0	ns
		V _{CC} = 1.65 V to 1.95 V	3.5	6.2	9.5	3.2	10.5	3.2	11.5	ns
		V _{CC} = 2.3 V to 2.7 V	3.3	5.1	6.9	2.9	7.6	2.9	8.3	ns
		V _{CC} = 3.0 V to 3.6 V	3.0	4.7	6.4	2.9	7.2	2.9	7.9	ns
		LE to Q; see <u>Fig. 6</u> [2]								
		V _{CC} = 0.8 V	-	34.8	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	3.9	10.2	22.2	3.7	23.5	3.7	25.9	ns
		V _{CC} = 1.4 V to 1.6 V	3.5	7.2	12.4	3.4	13.7	3.4	15.1	ns
		V _{CC} = 1.65 V to 1.95 V	3.3	5.9	9.5	3.0	10.5	3.0	11.6	ns
		V _{CC} = 2.3 V to 2.7 V	3.1	4.8	6.8	2.7	7.5	2.7	8.2	ns
		V _{CC} = 3.0 V to 3.6 V	2.9	4.4	6.1	2.6	7.0	2.6	7.7	ns
t _{en}	enable time	OE to Q; see Fig. 8 [3]								-
		V _{CC} = 0.8 V	-	34.5	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	5.5	9.1	16.2	4.9	16.2	4.9	17.8	ns
		V _{CC} = 1.4 V to 1.6 V	4.6	6.7	9.9	4.2	10.5	4.2	11.6	ns
		V _{CC} = 1.65 V to 1.95 V	4.2	5.7	7.9	3.7	8.6	3.7	9.5	ns
		V _{CC} = 2.3 V to 2.7 V	3.6	4.9	6.4	3.4	6.9	3.4	7.6	ns
		V _{CC} = 3.0 V to 3.6 V	3.4	4.7	6.1	3.3	6.5	3.3	7.2	ns
t _{dis}	disable time	OE to Q; see Fig. 8 [4]								
		V _{CC} = 0.8 V	-	19.2	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	8.0	9.9	13.7	7.9	14.5	7.9	16.0	ns
		V _{CC} = 1.4 V to 1.6 V	6.3	7.7	9.7	6.2	10.5	6.2	11.6	ns
		V _{CC} = 1.65 V to 1.95 V	7.3	8.7	10.6	7.2	11.3	7.2	12.4	ns
		V _{CC} = 2.3 V to 2.7 V	5.2	6.2	7.5	5.1	7.8	5.1	8.6	ns
		V _{CC} = 3.0 V to 3.6 V	7.5	8.8	10.2	7.4	10.5	7.4	11.6	ns
C _L = 5 p	F, 10 pF, 15 p	F and 30 pF								.1
t _W	pulse width	LE HIGH; see <u>Fig. 6</u>								
		V _{CC} = 0.8 V	-	4.0	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	-	0.7	-	2.1	-	2.1	-	ns
		V _{CC} = 1.4 V to 1.6 V	-	0.5	-	1.3	-	1.3	-	ns
		V _{CC} = 1.65 V to 1.95 V	-	0.4	-	1.0	-	1.0	-	ns
		V _{CC} = 2.3 V to 2.7 V	-	0.3	-	0.8	-	0.8	-	ns
		V _{CC} = 3.0 V to 3.6 V	-	0.2	-	0.8	-	0.8	-	ns

Low-power D-type transparent latch; 3-state

Symbol	Parameter	Conditions	25 °C			-40 °C to +85 °C		-40 °C to +125 °C		Unit
			Min	Тур [1]	Мах	Min	Max	Min	Max	
t _{su(H)}	set-up time	D to LE; see Fig. 7								
	HIGH	V _{CC} = 0.8 V	-	4.6	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	-	0.9	-	2.2	-	2.2	-	ns
		V _{CC} = 1.4 V to 1.6 V	-	0.6	-	1.4	-	1.4	-	ns
		V _{CC} = 1.65 V to 1.95 V	-	0.4	-	1.0	-	1.0	-	ns
		V _{CC} = 2.3 V to 2.7 V	-	0	-	0.6	-	0.6	-	ns
		V _{CC} = 3.0 V to 3.6 V	-	-0.1	-	0.4	-	0.4	-	ns
t _{su(L)}	set-up time	D to LE; see Fig. 7								
	LOW	V _{CC} = 0.8 V	-	4.0	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	-	1.2	-	2.7	-	2.7	2.7 - ns 1.5 - ns 1.2 - ns	
		V _{CC} = 1.4 V to 1.6 V	-	0.7	-	1.5	-	1.5	-	ns
		V _{CC} = 1.65 V to 1.95 V	-	0.6	-	1.2	-	1.2	-	ns
		V _{CC} = 2.3 V to 2.7 V	-	0.4	-	0.9	-	0.9	-	ns
		V _{CC} = 3.0 V to 3.6 V	-	0.3	-	0.7	-	0.7	-	ns
t _h	hold time	D to LE HIGH or LOW; see <u>Fig. 7</u>								
		V _{CC} = 0.8 V	-	-4.6	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	-	-0.9	-	-0.1	-	-0.1	-	ns
		V _{CC} = 1.4 V to 1.6 V	-	-0.6	-	-0.1	-	-0.1	-	ns
		V _{CC} = 1.65 V to 1.95 V	-	-0.4	-	0	-	0	-	ns
		V _{CC} = 2.3 V to 2.7 V	-	-0.2	-	0.2	-	0.2	-	ns
		V _{CC} = 3.0 V to 3.6 V	-	-0.1	-	0.3	-	0.3	-	ns
C _{PD}	power dissipation	$f_i = 1 \text{ MHz}; V_1 = \text{GND to } V_{\text{CC}};$ [5] [6] output enabled								
	capacitance	V _{CC} = 0.8 V	-	2.0	-	-	-	-	-	pF
		V _{CC} = 1.1 V to 1.3 V	-	2.0	-	-	-	-	-	pF
		V _{CC} = 1.4 V to 1.6 V	-	2.0	-	-	-	-	-	pF
		V _{CC} = 1.65 V to 1.95 V	-	2.1	-	-	-	-	-	pF
		V _{CC} = 2.3 V to 2.7 V	-	2.4	-	-	-	-	-	pF
		V _{CC} = 3.0 V to 3.6 V	-	2.8	-	-	-	-	-	pF

[1] All typical values are measured at nominal V_{CC} .

 t_{pd} is the same as t_{PLH} and t_{PHL} . [2]

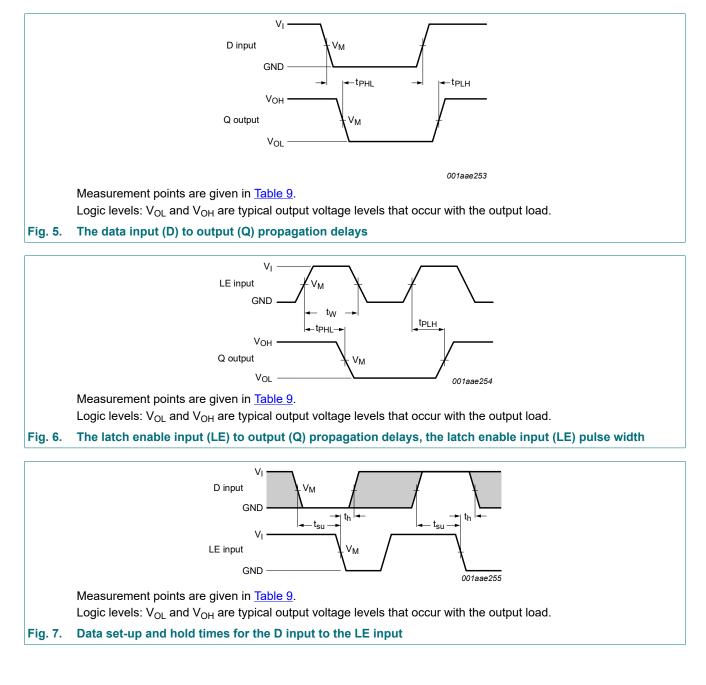
[3] $\dot{t_{en}}$ is the same as t_{PZH} and t_{PZL} .

[1] t_{en} is the same as p_{ZH} and p_{ZL} . [4] t_{dis} is the same as t_{PHZ} and t_{PLZ} . [5] All specified values are the average typical values over all stated loads. [6] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W). $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma(C_L \times V_{CC}^2 \times f_o)$ where:

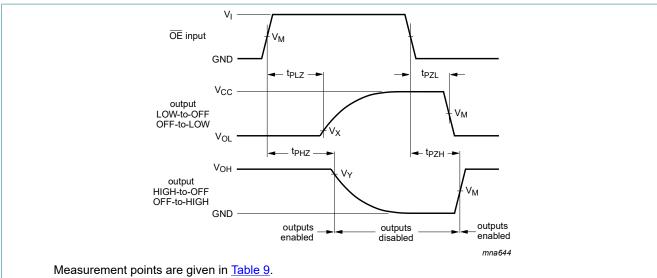
 f_i = input frequency in MHz;

f_o = output frequency in MHz;

 C_L = output load capacitance in pF;


 V_{CC} = supply voltage in V;

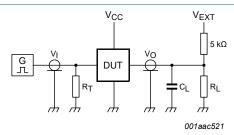
 $\Sigma(C_L \times V_{CC}^2 \times f_0) = \text{sum of the outputs;}$


N = number of inputs switching.

Low-power D-type transparent latch; 3-state

11.1. Waveforms

Low-power D-type transparent latch; 3-state



Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig. 8. Turn-on and turn-off times

Table 9. Measurement points

Supply voltage	Input			Output	Output		
V _{cc}	V _M	VI	t _r = t _f	V _M	Vx	VY	
0.8 V to 1.6 V	$0.5 \times V_{CC}$	V _{CC}	≤ 3.0 ns	$0.5 \times V_{CC}$	V _{OL} + 0.1 V	V _{OH} - 0.1 V	
1.65 V to 2.7 V	$0.5 \times V_{CC}$	V _{CC}	≤ 3.0 ns	0.5 × V _{CC}	V _{OL} + 0.15 V	V _{OH} - 0.15 V	
3.0 V to 3.6 V	$0.5 \times V_{CC}$	V _{CC}	≤ 3.0 ns	$0.5 \times V_{CC}$	V _{OL} + 0.3 V	V _{OH} - 0.3 V	

Test data is given in Table 10.

Definitions for test circuit:

R_I = Load resistance.

C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to the output impedance Z_o of the pulse generator.

V_{EXT} = External voltage for measuring switching times.

Fig. 9. Test circuit for measuring switching times

Table 10. Test data

Supply voltage	Load		V _{EXT}		
V _{cc}	CL	R _L [1]	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
0.8 V to 3.6 V	5 pF, 10 pF, 15 pF and 30 pF	5 kΩ or 1 MΩ	open	GND	2 × V _{CC}

[1] For measuring enable and disable times $R_L = 5 k\Omega$.

For measuring propagation delays, setup and hold times and pulse width $R_L = 1 M\Omega$.

Low-power D-type transparent latch; 3-state

12. Package outline

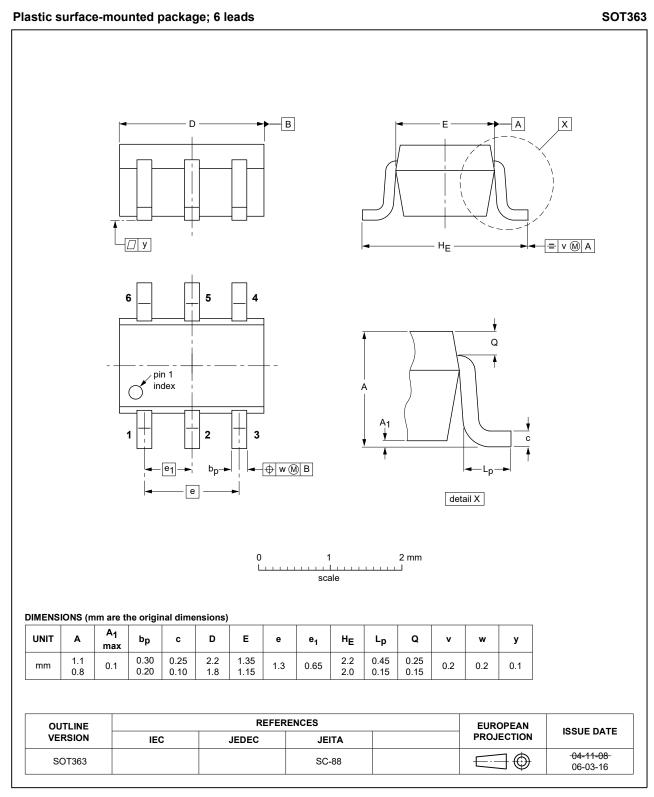


Fig. 10. Package outline SOT363 (SC-88)

13. Abbreviations

Acronym	Description	
DUT	Device Under Test	
ESD	ElectroStatic Discharge	
НВМ	Human Body Model	
MIL	Military	
MM	Machine Model	

14. Revision history

Table 12. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes		
74AUP1G373_Q100 v.2	20200327	Product data sheet	-	74AUP1G373_Q100 v.1		
Modifications:	 The format of this data sheet has been redesigned to comply with the identity guidelines of Nexperia. Legal texts have been adapted to the new company name where appropriate. <u>Table 5</u>: Derating values for P_{tot} total power dissipation updated. 					
74AUP1G373_Q100 v.1	20140310	Product data sheet	-	-		

15. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

 Please consult the most recently issued document before initiating or completing a design.

- [2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at <u>https://www.nexperia.com</u>.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This Nexperia product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or

Low-power D-type transparent latch; 3-state

equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at <u>http://www.nexperia.com/profile/terms</u>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Contents

1. General description	1
2. Features and benefits	1
3. Ordering information	2
4. Marking	2
5. Functional diagram	2
6. Pinning information	2
6.1. Pinning	2
6.2. Pin description	3
7. Functional description	3
8. Limiting values	3
9. Recommended operating conditions	4
10. Static characteristics	4
11. Dynamic characteristics	7
11.1. Waveforms	12
12. Package outline	14
13. Abbreviations	15
14. Revision history	15
15. Legal information	16

© Nexperia B.V. 2020. All rights reserved

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 27 March 2020

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Latches category:

Click to view products by NXP manufacturer:

Other Similar products are found below :

M38510/75403BSA 634674X 634752C ML4875CS-5 54FCT573ATDB 401639B 027063C 029314R 54FCT573CTLB NLV14043BDR2G 716165RB 74F373DW 74LVC373ADTR2G 74LVC573ADTR2G NL17SG373DFT2G NLV14044BDG 5962-8863901RA 5962-88639012A 2.PM30.006-30 MIC59P50YV NLV14042BDR2G MIC58P01YWM-TR 4.401.001 NLV14044BDR2G CY74FCT2373CTSOC 2.L18.001-21 2.PM18.002-18 2.PM18.006-18 2.T18.001-21 2.T18.002-18 2.T18.006-18 CQ/A-M22X1,5-45-28 CQ/A-M22X1,5-45-32 421283 MM74HC373WM MM74HC573MTCX MM74HC573WM 74LCX373MTC 74LVT16373MTDX 74VHC373MX KLD5.001-02 KLT9.001-02 74AHCT573D.112 74FCT16373CTPVG8 74FCT573ATQG 74LCX16373MTDX CQ/A-M22X1,5-45-16 CQ/A-M22X1,5-45-18 CQ/A-M22X1,5-45-20 CQ/A-M22X1,5-45-24