74AUP1G57

Low-power configurable multiple function gateRev. 8 — 23 February 2018

Product data sheet

General description 1

The 74AUP1G57 provides configurable multiple functions. The output state is determined by eight patterns of 3-bit input. The user can choose the logic functions AND, OR, NAND, NOR, XNOR, inverter, and buffer. All inputs can be connected to V_{CC} or GND.

This device ensures a very low static and dynamic power consumption across the entire V_{CC} range from 0.8 V to 3.6 V.

This device is fully specified for partial power-down applications using I_{OFF}. The I_{OFF} circuitry disables the output, preventing the damaging backflow current through the device when it is powered down.

The 74AUP1G57 has Schmitt trigger inputs making it capable of transforming slowly changing input signals into sharply defined, jitter-free output signals.

The inputs switch at different points for positive and negative-going signals. The difference between the positive voltage V_{T^+} and the negative voltage V_{T^-} is defined as the input hysteresis voltage V_H.

Features and benefits

- Wide supply voltage range from 0.8 V to 3.6 V
- High noise immunity
- ESD protection:
 - HBM JESD22-A114F exceeds 5000 V
 - MM JESD22-A115-A exceeds 200 V
 - CDM JESD22-C101E exceeds 1000 V
- Low static power consumption; $I_{CC} = 0.9 \mu A$ (maximum)
- Latch-up performance exceeds 100 mA per JESD 78 Class II
- Inputs accept voltages up to 3.6 V
- Low noise overshoot and undershoot < 10 % of V_{CC}
- I_{OFF} circuitry provides partial power-down mode operation
- · Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

3 Ordering information

Table 1. Ordering information

Type number	Package				
	Temperature range	Name	Description	Version	
74AUP1G57GW	-40 °C to +125 °C	SC-88	plastic surface-mounted package; 6 leads	SOT363	
74AUP1G57GM	-40 °C to +125 °C	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body 1 x 1.45 x 0.5 mm	SOT886	
74AUP1G57GF	-40 °C to +125 °C	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body 1 x 1 x 0.5 mm	SOT891	
74AUP1G57GN	-40 °C to +125 °C	XSON6	extremely thin small outline package; no leads; 6 terminals; body 0.9 x 1.0 x 0.35 mm	SOT1115	
74AUP1G57GS	-40 °C to +125 °C	XSON6	extremely thin small outline package; no leads; 6 terminals; body 1.0 x 1.0 x 0.35 mm	SOT1202	
74AUP1G57GX	-40 °C to +125 °C	X2SON6	plastic thermal extremely thin small outline package; no leads; 6 terminals; body 1 x 0.8 x 0.35 mm	SOT1255	

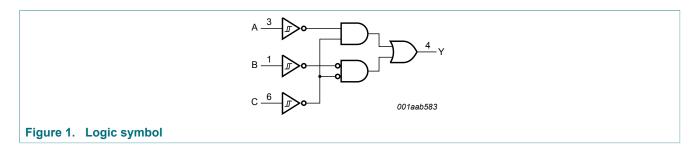
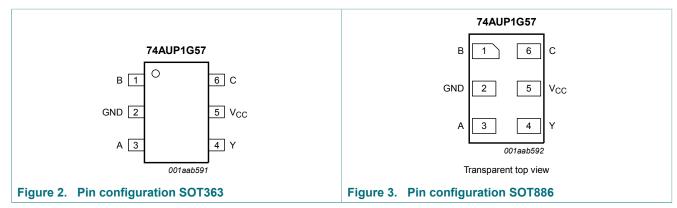
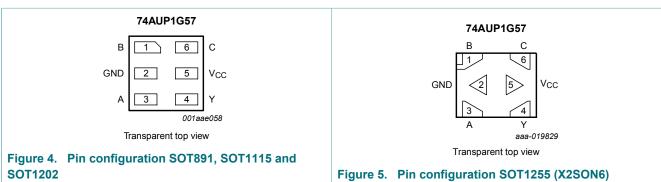

4 Marking

Table 2. Marking

Type number	Marking code ^[1]
74AUP1G57GW	aC
74AUP1G57GM	aC
74AUP1G57GF	aC
74AUP1G57GN	aC
74AUP1G57GS	aC
74AUP1G57GX	aC

^[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.


5 Functional diagram



Low-power configurable multiple function gate

6 Pinning information

6.1 Pinning

6.2 Pin description

Table 3. Pin description

Symbol	Pin	Description
В	1	data input
GND	2	ground (0 V)
A	3	data input
Υ	4	data output
V _{CC}	5	supply voltage
С	6	data input

7 Functional description

Table 4. Function table

 $H = HIGH \ voltage \ level; \ L = LOW \ voltage \ level.$

Input			Output
С	В	Α	Υ
L	L	L	Н
L	L	Н	L
L	Н	L	Н
L	Н	Н	L
Н	L	L	L
Н	L	Н	L
Н	Н	L	Н
Н	Н	Н	Н

7.1 Logic configurations

Table 5. Function selection table

Logic function	Figure
2-input AND	see Figure 6
2-input AND with both inputs inverted	see Figure 9
2-input NAND with inverted input	see Figure 7 and Figure 8
2-input OR with inverted input	see Figure 7 and Figure 8
2-input NOR	see Figure 9
2-input NOR with both inputs inverted	see Figure 6
2-input XNOR	see Figure 10
Inverter	see Figure 11
Buffer	see Figure 12

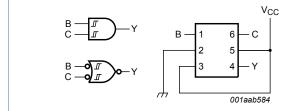


Figure 6. 2-input AND gate or 2-input NOR gate with both inputs inverted

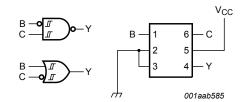


Figure 7. 2-input NAND gate with input B inverted or 2-input OR gate with inverted C input

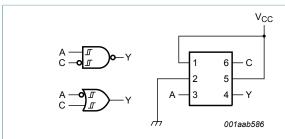


Figure 8. 2-input NAND gate with input C inverted or 2-input OR gate with inverted A input

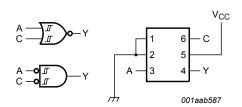


Figure 9. 2-input NOR gate or 2-input AND gate with both inputs inverted

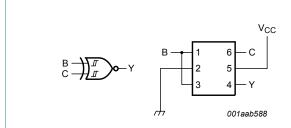


Figure 10. 2-input XNOR gate

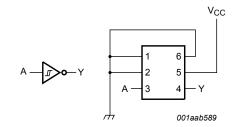
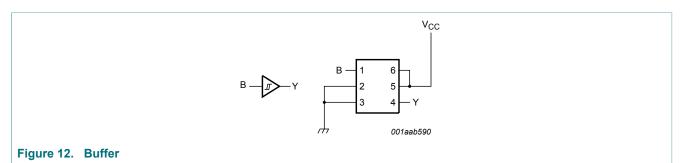



Figure 11. Inverter

Limiting values

Table 6. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+4.6	V
I _{IK}	input clamping current	V _I < 0 V	-50	-	mA
VI	input voltage	[1]	-0.5	+4.6	V
I _{OK}	output clamping current	V _O < 0 V	-50	-	mA
Vo	output voltage	Active mode and Power-down mode [1]	-0.5	+4.6	V
Io	output current	$V_O = 0 V \text{ to } V_{CC}$	-	±20	mA
I _{CC}	supply current		-	50	mA
I_{GND}	ground current		-50	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$ [2]	-	250	mW

^[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed. [2] For SC-88 packages: above 87.5 °C the value of Ptot derates linearly with 4.0 mW/K.

Recommended operating conditions 9

Table 7. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		0.8	3.6	V
VI	input voltage		0	3.6	V
Vo	output voltage	Active mode	0	V_{CC}	V
		Power-down mode; V _{CC} = 0 V	0	3.6	V
T _{amb}	ambient temperature		-40	+125	°C

For X2SON6 and XSON6 packages: above 118 °C the value of P_{tot} derates linearly with 7.8 mW/K.

Low-power configurable multiple function gate

10 Static characteristics

Table 8. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 2	5 °C					,
V _{OH}	HIGH-level output voltage	$V_I = V_{T+}$ or V_{T-}				
		I_{O} = -20 μ A; V_{CC} = 0.8 V to 3.6 V	V _{CC} - 0.1	-	-	V
		I _O = -1.1 mA; V _{CC} = 1.1 V	0.75 × V _{CC}	-	-	V
		I _O = -1.7 mA; V _{CC} = 1.4 V	1.11	-	-	V
		I _O = -1.9 mA; V _{CC} = 1.65 V	1.32	-	-	V
		I_{O} = -2.3 mA; V_{CC} = 2.3 V	2.05	-	-	V
		I _O = -3.1 mA; V _{CC} = 2.3 V	1.9	-	-	V
		I_{O} = -2.7 mA; V_{CC} = 3.0 V	2.72	-	-	V
		I_{O} = -4.0 mA; V_{CC} = 3.0 V	2.6	-	-	V
V_{OL}	LOW-level output voltage	$V_I = V_{T+}$ or V_{T-}				
		I_{O} = 20 μ A; V_{CC} = 0.8 V to 3.6 V	-	-	0.1	V
		I _O = 1.1 mA; V _{CC} = 1.1 V	-	-	0.3 × V _{CC}	V
		I _O = 1.7 mA; V _{CC} = 1.4 V	-	-	0.31	V
		I _O = 1.9 mA; V _{CC} = 1.65 V	-	-	0.31	V
		I _O = 2.3 mA; V _{CC} = 2.3 V	-	-	0.31	V
		I _O = 3.1 mA; V _{CC} = 2.3 V	-	-	0.44	V
		I_{O} = 2.7 mA; V_{CC} = 3.0 V	-	-	0.31	V
		I_{O} = 4.0 mA; V_{CC} = 3.0 V	-	-	0.44	V
l _l	input leakage current	V_I = GND to 3.6 V; V_{CC} = 0 V to 3.6 V	-	-	±0.1	μΑ
I _{OFF}	power-off leakage current	V_I or V_O = 0 V to 3.6 V; V_{CC} = 0 V	-	-	±0.2	μΑ
ΔI _{OFF}	additional power-off leakage current	$V_I \text{ or } V_O = 0 \text{ V to } 3.6 \text{ V};$ $V_{CC} = 0 \text{ V to } 0.2 \text{ V}$	-	-	±0.2	μΑ
I _{CC}	supply current	V_I = GND or V_{CC} ; I_O = 0 A; V_{CC} = 0.8 V to 3.6 V	-	-	0.5	μΑ
ΔI _{CC}	additional supply current	$V_I = V_{CC} - 0.6 \text{ V}; I_O = 0 \text{ A};$ $V_{CC} = 3.3 \text{ V}$	-	-	40	μΑ
Cı	input capacitance	V_I = GND or V_{CC} ; V_{CC} = 0 V to 3.6 V	-	1.1	-	pF
Co	output capacitance	$V_O = GND; V_{CC} = 0 V$	-	1.7	-	pF

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -4	10 °C to +85 °C					
V _{OH}	HIGH-level output voltage	$V_I = V_{T+}$ or V_{T-}				
		I_{O} = -20 μ A; V_{CC} = 0.8 V to 3.6 V	V _{CC} - 0.1	-	-	V
		I _O = -1.1 mA; V _{CC} = 1.1 V	0.7 × V _{CC}	-	-	V
		I _O = -1.7 mA; V _{CC} = 1.4 V	1.03	-	-	V
		I _O = -1.9 mA; V _{CC} = 1.65 V	1.30	-	-	V
		I_{O} = -2.3 mA; V_{CC} = 2.3 V	1.97	-	-	V
		I_{O} = -3.1 mA; V_{CC} = 2.3 V	1.85	-	-	V
		I_{O} = -2.7 mA; V_{CC} = 3.0 V	2.67	-	-	V
		I_{O} = -4.0 mA; V_{CC} = 3.0 V	2.55	-	-	V
V_{OL}	LOW-level output voltage	$V_I = V_{T+}$ or V_{T-}				
		I_{O} = 20 μ A; V_{CC} = 0.8 V to 3.6 V	-	-	0.1	V
		I _O = 1.1 mA; V _{CC} = 1.1 V	-	-	0.3 × V _{CC}	V
		I _O = 1.7 mA; V _{CC} = 1.4 V	-	-	0.37	V
		I _O = 1.9 mA; V _{CC} = 1.65 V	-	-	0.35	V
		I _O = 2.3 mA; V _{CC} = 2.3 V	-	-	0.33	V
		I _O = 3.1 mA; V _{CC} = 2.3 V	-	-	0.45	V
		I _O = 2.7 mA; V _{CC} = 3.0 V	-	-	0.33	V
		I _O = 4.0 mA; V _{CC} = 3.0 V	-	-	0.45	V
l _l	input leakage current	V _I = GND to 3.6 V; V _{CC} = 0 V to 3.6 V	-	-	±0.5	μΑ
l _{OFF}	power-off leakage current	V_{I} or V_{O} = 0 V to 3.6 V; V_{CC} = 0 V	-	-	±0.5	μA
Δl _{OFF}	additional power-off leakage current	V _I or V _O = 0 V to 3.6 V; V _{CC} = 0 V to 0.2 V	-	-	±0.6	μΑ
I _{CC}	supply current	V_I = GND or V_{CC} ; I_O = 0 A; V_{CC} = 0.8 V to 3.6 V	-	-	0.9	μΑ
ΔI _{CC}	additional supply current	$V_I = V_{CC} - 0.6 \text{ V}; I_O = 0 \text{ A};$ $V_{CC} = 3.3 \text{ V}$	-	-	50	μΑ

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -4	10 °C to +125 °C					
V _{OH}	HIGH-level output voltage	$V_I = V_{T+}$ or V_{T-}				
		I_{O} = -20 μ A; V_{CC} = 0.8 V to 3.6 V	V _{CC} - 0.11	-	-	V
		I _O = -1.1 mA; V _{CC} = 1.1 V	0.6 × V _{CC}	-	-	V
		I _O = -1.7 mA; V _{CC} = 1.4 V	0.93	-	-	V
		I _O = -1.9 mA; V _{CC} = 1.65 V	1.17	-	-	V
		I_{O} = -2.3 mA; V_{CC} = 2.3 V	1.77	-	-	V
		I_{O} = -3.1 mA; V_{CC} = 2.3 V	1.67	-	-	V
		I_{O} = -2.7 mA; V_{CC} = 3.0 V	2.40	-	-	V
		I_{O} = -4.0 mA; V_{CC} = 3.0 V	2.30	-	-	V
V _{OL}	LOW-level output voltage	$V_I = V_{T+}$ or V_{T-}				
		I_{O} = 20 μ A; V_{CC} = 0.8 V to 3.6 V	-	-	0.11	V
		I _O = 1.1 mA; V _{CC} = 1.1 V	-	-	0.33 × V _{CC}	V
		I _O = 1.7 mA; V _{CC} = 1.4 V	-	-	0.41	V
		I _O = 1.9 mA; V _{CC} = 1.65 V	-	-	0.39	V
		I _O = 2.3 mA; V _{CC} = 2.3 V	-	-	0.36	V
		I _O = 3.1 mA; V _{CC} = 2.3 V	-	-	0.50	V
		I_{O} = 2.7 mA; V_{CC} = 3.0 V	-	-	0.36	V
		I _O = 4.0 mA; V _{CC} = 3.0 V	-	-	0.50	V
Iį	input leakage current	V _I = GND to 3.6 V; V _{CC} = 0 V to 3.6 V	-	-	±0.75	μΑ
I _{OFF}	power-off leakage current	V_I or V_O = 0 V to 3.6 V; V_{CC} = 0 V	-	-	±0.75	μΑ
ΔI _{OFF}	additional power-off leakage current	$V_I \text{ or } V_O = 0 \text{ V to } 3.6 \text{ V};$ $V_{CC} = 0 \text{ V to } 0.2 \text{ V}$	-	-	±0.75	μΑ
I _{CC}	supply current	V_I = GND or V_{CC} ; I_O = 0 A; V_{CC} = 0.8 V to 3.6 V	-	-	1.4	μΑ
Δl _{CC}	additional supply current	$V_I = V_{CC} - 0.6 \text{ V}; I_O = 0 \text{ A};$ $V_{CC} = 3.3 \text{ V}$	-	-	75	μΑ

11 Dynamic characteristics

Table 9. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit, see Figure 14.

Symbol Parameter		Conditions			25 °C		-4	0 °C to +1	25 °C	Unit
				Min	Typ ^[1]	Max	Min	Max (85 °C)	Max (125 °C)	
C _L = 5 p	F		1		ı					
t _{pd}	propagation delay	A, B and C to Y; see Figure 13	[2]							
		V _{CC} = 0.8 V		-	22.6	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V		2.8	6.5	12.6	2.5	13.0	13.2	ns
		V _{CC} = 1.4 V to 1.6 V		2.2	4.6	7.6	2.5	8.2	8.6	ns
		V _{CC} = 1.65 V to 1.95 V		2.1	3.9	6.2	2.0	6.8	7.2	ns
		V _{CC} = 2.3 V to 2.7 V		2.0	3.1	4.5	1.8	5.1	5.3	ns
		V _{CC} = 3.0 V to 3.6 V		1.8	2.8	3.9	1.5	4.1	4.3	ns
C _L = 10	ρF					<u> </u>			1	
t _{pd}	propagation delay	A, B and C to Y; see <u>Figure 13</u>	[2]							
		V _{CC} = 0.8 V		-	26.1	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V		3.2	7.3	14.4	2.8	14.9	15.2	ns
		V _{CC} = 1.4 V to 1.6 V		2.6	5.2	8.7	2.8	9.3	9.8	ns
		V _{CC} = 1.65 V to 1.95 V		2.5	4.5	7.0	2.2	7.8	8.2	ns
		V _{CC} = 2.3 V to 2.7 V		2.4	3.7	5.2	2.1	5.9	6.2	ns
		V _{CC} = 3.0 V to 3.6 V		2.3	3.4	4.6	1.9	4.9	5.1	ns
C _L = 15	ρF					,		,		,
t _{pd}	propagation delay	A, B and C to Y; see Figure 13	[2]							
		V _{CC} = 0.8 V		-	31.6	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V		3.4	8.0	15.7	3.1	16.7	17.0	ns
		V _{CC} = 1.4 V to 1.6 V		2.8	5.7	9.4	3.1	10.4	10.9	ns
		V _{CC} = 1.65 V to 1.95 V		2.6	4.9	7.7	2.5	8.7	9.2	ns
		V _{CC} = 2.3 V to 2.7 V		2.6	4.1	5.7	2.4	6.5	6.9	ns
		V _{CC} = 3.0 V to 3.6 V		2.5	3.8	5.0	2.2	5.5	5.7	ns

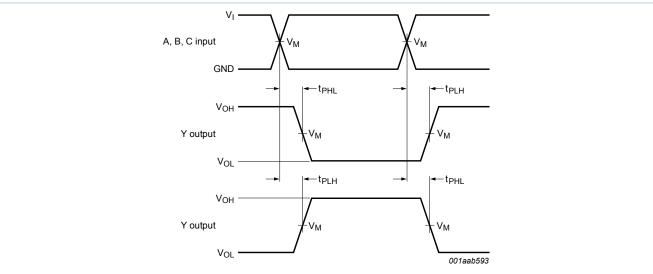
Low-power configurable multiple function gate

Symbol	Parameter	Conditions		25 °C			-40 °C to +125 °C		
				Typ ^[1]	Max	Min	Max (85 °C)	Max (125 °C)	-
C _L = 30 p	oF .								
t _{pd} propagation delay	propagation delay	A, B and C to Y; see Figure 13							
	V _{CC} = 0.8 V	-	37.8	-	-	-	-	ns	
	V _{CC} = 1.1 V to 1.3 V	4.6	10.4	20.9	3.9	21.8	22.3	ns	
		V _{CC} = 1.4 V to 1.6 V	3.6	7.4	12.2	3.8	13.4	14.1	ns
		V _{CC} = 1.65 V to 1.95 V	3.5	6.2	9.9	3.1	11.1	11.8	ns
		V _{CC} = 2.3 V to 2.7 V	3.4	5.2	7.4	3.1	8.3	8.8	ns
		V _{CC} = 3.0 V to 3.6 V	3.2	4.9	6.6	2.8	7.0	7.4	ns
C _L = 5 pl	F, 10 pF, 15 pF and	30 pF							
C_{PD}	power dissipation	$f_i = 1 \text{ MHz}; V_i = \text{GND to } V_{CC}$ [3] [4]							
	capacitance	V _{CC} = 0.8 V	-	2.6	-	-	-	-	pF
		V _{CC} = 1.1 V to 1.3 V	-	2.8	-	-	-	-	pF
		V _{CC} = 1.4 V to 1.6 V	-	2.9	-	-	-	-	pF
		V _{CC} = 1.65 V to 1.95 V	-	3.1	-	-	-	-	pF
		V _{CC} = 2.3 V to 2.7 V	-	3.7	-	-	-	-	pF
		V _{CC} = 3.0 V to 3.6 V	-	4.3	-	-	-	-	pF

 f_i = input frequency in MHz;

f_o = output frequency in MHz;

C_L = output load capacitance in pF;

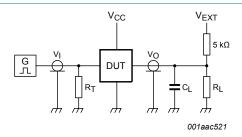

V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_0)$ = sum of the outputs.

 ^[1] All typical values are measured at nominal V_{CC}.
 [2] t_{pd} is the same as t_{PLH} and t_{PHL}.
 [3] All specified values are the average typical values over all stated loads.
 [4] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).
 P_D = C_{PD} x V_{CC}² x f_i x N + Σ(C_L x V_{CC}² x f_o) where:

11.1 Waveforms and test circuit


Measurement points are given in Table 10.

 V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 13. Input A, B and C to output Y propagation delay times

Table 10. Measurement points

Supply voltage	Output	Input				
V _{CC}	V _M	V _M	VI	$t_r = t_f$		
0.8 V to 3.6 V	0.5 x V _{CC}	0.5 x V _{CC}	V _{CC}	≤ 3.0 ns		

Test data is given in Table 11.

Definitions for test circuit:

R_L = Load resistance.

C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to the output impedance Z_0 of the pulse generator.

 V_{EXT} = External voltage for measuring switching times.

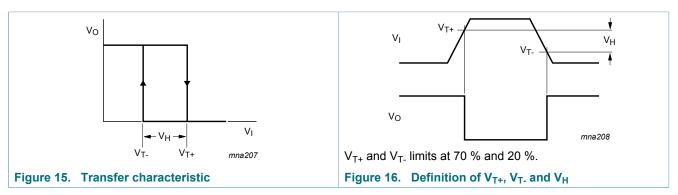
Figure 14. Test circuit for measuring switching times

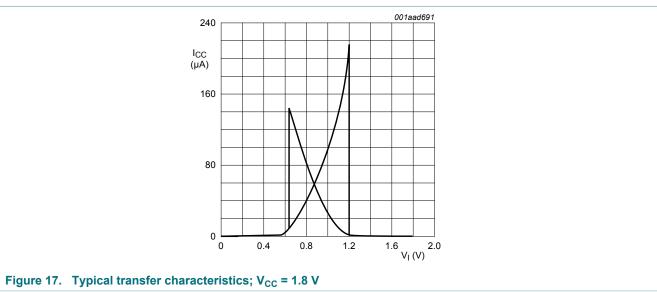
Low-power configurable multiple function gate

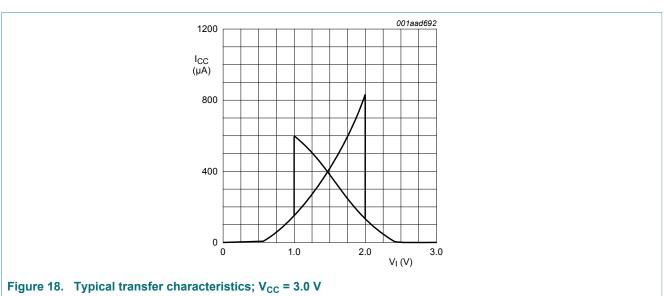
Table 11. Test data

Supply voltage	Load	V _{EXT}			
V _{CC}	CL	R _L ^[1]	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
0.8 V to 3.6 V	5 pF, 10 pF, 15 pF and 30 pF	5 kΩ or 1 MΩ	open	GND	2 x V _{CC}

^[1] For measuring enable and disable times, R_L = 5 k Ω . For measuring propagation delays, set-up and hold times, and pulse width, R_L = 1 M Ω .


11.2 Transfer characteristics


Table 12. Transfer characteristics


Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 14.

Symbol	Parameter	Conditions		25 °C		-40 °C to +125 °C			Unit
				Тур	Max	Min	Max (85 °C)	Max (125 °C)	
V _{T+} positive-going threshold voltage	see Figure 15 and Figure 16								
		V _{CC} = 0.8 V	0.30	-	0.60	0.30	0.60	0.62	V
		V _{CC} = 1.1 V	0.53	-	0.90	0.53	0.90	0.92	V
		V _{CC} = 1.4 V	0.74	-	1.11	0.74	1.11	1.13	V
		V _{CC} = 1.65 V	0.91	-	1.29	0.91	1.29	1.31	V
		V _{CC} = 2.3 V	1.37	-	1.77	1.37	1.77	1.80	V
		V _{CC} = 3.0 V	1.88	-	2.29	1.88	2.29	2.32	V
V _{T-} negative-going threshold voltage	negative-going threshold voltage	see <u>Figure 15</u> and <u>Figure 16</u>							
		V _{CC} = 0.8 V	0.10	-	0.60	0.10	0.60	0.60	V
		V _{CC} = 1.1 V	0.26	-	0.65	0.26	0.65	0.65	V
		V _{CC} = 1.4 V	0.39	-	0.75	0.39	0.75	0.75	V
		V _{CC} = 1.65 V	0.47	-	0.84	0.47	0.84	0.84	V
		V _{CC} = 2.3 V	0.69	-	1.04	0.69	1.04	1.04	V
		V _{CC} = 3.0 V	0.88	-	1.24	0.88	1.24	1.24	V
V _H hysteresi	hysteresis voltage	(V _{T+} - V _{T-}); see <u>Figure 15</u> , <u>Figure 16</u> , <u>Figure 17</u> and <u>Figure 18</u>							
	V _C	V _{CC} = 0.8 V	0.07	-	0.50	0.07	0.50	0.50	V
		V _{CC} = 1.1 V	0.08	-	0.46	0.08	0.46	0.46	V
		V _{CC} = 1.4 V	0.18	-	0.56	0.18	0.56	0.56	V
		V _{CC} = 1.65 V	0.27	-	0.66	0.27	0.66	0.66	٧
		V _{CC} = 2.3 V	0.53	-	0.92	0.53	0.92	0.92	V
		V _{CC} = 3.0 V	0.79	-	1.31	0.79	1.31	1.31	٧

11.3 Waveform transfer characteristics

12 Package outline

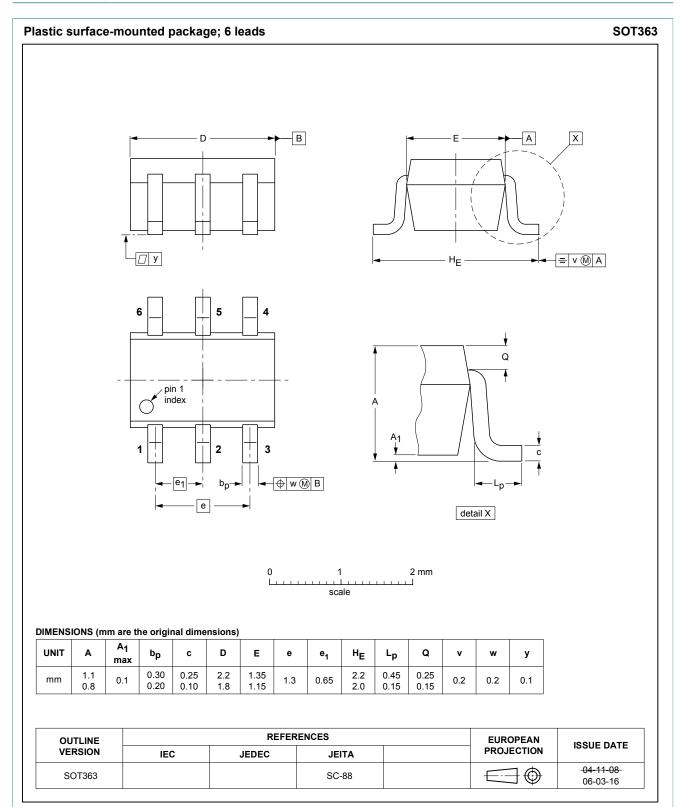


Figure 19. Package outline SOT363 (SC-88)

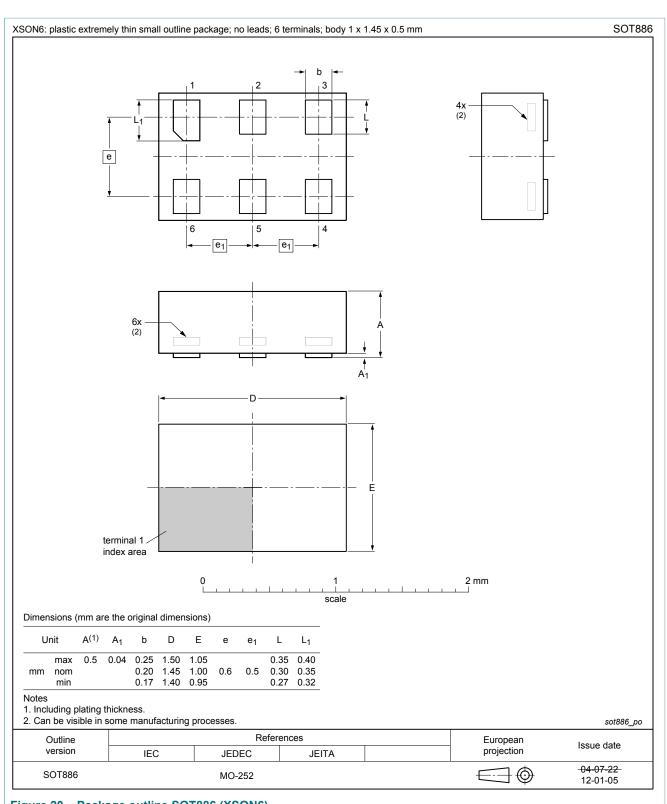


Figure 20. Package outline SOT886 (XSON6)

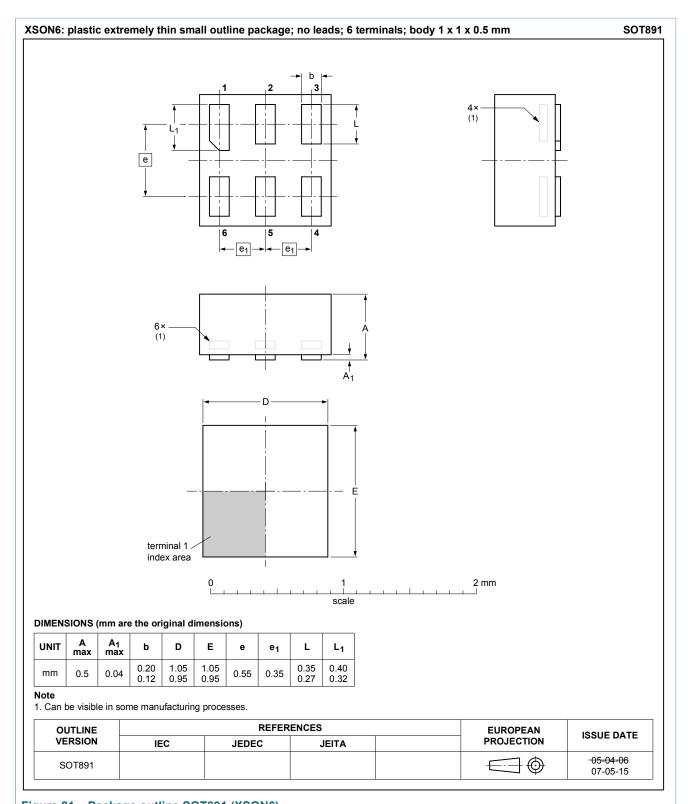


Figure 21. Package outline SOT891 (XSON6)

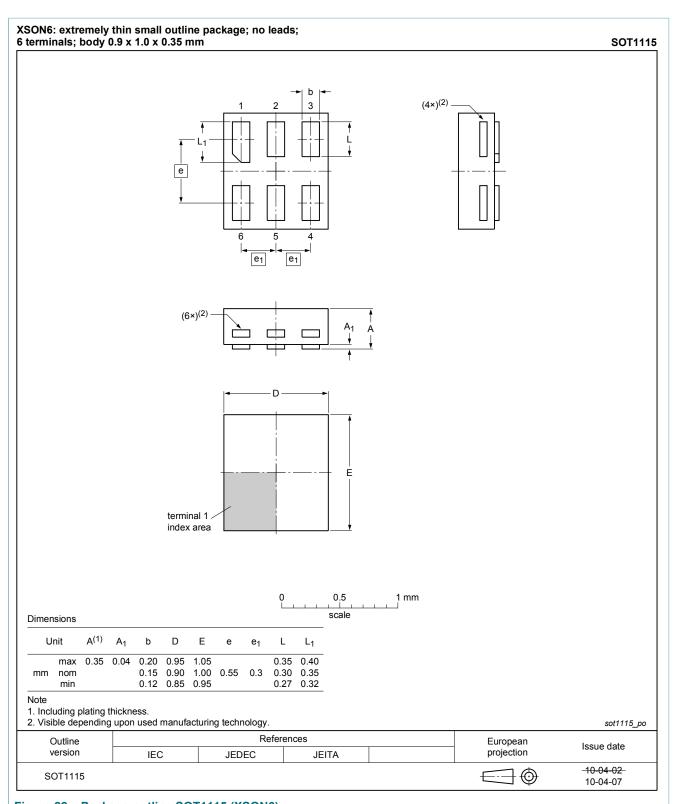


Figure 22. Package outline SOT1115 (XSON6)

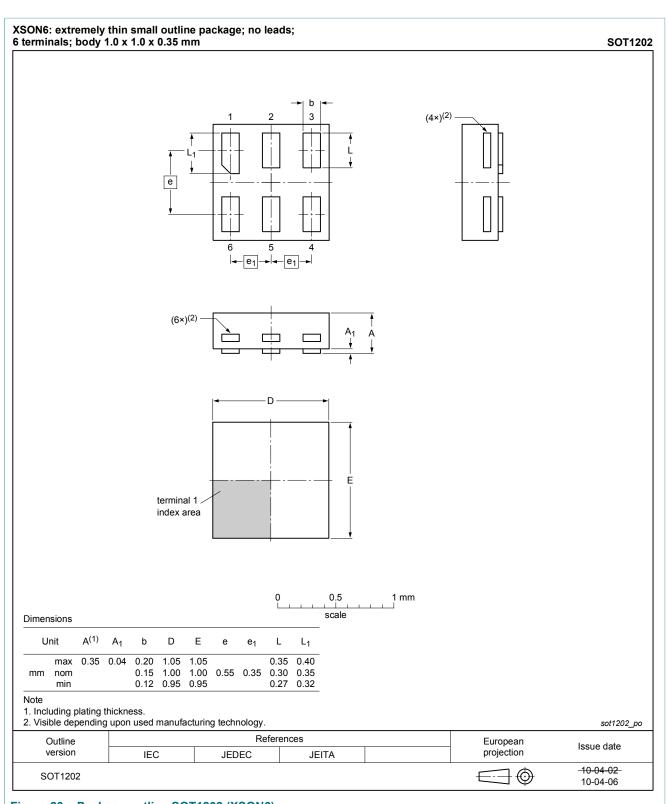


Figure 23. Package outline SOT1202 (XSON6)

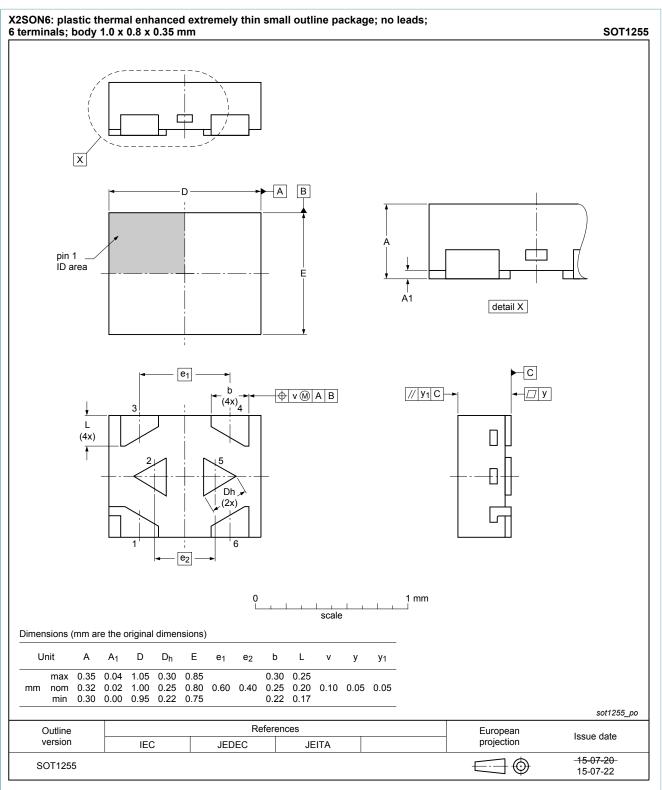


Figure 24. Package outline SOT1255 (X2SON6)

13 Abbreviations

Table 13. Abbreviations

Acronym	Description
CDM	Charged Device Model
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model

14 Revision history

Table 14. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes		
74AUP1G57 v.8	20180223	Product data sheet	-	74AUP1G57 v.7		
Modifications:	 The format of this data sheet has been redesigned to comply with the identity guidelines of Nexperia. Legal texts have been adapted to the new company name where appropriate. 					
74AUP1G57 v.7	20150916	Product data sheet	-	74AUP1G57 v.6		
Modifications:	Added type number 74AUP1G57GX (SOT1255/X2SON6).					
74AUP1G57 v.6	20120815	Product data sheet	-	74AUP1G57 v.5		
Modifications:	Package outline drawing of SOT886 (Figure 20) modified.					
74AUP1G57 v.5	20111125	Product data sheet	-	74AUP1G57 v.4		
74AUP1G57 v.4	20100720	Product data sheet	-	74AUP1G57 v.3		
74AUP1G57 v.3	20090622	Product data sheet	-	74AUP1G57 v.2		
74AUP1G57 v.2	20090323	Product data sheet	-	74AUP1G57 v.1		
74AUP1G57 v.1	20061123	Product data sheet	-	-		

15 Legal information

15.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- Please consult the most recently issued document before initiating or completing a design.
- The term 'short data sheet' is explained in section "Definitions". [2] [3]
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia. In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2018. All rights reserved.

Low-power configurable multiple function gate

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer

design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Contents

1	General description	1
2	Features and benefits	1
3	Ordering information	2
4	Marking	
5	Functional diagram	
6	Pinning information	
6.1	Pinning	
6.2	Pin description	
7	Functional description	
7.1	Logic configurations	
8	Limiting values	
9	Recommended operating conditions	6
10	Static characteristics	
11	Dynamic characteristics	10
11.1	Waveforms and test circuit	
11.2	Transfer characteristics	13
11.3	Waveform transfer characteristics	
12	Package outline	15
13	Abbreviations	
14	Revision history	21
15	Legal information	

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for NXP manufacturer:

Other Similar products are found below:

MC13211R2 P2020COME-DS-PB LFSTBEB865X MC33399PEFR2 PCA9551PW,112 MC34825EPR2 PCF8583P MC68340AB16E

EVBCRTOUCH MC9S08PT16AVLC MC9S08PT8AVTG MC9S08SH32CTL MCF54415CMJ250 MCIMX6Q-SDB MCIMX6SX-SDB

74ALVC125BQ,115 74HC4050N 74HC4514N MK21FN1M0AVLQ12 FRDM-KW40Z FRDM-MC-LVBLDC PMF63UNEX PSMN026
80YS,115 PSMN4R0-60YS,115 PTN3460IBSF1MP HEF4028BPN RAPPID-567XFSW MPC565MVR56 MPC574XG-176DS

MPC860PCVR66D4 BT137-600E BUK7628-100A118 P2020NXE2HHC P5020NSE7VNB S12ZVML12EVBLIN SC68376BACAB20

SCC2692AC1N40 LPC1114JHN33333E LPC1785FBD208K LS1020ASN7KQB LS1020AXN7HNB LS1020AXN7KQB LS1043ASE7PQA

LS1043ASN8QQB T1023RDB-PC FRDM-KW24D512 PNEV512B,699 PSMN2R4-30YLDX PZU4.3B3A,115 CWH-CTP-BASE-HE