DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT191

 Presettable synchronous 4-bit binary up/down counterFile under Integrated Circuits, IC06

Presettable synchronous 4-bit binary up/down counter

74HC/HCT191

FEATURES

- Synchronous reversible counting
- Asynchronous parallel load
- Count enable control for synchronous expansion
- Single up/down control input
- Output capability: standard
- I ICC category: MSI

GENERAL DESCRIPTION

The 74HC/HCT191 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The $74 \mathrm{HC} / \mathrm{HCT} 191$ are asynchronously presettable 4-bit binary up/down counters. They contain four master/slave flip-flops with internal gating and steering logic to provide asynchronous preset and synchronous count-up and count-down operation.

Asynchronous parallel load capability permits the counter to be preset to any desired number. Information present on the parallel data inputs $\left(D_{0}\right.$ to $\left.D_{3}\right)$ is loaded into the counter and appears on the outputs when the parallel load $(\overline{\mathrm{PL}})$ input is LOW. As indicated in the function table, this operation overrides the counting function.

Counting is inhibited by a HIGH level on the count enable $(\overline{\mathrm{CE}})$ input. When $\overline{\mathrm{CE}}$ is LOW internal state changes are initiated synchronously by the LOW-to-HIGH transition of the clock input. The up/down (U/D) input signal determines the direction of counting as indicated in the function table. The $\overline{\mathrm{CE}}$ input may go LOW when the clock is in either state, however, the LOW-to-HIGH $\overline{\mathrm{CE}}$ transition must occur only when the clock is HIGH. Also, the $\overline{\mathrm{U}} / \mathrm{D}$ input should be changed only when either $\overline{\mathrm{CE}}$ or CP is HIGH.

Overflow/underflow indications are provided by two types of outputs, the terminal count (TC) and ripple clock ($\overline{\mathrm{RC}}$). The TC output is normally LOW and goes HIGH when a circuit reaches zero in the count-down mode or reaches " 15 " in the count-up-mode. The TC output will remain HIGH until a state change occurs, either by counting or presetting, or until \bar{U} / D is changed. Do not use the TC output as a clock signal because it is subject to decoding spikes. The TC signal is used internally to enable the $\overline{\mathrm{RC}}$ output. When TC is HIGH and $\overline{\mathrm{CE}}$ is LOW, the $\overline{\mathrm{RC}}$ output follows the clock pulse (CP). This feature simplifies the design of multistage counters as shown in Figs 5 and 6.

In Fig.5, each $\overline{\mathrm{RC}}$ output is used as the clock input to the next higher stage. It is only necessary to inhibit the first stage to prevent counting in all stages, since a HIGH on $\overline{\mathrm{CE}}$ inhibits the $\overline{\mathrm{RC}}$ output pulse as indicated in the function table. The timing skew between state changes in the first and last stages is represented by the cumulative delay of the clock as it ripples through the preceding stages. This can be a disadvantage of this configuration in some applications.

Fig. 6 shows a method of causing state changes to occur simultaneously in all stages. The $\overline{\mathrm{RC}}$ outputs propagate the carry/borrow signals in ripple fashion and all clock inputs are driven in parallel. In this configuration the duration of the clock LOW state must be long enough to allow the negative-going edge of the carry/borrow signal to ripple through to the last stage before the clock goes HIGH. Since the $\overline{R C}$ output of any package goes HIGH shortly after its CP input goes HIGH there is no such restriction on the HIGH-state duration of the clock.

In Fig.7, the configuration shown avoids ripple delays and their associated restrictions. Combining the TC signals from all the preceding stages forms the $\overline{\mathrm{CE}}$ input for a given stage. An enable must be included in each carry gate in order to inhibit counting. The TC output of a given stage it not affected by its own $\overline{\mathrm{CE}}$ signal therefore the simple inhibit scheme of Figs 5 and 6 does not apply.

Presettable synchronous 4-bit binary up/down counter

QUICK REFERENCE DATA

GND $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL		UNIT
			HC	HCT	
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay CP to Q_{n}	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	22	22	ns
$\mathrm{f}_{\text {max }}$	maximum clock frequency		36	36	MHz
C_{1}	input capacitance		3.5	3.5	pF
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance per package	notes 1 and 2	31	33	pF

Notes

1. $C_{P D}$ is used to determine the dynamic power dissipation $\left(P_{D}\right.$ in $\left.\mu W\right)$:
$P_{D}=C_{P D} \times V_{C C}^{2} \times f_{i}+\sum\left(C_{L} \times V_{C C}^{2} \times f_{0}\right)$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz
$\sum\left(C_{L} \times V_{C C}^{2} \times f_{0}\right)=$ sum of outputs
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V
2. For HC the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}

For HCT the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

Presettable synchronous 4-bit binary up/down counter

74HC/HCT191

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
$3,2,6,7$	$\overline{\mathrm{Q}}$ to Q_{3}	flip-flop outputs
4	$\overline{\mathrm{UE}}$	count enable input (active LOW)
5	GND	up/down input
8	$\overline{\mathrm{PL}}$	ground (0 V)
11	TC	parallel load input (active LOW)
12	$\overline{\mathrm{RC}}$	terminal count output
13	CP	ripple clock output (active LOW)
14	D to D_{3}	clock input (LOW-to-HIGH, edge triggered)
$15,1,10,9$	$\mathrm{~V}_{\mathrm{CC}}$	data inputs
16		positive supply voltage

Fig. 1 Pin configuration.

Fig. 2 Logic symbol.

Fig. 3 IEC logic symbol.

Presettable synchronous 4-bit binary

Fig. 4 Functional diagram.

FUNCTION TABLE

OPERATING MODE		INPUTS						OUTPUTS
		$\overline{\mathbf{U}} / \mathbf{D}$	$\overline{\mathbf{C E}}$	$\mathbf{C P}$	$\mathbf{D}_{\mathbf{n}}$	$\mathbf{Q}_{\boldsymbol{n}}$		
parallel load	L	X	X	X	L	L		
	L	X	X	X	H	H		
count up	H	L	I	\uparrow	X	count up		
count down	H	H	I	\uparrow	X	count down		
hold (do nothing)	H	X	H	X	X	no change		

TC AND RC FUNCTION TABLE

INPUTS			TERMINAL COUNT STATE				OUTPUTS	
$\overline{\mathbf{U}} / \mathbf{D}$	CE	CP	Q_{0}	Q_{1}	Q_{2}	Q_{3}	TC	$\overline{\mathrm{RC}}$
H	H	X	H	H	H	H	L	H
L	H	X	H	H	H	H	H	H
L	L	\checkmark	H	H	H	H	L	\checkmark
L	H	X	L	L	L	L	L	H
H	H	\times	L	L	L	L	H	H
H	L	\checkmark	L	L	L	L	L	\checkmark

Notes

1. $\mathrm{H}=\mathrm{HIGH}$ voltage level

L = LOW voltage level
I = LOW voltage level one set-up time prior to the LOW-to-HIGH CP transition
X = don't care
$\uparrow=$ LOW-to-HIGH CP transition
■ = one LOW level pulse
Z = TC goes LOW on a LOW-to-HIGH CP transition

Presettable synchronous 4-bit binary up/down counter

Fig. 5 N -stage ripple counter using ripple clock.

Fig. 6 Synchronous n-stage counter using ripple carry/borrow.

Fig. 7 Synchronous n-stage counter with parallel gated carry/borrow.

Sequence

Load (preset) to binary thirteen; count up to fourteen, fifteen, zero, one and two; inhibit;
count down to one, zero, fifteen, fourteen and thirteen

Fig. 8 Typical load, count and inhibit sequence.

Fig. 9 Logic diagram

Presettable synchronous 4-bit binary up/down counter

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".
Output capability: standard
$I_{C C}$ category: MSI

AC CHARACTERISTICS FOR 74HC
$G N D=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	Tamb ${ }^{\circ}{ }^{\text {C }}$)							UNIT	TEST CONDITIONS	
		74HC								V_{cc} (V)	WAVEFORMS
		+25			-40 to +85		-40 to +125				
		min.	typ.	max.	min.	max.	min.	max.			
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $C P$ to Q_{n}		$\begin{aligned} & \hline 72 \\ & 26 \\ & 21 \end{aligned}$	$\begin{aligned} & \hline 220 \\ & 44 \\ & 37 \end{aligned}$		$\begin{array}{\|l\|} \hline 275 \\ 55 \\ 47 \\ \hline \end{array}$		$\begin{array}{\|l} \hline 330 \\ 66 \\ 56 \end{array}$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \end{array}$	Fig. 10
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay CP to TC		$\begin{aligned} & \hline 83 \\ & 30 \\ & 24 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 255 \\ 51 \\ 43 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 320 \\ 64 \\ 54 \\ \hline \end{array}$		395 77 65	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$	Fig. 10
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay CP to $\overline{\mathrm{RC}}$		$\begin{aligned} & 47 \\ & 17 \\ & 14 \end{aligned}$	$\begin{aligned} & \hline 150 \\ & 30 \\ & 26 \end{aligned}$		$\begin{array}{\|l\|} \hline 190 \\ 38 \\ 33 \end{array}$		$\begin{array}{\|l\|} \hline 225 \\ 45 \\ 38 \end{array}$	ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 11
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $\overline{\mathrm{CE}}$ to $\overline{\mathrm{RC}}$		$\begin{aligned} & 33 \\ & 12 \\ & 10 \end{aligned}$	$\begin{aligned} & 130 \\ & 26 \\ & 22 \end{aligned}$		$\begin{aligned} & 165 \\ & 33 \\ & 28 \end{aligned}$		$\begin{array}{\|l} \hline 195 \\ 39 \\ 33 \end{array}$	ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 11
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay D_{n} to Q_{n}		$\begin{aligned} & 61 \\ & 22 \\ & 18 \end{aligned}$	$\begin{aligned} & 220 \\ & 44 \\ & 37 \end{aligned}$		$\begin{aligned} & 275 \\ & 55 \\ & 47 \end{aligned}$		$\begin{aligned} & \hline 330 \\ & 66 \\ & 56 \end{aligned}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 12
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $\overline{P L}$ to Q_{n}		$\begin{array}{\|l\|} \hline 61 \\ 22 \\ 18 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 220 \\ 44 \\ 37 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 275 \\ 55 \\ 47 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 330 \\ 66 \\ 56 \\ \hline \end{array}$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$	Fig. 13
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay \bar{U} / D to TC		$\begin{aligned} & 44 \\ & 16 \\ & 13 \end{aligned}$	$\begin{aligned} & \hline 190 \\ & 38 \\ & 32 \end{aligned}$		$\begin{array}{\|l} \hline 240 \\ 48 \\ 41 \end{array}$		$\begin{array}{\|l\|} \hline 285 \\ 57 \\ 48 \end{array}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 14
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $\overline{\mathrm{U}} / \mathrm{D}$ to $\overline{\mathrm{RC}}$		$\begin{aligned} & \hline 50 \\ & 18 \\ & 14 \end{aligned}$	$\begin{aligned} & 210 \\ & 42 \\ & 36 \end{aligned}$		$\begin{aligned} & 265 \\ & 53 \\ & 45 \end{aligned}$		$\begin{aligned} & \hline 315 \\ & 63 \\ & 54 \end{aligned}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 14
$\mathrm{t}_{\text {THL }} / \mathrm{t}_{\text {TLH }}$	output transition time		19 7 6	$\begin{aligned} & 75 \\ & 15 \\ & 13 \end{aligned}$		$\begin{aligned} & \hline 95 \\ & 19 \\ & 16 \end{aligned}$		$\begin{aligned} & \hline 110 \\ & 22 \\ & 19 \end{aligned}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 15
tw	clock pulse width HIGH or LOW	$\begin{array}{\|l\|} \hline 125 \\ 25 \\ 21 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 28 \\ 10 \\ 8 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 155 \\ 31 \\ 26 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 195 \\ 39 \\ 33 \\ \hline \end{array}$		ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$	Fig. 10
tw	parallel load pulse width LOW	$\begin{aligned} & \hline 100 \\ & 20 \\ & 17 \end{aligned}$	$\begin{aligned} & \hline 22 \\ & 8 \\ & 6 \end{aligned}$		$\begin{aligned} & 125 \\ & 25 \\ & 21 \end{aligned}$		$\begin{aligned} & \hline 150 \\ & 30 \\ & 26 \end{aligned}$		ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 15

Presettable synchronous 4-bit binary

 up/down counter| SYMBOL | PARAMETER | Tamb (${ }^{\circ} \mathrm{C}$) | | | | | | | UNIT | TEST CONDITIONS | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | 74HC | | | | | | | | $\begin{array}{\|l\|l} \hline \mathrm{V}_{\mathrm{cc}} \\ \mathrm{I}) \end{array}$ | WAVEFORMS |
| | | +25 | | | -40 to +85 | | -40 to +125 | | | | |
| | | min. | typ. | max. | min. | max. | min. | max. | | | |
| $\mathrm{t}_{\text {rem }}$ | removal time $\overline{\mathrm{PL}}$ to CP | $\begin{array}{\|l\|} \hline 35 \\ 7 \\ 6 \end{array}$ | $\begin{array}{\|l\|} \hline 8 \\ 3 \\ 2 \end{array}$ | | $\begin{array}{\|l} \hline 45 \\ 9 \\ 8 \end{array}$ | | $\begin{aligned} & \hline 55 \\ & 11 \\ & 9 \end{aligned}$ | | ns | $\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \end{array}$ | Fig. 15 |
| $\mathrm{t}_{\text {su }}$ | set-up time \bar{U} / D to CP | $\begin{aligned} & 205 \\ & 41 \\ & 35 \end{aligned}$ | $\begin{aligned} & 50 \\ & 18 \\ & 14 \end{aligned}$ | | $\begin{array}{\|l\|} \hline 255 \\ 51 \\ 43 \end{array}$ | | $\begin{aligned} & 310 \\ & 62 \\ & 53 \end{aligned}$ | | ns | $\begin{array}{l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$ | Fig. 17 |
| $\mathrm{t}_{\text {su }}$ | $\begin{array}{\|c\|} \hline \text { set-up time } \\ D_{n} \text { to } \overline{P L} \end{array}$ | $\begin{aligned} & 100 \\ & 20 \\ & 17 \end{aligned}$ | $\begin{aligned} & \hline 19 \\ & 7 \\ & 6 \end{aligned}$ | | $\begin{array}{\|l\|} \hline 125 \\ 25 \\ 21 \end{array}$ | | $\begin{aligned} & 150 \\ & 30 \\ & 26 \end{aligned}$ | | ns | $\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$ | Fig. 16 |
| $\mathrm{t}_{\text {su }}$ | set-up time $\overline{\mathrm{CE}}$ to CP | $\begin{array}{\|l\|} \hline 140 \\ 28 \\ 24 \\ \hline \end{array}$ | $\begin{aligned} & \hline 44 \\ & 16 \\ & 13 \\ & \hline \end{aligned}$ | | $\begin{array}{\|l\|} \hline 175 \\ 35 \\ 30 \\ \hline \end{array}$ | | $\begin{array}{\|l} \hline 210 \\ 42 \\ 36 \\ \hline \end{array}$ | | ns | $\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$ | Fig. 17 |
| t_{n} | hold time \bar{U} / D to CP | $\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline-39 \\ -14 \\ -11 \\ \hline \end{array}$ | | $\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$ | | $\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \end{array}$ | | ns | $\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$ | Fig. 17 |
| th_{n} | hold time D_{n} to $\overline{P L}$ | $\begin{array}{\|l\|l\|} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$ | $\begin{array}{\|l} \hline-11 \\ -4 \\ -3 \end{array}$ | | $\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$ | | $\begin{array}{\|l\|l} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$ | | ns | $\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$ | Fig. 16 |
| th | hold time $\overline{\mathrm{CE}}$ to CP | $\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{array}{\|l\|} \hline-28 \\ -10 \\ -8 \\ \hline \end{array}$ | | $\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$ | | $\begin{array}{\|l\|l} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$ | | ns | $\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$ | Fig. 17 |
| $\mathrm{f}_{\text {max }}$ | maximum clock pulse frequency | $\begin{aligned} & \hline 4.0 \\ & 20 \\ & 24 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 11 \\ 33 \\ 39 \\ \hline \end{array}$ | | $\begin{aligned} & \hline 3.2 \\ & 16 \\ & 19 \\ & \hline \end{aligned}$ | | $\begin{aligned} & \hline 2.6 \\ & 13 \\ & 15 \\ & \hline \end{aligned}$ | | MHz | $\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$ | Fig. 10 |

Presettable synchronous 4-bit binary up/down counter

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".
Output capability: standard
ICC category: MSI

Note to HCT types

The value of additional quiescent supply current $\left(\Delta I_{C C}\right)$ for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
D_{n}	0.5
CP	0.65
$\overline{\mathrm{U}} / \mathrm{D}$	1.15
$\overline{\mathrm{CE}}, \overline{\mathrm{PL}}$	1.5

Presettable synchronous 4-bit binary up/down counter

AC CHARACTERISTICS FOR 74HCT
GND $=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	$\mathrm{Tamb}^{\text {(}}$ (C)							UNIT	TEST CONDITIONS	
		74HC								V_{cc} (V)	WAVEFORMS
		+25			-40 to +85		-40 to +125				
		min.	typ.	max.	min.	max.	min.	max.			
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay CP to Q_{n}		26	48		60		72	ns	4.5	Fig. 10
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay CP to TC		32	51		64		77	ns	4.5	Fig. 10
tPHL/ tpLH	propagation delay CP to $\overline{\mathrm{RC}}$		19	35		44		53	ns	4.5	Fig. 11
tPHL/ tpLH	$\begin{aligned} & \text { propagation delay } \\ & \overline{\mathrm{CE}} \text { to } \overline{\mathrm{RC}} \end{aligned}$		19	33		41		50	ns	4.5	Fig. 11
tPHL/ tPLH	propagation delay $D_{n} \text { to } Q_{n}$		22	44		55		66	ns	4.5	Fig. 12
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay PL to Q_{n}		27	46		58		69	ns	4.5	Fig. 13
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay U/D to TC		23	45		56		68	ns	4.5	Fig. 14
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay \bar{U} / D to $\overline{R C}$		24	45		56		68	ns	4.5	Fig. 14
$\mathrm{t}_{\text {THL }} / \mathrm{t}_{\text {TLH }}$	output transition time		7	15		19		22	ns	4.5	Fig. 15
t_{w}	clock pulse width HIGH or LOW	16	9		20		24		ns	4.5	Fig. 10
$\mathrm{t}_{\text {w }}$	parallel load pulse width LOW	22	11		28		33		ns	4.5	Fig. 15
trem	removal time $\overline{\mathrm{PL}}$ to CP	7	1		9		11		ns	4.5	Fig. 15
$\mathrm{t}_{\text {su }}$	set-up time \bar{U} / D to CP	41	20		51		62		ns	4.5	Fig. 17
$\mathrm{t}_{\text {su }}$	$\begin{array}{\|c} \hline \text { set-up time } \\ \mathrm{D}_{\mathrm{n}} \text { to } \mathrm{PL} \\ \hline \end{array}$	20	9		25		30		ns	4.5	Fig. 16
$\mathrm{t}_{\text {su }}$	set-up time $\overline{\mathrm{CE}}$ to CP	30	18		38		45		ns	4.5	Fig. 17
th_{h}	hold time \bar{U} / D to CP	0	-18		0		0		ns	4.5	Fig. 17
th_{h}	hold time D_{n} to $\overline{P L}$	0	-5		0		0		ns	4.5	Fig. 16
th_{h}	hold time $\overline{\mathrm{CE}}$ to CP	0	-10		0		0		ns	4.5	Fig. 17
$\mathrm{f}_{\text {max }}$	maximum clock pulse frequency	20	33		16		13		MHz	4.5	Fig. 10

Presettable synchronous 4-bit binary up/down counter

AC WAVEFORMS

(1) $\mathrm{HC}: \mathrm{V}_{\mathrm{M}}=50 \% ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}. $\mathrm{HCT}: \mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

Fig. 10 Waveforms showing the clock (CP) to output $\left(Q_{n}\right)$ propagation delays, the clock pulse width and the maximum clock pulse frequency.
(1) $\mathrm{HC}: \mathrm{V}_{\mathrm{M}}=50 \% ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}. $\mathrm{HCT}: \mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

Fig. 11 Waveforms showing the clock and count enable inputs (CP, $\overline{\mathrm{CE}})$ to ripple clock output $(\overline{\mathrm{RC}})$ propagation delays.

Presettable synchronous 4-bit binary up/down counter

(1) $\mathrm{HC}: \mathrm{V}_{\mathrm{M}}=50 \% ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}. $\mathrm{HCT}: \mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

Fig. 13 Waveforms showing the input $(\overline{\mathrm{PL}})$ to output $\left(\mathrm{Q}_{\mathrm{n}}\right)$ propagation delays.

1) $\mathrm{HC}: \mathrm{V}_{\mathrm{M}}=50 \%$; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{Cc}. HCT : $\mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

Fig. 14 Waveforms showing the up/down count input ($\overline{\mathrm{U}} / \mathrm{D}$) to terminal count and ripple clock output (TC, $\overline{\mathrm{RC}}$) propagation delays.

Presettable synchronous 4-bit binary

The shaded areas indicate when the input is permitted to change for predictable output performance.
(1) $\mathrm{HC}: \mathrm{V}_{\mathrm{M}}=50 \% ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}.

HCT : $\mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

Fig. 16 Waveforms showing the set-up and hold times from the parallel load input $(\overline{\mathrm{PL}})$ to the data input $\left(\mathrm{D}_{\mathrm{n}}\right)$.

The shaded areas indicate when the input is permitted to change for predictable output performance.
(1) $\mathrm{HC}: \mathrm{V}_{\mathrm{M}}=50 \% ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{Cc}. HCT : $\mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

Fig. 17 Waveforms showing the set-up and hold times from the count enable and up/down inputs ($\overline{\mathrm{CE}}, \overline{\mathrm{U}} / \mathrm{D}$) to the clock (CP).

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for nxp manufacturer:
Other Similar products are found below :
MC13211R2 LFSTBEB865X MC33399PEFR2 PCA9551PW,112 MC34825EPR2 CBTW28DD14AETJ PCF8583P MC68340AB16E MC8640DTVJ1250HE EVBCRTOUCH MC9S08PT8AVTG MC9S08SH32CTL MCF54415CMJ250 MCIMX6Q-SDB MCIMX6SX-SDB 74ALVC125BQ, 115 74HC4050N 74HC4514N MK21FN1M0AVLQ12 MKV30F128VFM10 FRDM-K66F FRDM-KW40Z FRDM-MCLVBLDC PESD18VF1BSFYL PMF63UNEX PSMN4R0-60YS,115 HEF4028BPN RAPPID-567XFSW MPC565MVR56 MPC574XG176DS MPC8548VJAUJD MPC860PCVR66D4 BCV61A,215 BFU520XAR BT137-600E BT137S-600D.115 BT138-600E.127 BT139X600.127 BT258-600R. 127 BUK7628-100A118 BUK765R0-100E. 118 P5020NSE7VNB S12ZVML12EVBLIN SCC2692AC1N40 LPC1785FBD208K LPC2124FBD64/01 LS1020ASN7KQB LS1020AXN7HNB LS1020AXN7KQB LS1043ASE7PQA

