DATA SHEET

74LV377

Octal D-type flip-flop with data enable; positive edge-trigger

Octal D-type flip-flop with data enable; positive edge-trigger

FEATURES

- Optimized for Low Voltage applications: 1.0 to 3.6 V
- Accepts TTL input levels between $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$
- Typical $\mathrm{V}_{\mathrm{OLP}}$ (output ground bounce) $<0.8 \mathrm{~V} @ \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}$,
$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$
- Typical $\mathrm{V}_{\mathrm{OHV}}$ (output V_{OH} undershoot) $>2 \mathrm{~V} @ \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}$,
$T_{\text {amb }}=25^{\circ} \mathrm{C}$
- Ideal for addressable register applications
- Data enable for address and data synchronization applications
- Eight positive-edge triggered D-type flip-flops
- Output capability: standard
- Icc category: MSI

DESCRIPTION

The 74LV377 is a low-voltage CMOS device and is pin and function compatible with $74 \mathrm{HC} / \mathrm{HCT} 377$.

The 74LV377 has eight edge-triggered, D-type flip-flops with individual D inputs and Q outputs. A common clock (CP) input loads all flip-flops simultaneously when the data enable (E) is LOW. The state of each D input, one set-up time before the LOW-to-HIGH clock transition, is transferred to the corresponding output $\left(Q_{n}\right)$ of the flip-flop. The E input must be stable only one set-up time prior to the LOW-to-HIGH transition for predictable operation.

QUICK REFERENCE DATA

GND $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
tPHL/tPLH	Propagation delay CP to Q_{n}	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & V_{C C}=3.3 \mathrm{~V} \end{aligned}$	13	ns
$\mathrm{f}_{\text {max }}$	Maximum clock frequency		77	MHz
C_{1}	Input capacitance		3.5	pF
$\mathrm{C}_{\text {PD }}$	Power dissipation capacitance per flip-flop	Notes 1 and 2	20	pF

NOTES:

1. $C_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$)
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i}+\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{o}\right)$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in $\mathrm{MHz} ; \mathrm{C}_{\mathrm{L}}=$ output load capacity in pF ;
$\mathrm{f}_{\mathrm{O}}=$ output frequency in MHz ; $\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V ;
$\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)=$ sum of the outputs.
2. The condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	PKG. DWG. $\boldsymbol{\#}$
20-Pin Plastic DIL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	74 LV 377 N	74 LV 377 N	SOT146-1
20-Pin Plastic SO	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	74 LV 377 D	74 LV 377 D	SOT163-1
20-Pin Plastic SSOP Type II	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	74 LV 377 DB	74 LV 377 DB	SOT339-1
20-Pin Plastic TSSOP Type I	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	74 LV 377 PW	74 LV 377 PW DH	SOT360-1

PIN DESCRIPTION

PIN NUMBER	SYMBOL	FUNCTION
1	E	Data enable input (active-LOW)
$2,5,6,9,12$, $15,16,19$	Q_{0} to Q_{7}	flip-flop outputs
$3,4,7,8,13$, $14,17,18$	D_{0} to D_{7}	Data inputs
10	GND	Ground (0V)
11	CP	Clock input (LOW-to-HIGH, edge-triggered)
20	$\mathrm{~V}_{\mathrm{CC}}$	Positive supply voltage

FUNCTION TABLE

OPERATING MODES	INPUTS			OUTPUTS
	CP	\mathbf{E}	$\mathbf{D}_{\boldsymbol{n}}$	$\mathbf{Q}_{\boldsymbol{n}}$
Load "1"	\uparrow	l	h	H
Load "0"	\uparrow	l	l	L
Hold (do nothing)	\uparrow	h	X	No change
	X	H	X	No change

$\mathrm{H}=\mathrm{HIGH}$ voltage level
h = HIGH voltage level one set-up time prior to the LOW-to-HIGH CP transition
$\mathrm{L}=$ LOW voltage level
I = LOW voltage level one set-up time prior to the LOW-to-HIGH CP transition
= LOW-to-HIGH CP transition
$=$ Don't care

Octal D-type flip-flop with data enable; positive edge-trigger

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

FUNCTIONAL DIAGRAM

Octal D-type flip-flop with data enable; positive edge-trigger

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
V_{CC}	DC supply voltage	See Note 1	1.0	3.3	3.6	V
V_{1}	Input voltage		0	-	V_{CC}	V
V_{O}	Output voltage		0	-	V_{CC}	V
Tamb	Operating ambient temperature range in free air	See DC and AC characteristics	$\begin{aligned} & -40 \\ & -40 \end{aligned}$		$\begin{array}{r} +85 \\ +125 \end{array}$	${ }^{\circ} \mathrm{C}$
$\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	Input rise and fall times	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=1.0 \mathrm{~V} \text { to } 2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.0 \mathrm{~V} \text { to } 2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$	- -	- - - -	$\begin{aligned} & 500 \\ & 200 \\ & 100 \end{aligned}$	ns/V

NOTE:

1. The $L V$ is guaranteed to function down to $V_{C C}=1.0 \mathrm{~V}$ (input levels $G N D$ or $V_{C C}$); $D C$ characteristics are guaranteed from $V_{C C}=1.2 \mathrm{~V}$ to $V_{C C}=3.6 \mathrm{~V}$.

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

In accordance with the Absolute Maximum Rating System (IEC 134).
Voltages are referenced to GND (ground $=0 \mathrm{~V}$).

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
$\mathrm{V}_{\text {CC }}$	DC supply voltage		-0.5 to +4.6	V
$\pm 1_{1 K}$	DC input diode current	$\mathrm{V}_{1}<-0.5$ or $\mathrm{V}_{1}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	20	mA
$\pm \mathrm{l}_{\text {OK }}$	DC output diode current	$\mathrm{V}_{\mathrm{O}}<-0.5$ or $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{C C}+0.5 \mathrm{~V}$	50	mA
± 10	DC output source or sink current - standard outputs	$-0.5 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	25	mA
$\begin{gathered} \pm \mathrm{I}_{\mathrm{GND}}, \\ \pm \mathrm{I}_{\mathrm{CC}} \end{gathered}$	DC $V_{\text {CC }}$ or GND current for types with -standard outputs		50	mA
$\mathrm{T}_{\text {stg }}$	Storage temperature range		-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	Power dissipation per package -plastic DIL -plastic mini-pack (SO) -plastic shrink mini-pack (SSOP and TSSOP)	for temperature range: -40 to $+125^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ derate linearly with $12 \mathrm{~mW} / \mathrm{K}$ above $+70^{\circ} \mathrm{C}$ derate linearly with $8 \mathrm{~mW} / \mathrm{K}$ above $+60^{\circ} \mathrm{C}$ derate linearly with $5.5 \mathrm{~mW} / \mathrm{K}$	$\begin{aligned} & 750 \\ & 500 \\ & 400 \end{aligned}$	mW

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

Octal D-type flip-flop with data enable; positive edge-trigger

DC CHARACTERISTICS FOR THE LV FAMILY

Over recommended operating conditions. Voltages are referenced to GND (ground = OV).

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		
			MIN	TYP ${ }^{1}$	MAX	MIN	MAX	
V_{IH}	HIGH level Input voltage	$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$	0.9			0.9		V
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	1.4			1.4		
		$\mathrm{V}_{\mathrm{CC}}=2.7$ to 3.6 V	2.0			2.0		
$V_{\text {IL }}$	LOW level Input voltage	$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$			0.3		0.3	V
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$			0.6		0.6	
		$\mathrm{V}_{\text {CC }}=2.7$ to 3.6V			0.8		0.8	
V_{OH}	HIGH level output voltage; all outputs	$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\text {IL; }}-\mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A}$		1.2				V
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\text {IL; }}-\mathrm{l}_{\mathrm{O}}=100 \mu \mathrm{~A}$	1.8	2.0		1.8		
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\text {IL; }}-\mathrm{l}_{\mathrm{O}}=100 \mu \mathrm{~A}$	2.5	2.7		2.5		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL; }}-\mathrm{l}_{\mathrm{O}}=100 \mu \mathrm{~A}$	2.8	3.0		2.8		
	HIGH level output voltage; STANDARD outputs	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ;-\mathrm{l}_{\mathrm{O}}=6 \mathrm{~mA}$	2.40	2.82		2.20		
VoL	LOW level output voltage; all outputs	$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A}$		0				V
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\text {IL }} ; \mathrm{IO}_{\mathrm{O}}=100 \mu \mathrm{~A}$		0	0.2		0.2	
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A}$		0	0.2		0.2	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$ I $\mathrm{I}^{\prime}=100 \mu \mathrm{~A}$		0	0.2		0.2	
	LOW level output voltage; STANDARD outputs	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{I}_{\mathrm{O}}=6 \mathrm{~mA}$		0.25	0.40		0.50	
I	Input leakage current	$\mathrm{V}_{C C}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{C C}$ or GND			1.0		1.0	$\mu \mathrm{A}$
Icc	Quiescent supply current; MSI	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{I}_{\mathrm{O}}=0$			20.0		160	$\mu \mathrm{A}$
$\Delta^{\text {l }}$ CC	Additional quiescent supply current per input	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6V; $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$			500		850	$\mu \mathrm{A}$

NOTE:

1. All typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Octal D-type flip-flop with data enable; positive edge-trigger

AC CHARACTERISTICS

GND $=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega$

SYMBOL	PARAMETER	WAVEFORM	CONDITION	LIMITS					UNIT
				-40 to $+85^{\circ} \mathrm{C}$			-40 to $+125^{\circ} \mathrm{C}$		
			$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	MIN	TYP ${ }^{1}$	MAX	MIN	MAX	
tPhLIPLH	Propagation delay $C P$ to Q_{n}	Figure 1	1.2	-	80	-	-	-	ns
			2.0	-	27	51	-	61	
			2.7	-	20	38	-	45	
			3.0 to 3.6	-	15^{2}	30	-	36	
tw	Clock pulse width HIGH or LOW	Figure 2	2.0	34	9	-	41	-	ns
			2.7	25	6	-	30	-	
			3.0 to 3.6	20	5^{2}	-	24	-	
$\mathrm{t}_{\text {su }}$	Set-up time D_{n} to CP	Figure 2	1.2	-	25	-	-	-	ns
			2.0	22	9	-	26	-	
			2.7	16	6	-	19	-	
			3.0 to 3.6	13	5^{2}	-	15	-	
$\mathrm{t}_{\text {su }}$	Set-up time E to CP	Figure 2	1.2	-	10	-	-	-	ns
			2.0	22	4	-	26	-	
			2.7	16	3	-	19	-	
			3.0 to 3.6	13	2^{2}	-	15	-	
$t_{\text {h }}$	Hold time$D_{n} \text { to } C P$	Figure 2	1.2	-	-15	-	-	-	ns
			2.0	5	-5	-	5	-	
			2.7	5	-4	-	5	-	
			3.0 to 3.6	5	-3^{2}	-	5	-	
$t_{\text {h }}$	Hold time E to CP	Figure 2	1.2	-	-5	-	-	-	ns
			2.0	5	-2	-	5	-	
			2.7	5	-2	-	5	-	
			3.0 to 3.6	5	-1^{2}	-	5	-	
$\mathrm{f}_{\text {max }}$	Maximum clock pulse frequency	Figure 1	2.0	14	40	-	12	-	MHz
			2.7	19	58	-	16	-	
			3.0 to 3.6	24	70^{2}	-	20	-	

NOTES:

1. Unless otherwise stated, all typical values are at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
2. Typical value measured at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$.

Octal D-type flip-flop with data enable; positive edge-trigger

AC WAVEFORMS

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}} \geq 2.7 \mathrm{~V}$
$V_{M}=0.5 \mathrm{~V} * V_{C C}$ at $V_{C C}<2.7 \mathrm{~V}$
V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.

Figure 1. Clock (CP) to output $\left(Q_{n}\right)$ propagation delays, the clock pulse width and the maximum clock pulse frequency.

Figure 2. Data set-up and hold times from the data input (Dn) and from the enable input (\bar{E}) to the clock (CP).

TEST CIRCUIT

Test Circuit for switching times

DEFINITIONS

$\mathrm{R}_{\mathrm{L}}=$ Load resistor
$C_{L}=$ Load capacitance includes jig and probe capacitance
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

V_{CC}	$\mathrm{V}_{\mathbf{I}}$
$<2.7 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{CC}}$
$2.7-3.6 \mathrm{~V}$	2.7 V

Figure 3. Load circuitry for switching times

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\underset{\text { max. }}{A}$	A min.	A_{2} max.	b	b_{1}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	e_{1}	L	M_{E}	\mathbf{M}_{H}	w	$\mathbf{z a x}^{(1)}$
mm	4.2	0.51	3.2	$\begin{aligned} & 1.73 \\ & 1.30 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 26.92 \\ & 26.54 \end{aligned}$	$\begin{aligned} & 6.40 \\ & 6.22 \end{aligned}$	2.54	7.62	$\begin{aligned} & 3.60 \\ & 3.05 \end{aligned}$	$\begin{aligned} & 8.25 \\ & 7.80 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.3 \end{gathered}$	0.254	2.0
inches	0.17	0.020	0.13	$\begin{aligned} & 0.068 \\ & 0.051 \end{aligned}$	$\begin{aligned} & 0.021 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.014 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 1.060 \\ & 1.045 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.24 \end{aligned}$	0.10	0.30	$\begin{aligned} & 0.14 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.33 \end{aligned}$	0.01	0.078

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT146-1			SC603	\oplus	$\begin{aligned} & 92-11-17 \\ & 95-05-24 \end{aligned}$

Octal D-type flip-flop with data enable; positive edge-trigger

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$z^{(1)}$	θ
mm	2.65	$\begin{aligned} & 0.30 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 12.6 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 7.4 \end{aligned}$	1.27	$\begin{aligned} & 10.65 \\ & 10.00 \end{aligned}$	1.4	$\begin{aligned} & 1.1 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.0 \end{aligned}$	0.25	0.25	0.1	0.9 0.4	$\begin{aligned} & 8^{0} \\ & 0^{\circ} \end{aligned}$
inches	0.10	$\begin{aligned} & 0.012 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.096 \\ & 0.089 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.51 \\ & 0.49 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.29 \end{aligned}$	0.050	$\begin{aligned} & 0.42 \\ & 0.39 \end{aligned}$	0.055	$\begin{aligned} & 0.043 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.043 \\ & 0.039 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.035 \\ & 0.016 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT163-1	075E04	MS-013AC		\square ($\begin{aligned} & -92-11-17 \\ & 95-01-24 \end{aligned}$

detail X

DIMENSIONS (mm are the original dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \text { max. } \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$z^{(1)}$	θ
mm	2.0	$\begin{aligned} & 0.21 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 1.80 \\ & 1.65 \end{aligned}$	0.25	$\begin{aligned} & 0.38 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.09 \end{aligned}$	7.4	$\begin{aligned} & 5.4 \\ & 5.2 \end{aligned}$	0.65	$\begin{aligned} & 7.9 \\ & 7.6 \end{aligned}$	1.25	$\begin{aligned} & 1.03 \\ & 0.63 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 0.7 \end{aligned}$	0.2	0.13	0.1	$\begin{aligned} & 0.9 \\ & 0.5 \end{aligned}$	8° 0°

Note

1. Plastic or metal protrusions of 0.20 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT339-1		MO-150AE			$93-09-08$	

Octal D-type flip-flop with data enable;

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A}	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(2)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(1)}$	$\boldsymbol{\theta}$
mm	1.10	0.15	0.95	0.25	0.30	0.2	6.6	4.5	0.65	6.6	1.0	0.75	0.4	0.2	0.13	0.1	0.5	8°
	0.80	0.25	0.19	0.1	6.4	4.3	0.6	6.2	1.0	0.50	0.3		0.2	0°				

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT360-1		MO-153AC			$-93-06-16$	

DEFINITIONS

Data Sheet Identification	Product Status	Definition
objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS
Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors
811 East Arques Avenue
P.O. Box 3409

Sunnyvale, California 94088-3409
Telephone 800-234-7381
© Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.
print code Date of release: 05-96

Document order number:
9397-750-04449

Let's make things better.

PHILIPS

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Flip Flops category:

Click to view products by NXP manufacturer:

Other Similar products are found below :
5962-8955201EA MC74HC11ADTG MC10EP29MNG MC74HC11ADTR2G NLV14013BDTR2G NLV14027BDG NLX1G74MUTCG 703557B 746431H 5962-90606022A 5962-9060602FA NLV14013BDR2G M38510/30104BDA M38510/07106BFA M38510/06102BFA M38510/06101B2A NLV74HC74ADR2G TC4013BP(N,F) NLV14013BDG NLV74AC32DR2G NLV74AC74DR2G MC74HC73ADG CY74FCT16374CTPACT MC74HC11ADR2G 74LVT74D,118 74VHCT9273FT(BJ) MM74HC374WM 74ALVCH162374PAG TC7WZ74FK,LJ(CT CD54HCT273F HMC853LC3TR HMC723LC3CTR MM74HCT574MTCX MM74HCT273WM SN74LVC74APW SN74LVC74AD MC74HC73ADTR2G MC74HC11ADG SN74ALVTH16374GR M74HCT273B1R M74HC377RM13TR M74HC374RM13TR M74HC175B1R M74HC174RM13TR 74ALVTH16374ZQLR 74ALVTH32374ZKER 74AUP1G74DC,125 74VHC374FT(BJ) 74VHC9273FT(BJ) NLV14013BCPG

