74LVC8T245; 74LVCH8T245

8-bit dual supply translating transceiver; 3-state

Rev. 3 — 12 December 2011

Pro

Product data sheet

General description 1.

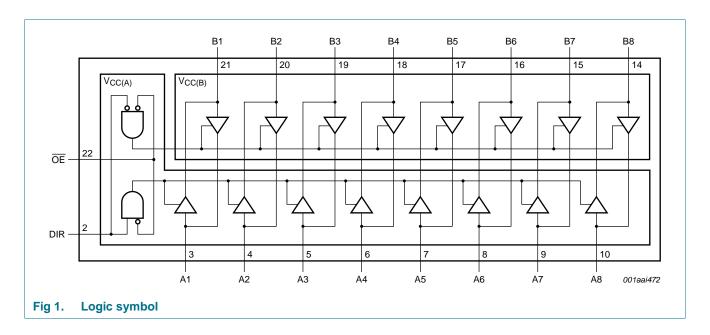
The 74LVC8T245; 74LVCH8T245 are 8-bit dual supply translating transceivers with 3-state outputs that enable bidirectional level translation. They feature two data input-output ports (pins An and Bn), a direction control input (DIR), an output enable input (OE) and dual supply pins ($V_{CC(A)}$ and $V_{CC(B)}$). Both $V_{CC(A)}$ and $V_{CC(B)}$ can be supplied at any voltage between 1.2 V and 5.5 V making the device suitable for translating between any of the low voltage nodes (1.2 V, 1.5 V, 1.8 V, 2.5 V, 3.3 V and 5.0 V). Pins An, OE and DIR are referenced to V_{CC(A)} and pins Bn are referenced to V_{CC(B)}. A HIGH on DIR allows transmission from An to Bn and a LOW on DIR allows transmission from Bn to An. The output enable input (OE) can be used to disable the outputs so the buses are effectively isolated.

The devices are fully specified for partial power-down applications using I_{OFF}. The I_{OFF} circuitry disables the output, preventing any damaging backflow current through the device when it is powered down. In suspend mode when either $V_{\text{CC(A)}}$ or $V_{\text{CC(B)}}$ are at GND level, both A port and B port are in the high-impedance OFF-state.

Active bus hold circuitry in the 74LVCH8T245 holds unused or floating data inputs at a valid logic level.

2. Features and benefits

- Wide supply voltage range:
 - V_{CC(A)}: 1.2 V to 5.5 V
 - ◆ V_{CC(B)}: 1.2 V to 5.5 V
- High noise immunity
- Complies with JEDEC standards:
 - ◆ JESD8-7 (1.2 V to 1.95 V)
 - JESD8-5 (1.8 V to 2.7 V)
 - JESD8C (2.7 V to 3.6 V)
 - ◆ JESD36 (4.5 V to 5.5 V)
- ESD protection:
 - HBM JESD22-A114F Class 3A exceeds 4000 V
 - MM JESD22-A115-B exceeds 200 V
 - CDM JESD22-C101E exceeds 1000 V
- Maximum data rates:
 - ◆ 420 Mbps (3.3 V to 5.0 V translation)
 - 210 Mbps (translate to 3.3 V))
 - 140 Mbps (translate to 2.5 V)
 - 75 Mbps (translate to 1.8 V)


- ◆ 60 Mbps (translate to 1.5 V)
- Suspend mode
- Latch-up performance exceeds 100 mA per JESD 78B Class II
- \pm 24 mA output drive (V_{CC} = 3.0 V)
- Inputs accept voltages up to 5.5 V
- Low power consumption: 30 μA maximum I_{CC}
- I_{OFF} circuitry provides partial Power-down mode operation
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

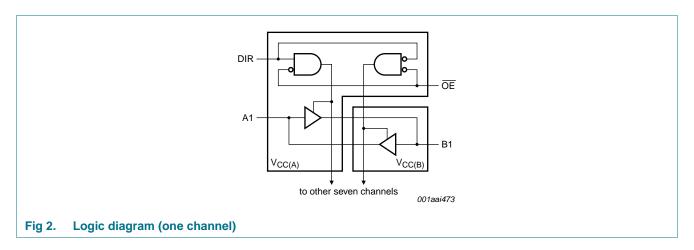
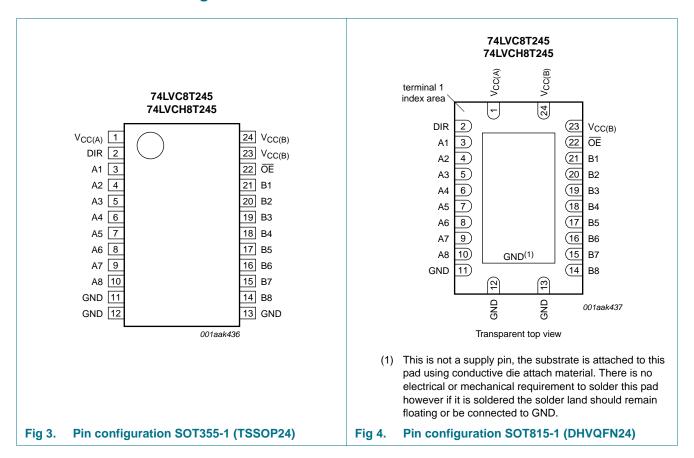

3. Ordering information

Table 1. Ordering information

Type number	Package							
	Temperature range	Name	Description	Version				
74LVC8T245PW	-40 °C to +125 °C	TSSOP24	plastic thin shrink small outline package; 24 leads;	SOT355-1				
74LVCH8T245PW			body width 4.4 mm					
74LVC8T245BQ	–40 °C to +125 °C	DHVQFN24	p	SOT815-1				
74LVCH8T245BQ			thin quad flat package; no leads; 24 terminals; body $3.5 \times 5.5 \times 0.85$ mm					


4. Functional diagram

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
$V_{CC(A)}$	1	supply voltage A (An inputs/outputs, $\overline{\text{OE}}$ and DIR inputs are referenced to $V_{\text{CC(A)}})$
DIR	2	direction control
A1 to A8	3, 4, 5, 6, 7, 8, 9, 10	data input or output
GND[1]	11	ground (0 V)
GND[1]	12	ground (0 V)
GND[1]	13	ground (0 V)
B1 to B8	21, 20, 19, 18, 17, 16, 15, 14	data input or output
ŌĒ	22	output enable input (active LOW)
V _{CC(B)}	23	supply voltage B (Bn inputs/outputs are referenced to V _{CC(B)})
$V_{CC(B)}$	24	supply voltage B (Bn inputs/outputs are referenced to V _{CC(B)})

^[1] All GND pins must be connected to ground (0 V).

6. Functional description

Table 3. Function table [1]

Supply voltage	Input		Input/output[3]	Input/output ^[3]		
V _{CC(A)} , V _{CC(B)}	OE[2]	DIR ^[2]	An[2]	Bn[2]		
1.2 V to 5.5 V	L	L	An = Bn	input		
1.2 V to 5.5 V	L	Н	input	Bn = An		
1.2 V to 5.5 V	Н	Χ	Z	Z		
GND[3]	X	X	Z	Z		

^[1] H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state.

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
$V_{CC(A)}$	supply voltage A		-0.5	+6.5	V
V _{CC(B)}	supply voltage B		-0.5	+6.5	V
I _{IK}	input clamping current	V _I < 0 V	-50	-	mA
V _I	input voltage		<u>[1]</u> –0.5	+6.5	V
I _{OK}	output clamping current	V _O < 0 V	-50	-	mA
Vo	output voltage	Active mode	[1][2][3] -0.5	$V_{CCO} + 0.5$	V
		Suspend or 3-state mode	<u>[1]</u> –0.5	+6.5	V
I _O	output current	$V_O = 0 V \text{ to } V_{CCO}$	[2] -	±50	mA
I _{CC}	supply current	$I_{CC(A)}$ or $I_{CC(B)};$ per V_{CC} pin	-	100	mA

74LVC_LVCH8T245

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2011. All rights reserved.

^[2] The An inputs/outputs, DIR and $\overline{\text{OE}}$ input circuit is referenced to $V_{\text{CC(A)}}$; The Bn inputs/outputs circuit is referenced to $V_{\text{CC(B)}}$.

^[3] If at least one of $V_{CC(A)}$ or $V_{CC(B)}$ is at GND level, the device goes into suspend mode.

Table 4. Limiting values ...continued

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
I_{GND}	ground current	per GND pin	-100	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$	<u>[4]</u> _	500	mW

- [1] The minimum input voltage ratings and output voltage ratings may be exceeded if the input and output current ratings are observed.
- [2] V_{CCO} is the supply voltage associated with the output port.
- [3] $V_{CCO} + 0.5 \text{ V}$ should not exceed 6.5 V.
- [4] For TSSOP24 package: P_{tot} derates linearly at 5.5 mW/K above 60 °C. For DHVQFN24 package: P_{tot} derates linearly at 4.5 mW/K above 60 °C.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
$V_{CC(A)}$	supply voltage A		1.2	5.5	V
V _{CC(B)}	supply voltage B		1.2	5.5	V
VI	input voltage		0	5.5	V
Vo	output voltage	Active mode	<u>[1]</u> 0	V_{CCO}	V
		Suspend or 3-state mode	0	5.5	V
T _{amb}	ambient temperature		-40	+125	°C
Δt/ΔV	input transition rise and fall rate	V _{CCI} = 1.2 V	[2] _	20	ns/V
		$V_{CCI} = 1.4 \text{ V to } 1.95 \text{ V}$	-	20	ns/V
		$V_{CCI} = 2.3 \text{ V to } 2.7 \text{ V}$	-	20	ns/V
		$V_{CCI} = 3 \text{ V to } 3.6 \text{ V}$	-	10	ns/V
		$V_{CCI} = 4.5 \text{ V to } 5.5 \text{ V}$	-	5	ns/V

^[1] V_{CCO} is the supply voltage associated with the output port.

9. Static characteristics

Table 6. Typical static characteristics at T_{amb} = 25 °C

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}	<u>[1]</u>			
		$I_O = -3 \text{ mA}$; $V_{CCO} = 1.2 \text{ V}$	-	1.09	-	V
V _{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		$I_0 = 3 \text{ mA}; V_{CCO} = 1.2 \text{ V}$	[1] -	0.07	-	V
II	input leakage current	DIR, \overline{OE} input; $V_I = 0 \text{ V to } 5.5 \text{ V}$; $V_{CCI} = 1.2 \text{ V to } 5.5 \text{ V}$	[2] _	-	±1	μΑ
I _{BHL}	bus hold LOW current	A or B port; $V_I = 0.42 \text{ V}$; $V_{CCI} = 1.2 \text{ V}$	[2] _	19	-	μΑ
I _{BHH}	bus hold HIGH current	A or B port; $V_I = 0.78 \text{ V}$; $V_{CCI} = 1.2 \text{ V}$	[2] _	-19	-	μΑ

74LVC_LVCH8T245

^[2] V_{CCI} is the supply voltage associated with the input port.

Table 6. Typical static characteristics at T_{amb} = 25 °C ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
I _{BHLO}	bus hold LOW overdrive current	A or B port; $V_{CCI} = 1.2 \text{ V}$	[2][3]	-	19	-	μΑ
I _{BHHO}	bus hold HIGH overdrive current	A or B port; $V_{CCI} = 1.2 \text{ V}$	[2][3]	-	-19	-	μΑ
l _{OZ}	OFF-state output current	A or B port; $V_O = 0 \text{ V or } V_{CCO}$; $V_{CCO} = 1.2 \text{ V to } 5.5 \text{ V}$	[1]	-	-	±1	μΑ
		suspend mode A port; $V_O = 0 \text{ V or } V_{CCO}$; $V_{CC(A)} = 5.5 \text{ V}$; $V_{CC(B)} = 0 \text{ V}$	[1]	-	-	±1	μΑ
		suspend mode B port; $V_O = 0 \text{ V or } V_{CCO}$; $V_{CC(A)} = 0 \text{ V}$; $V_{CC(B)} = 5.5 \text{ V}$	<u>[1]</u>	-	-	- ±1 μA	μΑ
I _{OFF}	power-off leakage current	A port; V_1 or $V_O = 0$ V to 5.5 V; $V_{CC(A)} = 0$ V; $V_{CC(B)} = 1.2$ V to 5.5 V		-	-	±1	μΑ
		B port; V_1 or $V_0 = 0$ V to 5.5 V; $V_{CC(B)} = 0$ V; $V_{CC(A)} = 1.2$ V to 5.5 V		-	-	±1	μΑ
Cı	input capacitance	DIR, \overline{OE} input; $V_I = 0 \text{ V or } 3.3 \text{ V}; V_{CC(A)} = 3.3 \text{ V}$		-	3	-	pF
C _{I/O}	input/output capacitance	A and B port; $V_O = 3.3 \text{ V or } 0 \text{ V};$ $V_{CC(A)} = V_{CC(B)} = 3.3 \text{ V}$		-	6.5	-	pF

^[1] V_{CCO} is the supply voltage associated with the output port.

Table 7. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	–40 °C to	+85 °C	–40 °C to +125 °C		Unit
			Min	Max	Min	Max	
V_{IH}	HIGH-level	data input	[1]				
	input voltage	V _{CCI} = 1.2 V	0.8V _{CCI}	-	0.8V _{CCI}	-	V
		V _{CCI} = 1.4 V to 1.95 V	0.65V _{CCI}	-	0.65V _{CCI}	-	V
		V _{CCI} = 2.3 V to 2.7 V	1.7	-	1.7	-	V
		$V_{CCI} = 3.0 \text{ V to } 3.6 \text{ V}$	2.0	-	2.0	-	V
		V _{CCI} = 4.5 V to 5.5 V	0.7V _{CCI}	-	0.7V _{CCI}	-	V
		DIR, OE input					
		V _{CCI} = 1.2 V	0.8V _{CC(A)}	-	0.8V _{CC(A)}	-	V
		V _{CCI} = 1.4 V to 1.95 V	0.65V _{CC(A)}	-	0.65V _{CC(A)}	-	V
		V _{CCI} = 2.3 V to 2.7 V	1.7	-	1.7	-	V
		V _{CCI} = 3.0 V to 3.6 V	2.0	-	2.0	-	V
		V _{CCI} = 4.5 V to 5.5 V	0.7V _{CC(A)}	-	$0.7V_{CC(A)}$	-	V

^[2] V_{CCI} is the supply voltage associated with the data input port.

^[3] To guarantee the node switches, an external driver must source/sink at least I_{BHLO} / I_{BHHO} when the input is in the range V_{IL} to V_{IH} .

Table 7. Static characteristics ...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		-40 °C t	o +85 °C	-40 °C to +125 °C		Unit
				Min	Max	Min	Max	
V _{IL}	LOW-level	data input	[1]	1		I		
	input voltage	V _{CCI} = 1.2 V		-	0.2V _{CCI}	-	0.2V _{CCI}	٧
		V _{CCI} = 1.4 V to 1.95 V		-	0.35V _{CCI}	-	0.35V _{CCI}	٧
		V _{CCI} = 2.3 V to 2.7 V		-	0.7	-	0.7	٧
		V _{CCI} = 3.0 V to 3.6 V		-	0.8	-	0.8	٧
		V _{CCI} = 4.5 V to 5.5 V		-	0.3V _{CCI}	-	0.3V _{CCI}	٧
		DIR, OE input						
		V _{CCI} = 1.2 V		-	0.2V _{CC(A)}	-	0.2V _{CC(A)}	V
		V _{CCI} = 1.4 V to 1.95 V		-	0.35V _{CC(A)}	-	0.35V _{CC(A)}	V
		V _{CCI} = 2.3 V to 2.7 V		-	0.7	-	0.7	V
		V _{CCI} = 3.0 V to 3.6 V		-	0.8	-	0.8	V
		V _{CCI} = 4.5 V to 5.5 V		-	0.3V _{CC(A)}	-	0.3V _{CC(A)}	V
V _{OH}	HIGH-level	$V_I = V_{IH}$			()		()	
	output voltage	$I_O = -100 \mu A;$ $V_{CCO} = 1.2 \text{ V to } 4.5 \text{ V}$	[2]	V _{CCO} - 0.1	-	V _{CCO} - 0.1	-	V
		$I_{O} = -6 \text{ mA}; V_{CCO} = 1.4 \text{ V}$		1.0	-	1.0	-	V
		$I_{O} = -8 \text{ mA}; V_{CCO} = 1.65 \text{ V}$		1.2	-	1.2	-	V
		$I_{O} = -12 \text{ mA}; V_{CCO} = 2.3 \text{ V}$		1.9	-	1.9	-	V
		$I_{O} = -24 \text{ mA}; V_{CCO} = 3.0 \text{ V}$		2.4	-	2.4	-	V
		$I_{O} = -32 \text{ mA}; V_{CCO} = 4.5 \text{ V}$		3.8	-	3.8	-	V
V _{OL}	LOW-level	$V_I = V_{IL}$	[2]					
	output voltage	$I_O = 100 \mu A;$ $V_{CCO} = 1.2 \text{ V to } 4.5 \text{ V}$		-	0.1	-	0.1	V
		$I_{O} = 6 \text{ mA}; V_{CCO} = 1.4 \text{ V}$		-	0.3	-	0.3	V
		I _O = 8 mA; V _{CCO} = 1.65 V		-	0.45	-	0.45	V
		I_{O} = 12 mA; V_{CCO} = 2.3 V		-	0.3	-	0.3	V
		$I_{O} = 24 \text{ mA}; V_{CCO} = 3.0 \text{ V}$		-	0.55	-	0.55	V
		$I_{O} = 32 \text{ mA}; V_{CCO} = 4.5 \text{ V}$		-	0.55	-	0.55	V
lı	input leakage current	DIR, \overline{OE} input; $V_I = 0 \text{ V to } 5.5 \text{ V}$; $V_{CCI} = 1.2 \text{ V to } 5.5 \text{ V}$		-	±2	-	±10	μΑ
BHL	bus hold LOW	A or B port	[1]					
	current	V _I = 0.49 V; V _{CCI} = 1.4 V		15	-	10	-	μΑ
		V _I = 0.58 V; V _{CCI} = 1.65 V		25	-	20	-	μΑ
		$V_{I} = 0.70 \text{ V}; V_{CCI} = 2.3 \text{ V}$		45	-	45	-	μΑ
		V _I = 0.80 V; V _{CCI} = 3.0 V		100	-	80	-	μΑ
		V _I = 1.35 V; V _{CCI} = 4.5 V		100	-	100	-	μΑ

 Table 7.
 Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		-40 °C to	o +85 °C	-40 °C to +125 °C		Unit
				Min	Max	Min	Max	
I_{BHH}	bus hold HIGH	A or B port	<u>[1]</u>					'
	current	$V_{I} = 0.91 \text{ V}; V_{CCI} = 1.4 \text{ V}$		-15	-	-10	-	μΑ
		V _I = 1.07 V; V _{CCI} = 1.65 V		-25	-	-20	-	μΑ
		$V_I = 1.70 \text{ V}; V_{CCI} = 2.3 \text{ V}$		-45	-	-45	-	μΑ
		$V_{I} = 2.00 \text{ V}; V_{CCI} = 3.0 \text{ V}$		-100	-	-80	-	μΑ
		$V_{I} = 3.15 \text{ V}; V_{CCI} = 4.5 \text{ V}$		-100	-	-100	-	μΑ
I_{BHLO}	bus hold LOW	A or B port	[1][3]					
	overdrive current	V _{CCI} = 1.6 V		125	-	125	-	μΑ
(current	V _{CCI} = 1.95 V		200	-	200	-	μΑ
		$V_{CCI} = 2.7 V$		300	-	300	-	μΑ
		$V_{CCI} = 3.6 \text{ V}$		500	-	500	-	μΑ
		$V_{CCI} = 5.5 V$		900	-	900	-	μΑ
I _{BHHO}	bus hold HIGH overdrive current	A or B port	[1][3]					
		V _{CCI} = 1.6 V		-125	-	-125	-	μΑ
		V _{CCI} = 1.95 V		-200	-	-200	-	μΑ
		$V_{CCI} = 2.7 \text{ V}$		-300	-	-300	-	μΑ
		$V_{CCI} = 3.6 \text{ V}$		-500	-	-500	-	μΑ
		$V_{CCI} = 5.5 \text{ V}$		-900	-	-900	-	μΑ
l _{OZ}	OFF-state output current	A or B port; $V_O = 0 \text{ V or } V_{CCO}$; $V_{CCO} = 1.2 \text{ V to } 5.5 \text{ V}$	[2]	-	<u>±2</u>	-	±10	μΑ
		suspend mode A port; $V_O = 0 \text{ V or } V_{CCO}; V_{CC(A)} = 5.5 \text{ V};$ $V_{CC(B)} = 0 \text{ V}$	[2]	-	±2	-	±10	μА
		suspend mode B port; $V_O = 0 \text{ V or } V_{CC(B)}$; $V_{CC(B)} = 5.5 \text{ V}$	[2]	-	±2	-	±10	μА
I _{OFF}	power-off leakage current	A port; V_{I} or V_{O} = 0 V to 5.5 V; $V_{CC(A)}$ = 0 V; $V_{CC(B)}$ = 1.2 V to 5.5 V		-	±2	-	±10	μА
		B port; V_1 or $V_0 = 0$ V to 5.5 V; $V_{CC(B)} = 0$ V; $V_{CC(A)} = 1.2$ V to 5.5 V		-	±2	-	±10	μА

 Table 7.
 Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		–40 °C t	:o +85 °C	-40 °C to +125 °C		Unit
				Min	Max	Min	Max	
I _{CC}	supply current	A port; $V_I = 0 \text{ V or } V_{CCI}$; $I_O = 0 \text{ A}$	[1]		•	'	'	'
		$V_{CC(A)}$, $V_{CC(B)} = 1.2 \text{ V to } 5.5 \text{ V}$		-	15	-	20	μΑ
		$V_{CC(A)} = 5.5 \text{ V}; V_{CC(B)} = 0 \text{ V}$		-	15	-	20	μΑ
		$V_{CC(A)} = 0 \text{ V}; V_{CC(B)} = 5.5 \text{ V}$		-2	-	-4	-	μΑ
		B port; $V_I = 0 \text{ V or } V_{CCI}$; $I_O = 0 \text{ A}$						
		$V_{CC(A)}$, $V_{CC(B)} = 1.2 \text{ V to } 5.5 \text{ V}$		-	15	-	20	μΑ
		$V_{CC(B)} = 0 \text{ V}; V_{CC(A)} = 5.5 \text{ V}$		-2	-	-4	-	μΑ
		$V_{CC(B)} = 5.5 \text{ V}; V_{CC(A)} = 0 \text{ V}$		-	15	-	20	μΑ
		A plus B port ($I_{CC(A)} + I_{CC(B)}$); $I_O = 0$ A; $V_I = 0$ V or V_{CCI}						
		$V_{CC(A)}$, $V_{CC(B)} = 1.2 \text{ V to } 5.5 \text{ V}$		-	25	-	30	μΑ
ΔI_{CC}	additional supply current	per input; $V_{CC(A)}$, $V_{CC(B)} = 3.0 \text{ V}$ to 5.5 V						
		DIR and \overline{OE} input; DIR or \overline{OE} input at $V_{CC(A)} - 0.6 \text{ V}$; A port at $V_{CC(A)}$ or GND; B port = open		-	50	-	75	μА
		A port; A port at $V_{CC(A)} - 0.6 \text{ V}$; DIR at $V_{CC(A)}$; B port = open	[4]	-	50	-	75	μΑ
		B port; B port at $V_{CC(B)} - 0.6 \text{ V}$; DIR at GND; A port = open	[4]	-	50	-	75	μА

^[1] V_{CCI} is the supply voltage associated with the data input port.

^[2] V_{CCO} is the supply voltage associated with the output port.

^[3] To guarantee the node switches, an external driver must source/sink at least IBHLO / IBHHO when the input is in the range VIL to VIH.

^[4] For non bus hold parts only (74LVC8T245).

10. Dynamic characteristics

Table 8. Typical dynamic characteristics at $V_{CC(A)} = 1.2 \text{ V}$ and $T_{amb} = 25 \, ^{\circ}\text{C}_{-}^{11}$

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 7; for waveforms see Figure 5 and Figure 6.

Symbol	Parameter	Conditions	V _{CC(B)}						Unit
			1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	5.0 V	
t _{pd}	propagation delay	An to Bn	11.0	8.5	7.4	6.2	5.7	5.4	ns
		Bn to An	11.0	10.0	9.5	9.1	8.9	8.9	ns
t _{dis}	disable time	OE to An	9.5	9.5	9.5	9.5	9.5	9.5	ns
		OE to Bn	10.2	8.2	7.8	6.7	7.3	6.4	ns
t _{en}	enable time	OE to An	13.5	13.5	13.5	13.5	13.5	13.5	ns
		OE to Bn	13.6	10.3	8.9	7.5	7.1	7.0	ns

^[1] t_{pd} is the same as t_{PLH} and t_{PHL}; t_{dis} is the same as t_{PLZ} and t_{PHZ}; t_{en} is the same as t_{PZL} and t_{PZH}.

Table 9. Typical dynamic characteristics at $V_{CC(B)} = 1.2 \text{ V}$ and $T_{amb} = 25 \, ^{\circ}\text{C}_{-}^{\boxed{11}}$

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 7; for waveforms see Figure 5 and Figure 6.

Symbol	Parameter	Conditions	V _{CC(A)}						
			1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	5.0 V	
t_{pd}	propagation delay	An to Bn	11.0	10.0	9.5	9.1	8.9	8.8	ns
		Bn to An	11.0	8.5	7.3	6.2	5.7	5.4	ns
t _{dis}	disable time	OE to An	9.5	6.8	5.4	3.8	4.1	3.1	ns
		OE to Bn	10.2	9.1	8.6	8.1	7.8	7.8	ns
t _{en}	enable time	OE to An	13.5	9.0	6.9	4.8	3.8	3.2	ns
		OE to Bn	13.6	12.5	12.0	11.5	11.4	11.4	ns

^[1] t_{pd} is the same as t_{PLH} and t_{PHL} ; t_{dis} is the same as t_{PLZ} and t_{PHZ} ; t_{en} is the same as t_{PZL} and t_{PZH} .

Table 10. Typical power dissipation capacitance at $V_{CC(A)} = V_{CC(B)}$ and $T_{amb} = 25 \, {}^{\circ}C_{C[1][2]}$ Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		$V_{CC(A)}$ and $V_{CC(B)}$					
			1.8 V	2.5 V	3.3 V	5.0 V			
C_{PD}	power dissipation capacitance	A port: (direction A to B); B port: (direction B to A)	1	1	1	2	pF		
		A port: (direction B to A); B port: (direction A to B)	13	13	13	13	pF		

^[1] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o) \text{ where:}$

f_i = input frequency in MHz;

 f_0 = output frequency in MHz;

C_L = load capacitance in pF;

 V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.

[2] $f_i = 10 \text{ MHz}; \ V_I = \text{GND to } V_{CC}; \ t_r = t_f = 1 \text{ ns}; \ C_L = 0 \text{ pF}; \ R_L = \infty \ \Omega.$

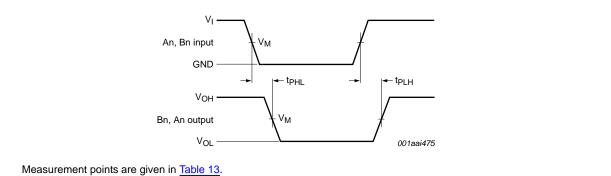
74LVC_LVCH8T245

Table 11. Dynamic characteristics for temperature range -40 °C to +85 °C[1]

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 7; for wave forms see Figure 5 and Figure 6.

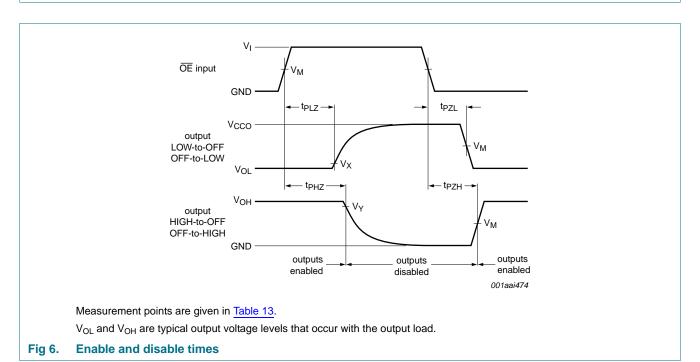
		1 E V		1		V _C						
		1.5 V	± 0.1 V	1.8 V ±	0.15 V	2.5 V	± 0.2 V	3.3 V	± 0.3 V	5.0 V	± 0.5 V	
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
± 0.1 V										I		
agation	An to Bn	1.7	27	1.7	23	1.3	18	1.0	15	8.0	13	ns
1	Bn to An	0.9	27	0.9	25	8.0	23	0.7	23	0.7	22	ns
le time	OE to An	1.5	30	1.5	30	1.5	30	1.5	30	1.4	30	ns
	OE to Bn	2.4	34	2.4	33	1.9	15	1.7	14	1.3	12	ns
le time	OE to An	0.4	34	0.4	34	0.4	34	0.4	34	0.4	34	ns
	OE to Bn	1.8	36	1.8	34	1.5	18	1.2	15	0.9	13	ns
± 0.15 V												
agation	An to Bn	1.7	25	1.7	21.9	1.3	9.2	1.0	7.4	0.8	7.1	ns
1	Bn to An	0.9	23	0.9	23.8	0.8	23.6	0.7	23.4	0.7	23.4	ns
le time	OE to An	1.5	30	1.5	29.6	1.5	29.4	1.5	29.3	1.4	29.2	ns
	OE to Bn	2.4	33	2.4	32.2	1.9	13.1	1.7	12.0	1.3	10.3	ns
le time	OE to An	0.4	24	0.4	24.0	0.4	23.8	0.4	23.7	0.4	23.7	ns
	OE to Bn	1.8	34	1.8	32.0	1.5	16.0	1.2	12.6	0.9	10.8	ns
± 0.2 V												
agation	An to Bn	1.5	23	1.5	21.4	1.2	9.0	8.0	6.2	0.6	4.8	ns
′	Bn to An	1.2	18	1.2	9.3	1.0	9.1	1.0	8.9	0.9	8.8	ns
le time	OE to An	1.4	9.0	1.4	9.0	1.4	9.0	1.4	9.0	1.4	9.0	ns
	OE to Bn	2.3	31	2.3	29.6	1.8	11.0	1.7	9.3	0.9	6.9	ns
le time	OE to An	1.0	10.9	1.0	10.9	1.0	10.9	1.0	10.9	1.0	10.9	ns
	OE to Bn	1.7	32	1.7	28.2	1.5	12.9	1.2	9.4	1.0	6.9	ns
± 0.3 V												
agation	An to Bn	1.5	23	1.5	21.2	1.1	8.8	8.0	6.3	0.5	4.4	ns
1	Bn to An	8.0	15	8.0	7.2	8.0	6.2	0.7	6.1	0.6	6.0	ns
le time	OE to An	1.6	8.2	1.6	8.2	1.6	8.2	1.6	8.2	1.6	8.2	ns
	OE to Bn	2.1	30	2.1	29.0	1.7	10.3	1.5	8.6	8.0	6.3	ns
le time	OE to An	0.8	8.1	8.0	8.1	8.0	8.1	0.8	8.1	8.0	8.1	ns
	OE to Bn	1.8	31	1.8	27.7	1.4	12.4	1.1	8.5	0.9	6.4	ns
± 0.5 V												
agation	An to Bn	1.5	22	1.5	21.4	1.0	8.8	0.7	6.0	0.4	4.2	ns
<u>'</u>	Bn to An	0.7	13	0.7	7.0	0.4	4.8	0.3	4.5	0.3	4.3	ns
le time	OE to An	0.3	5.4	0.3	5.4	0.3	5.4	0.3	5.4	0.3	5.4	ns
	OE to Bn	2.0	30	2.0	28.7	1.6	9.7	1.4	8.0	0.7	5.7	ns
le time	OE to An	0.7	6.4	0.7	6.4	0.7	6.4	0.7	6.4	0.7	6.4	ns
	OE to Bn	1.5	31	1.5	27.6	1.3	11.4	1.0	8.1	0.9	6.0	ns
	agation viole time de time	An to Bn Bn to An OE to An OE to Bn le time OE to An OE to Bn ### 0.15 V Agation An to Bn Bn to An OE to An OE to Bn ### 0.2 V Agation An to Bn Bn to An OE to Bn #### 0.2 V Agation An to Bn Bn to An OE to Bn #### 0.2 V Agation An to Bn Bn to An OE to Bn ##### 0.5 V Agation An to Bn DE to An OE to Bn ###################################	An to Bn 1.7 Bn to An 0.9 De to An 1.5 DE to Bn 2.4 DE to Bn 1.8 DE to Bn 1.8 DE to Bn 1.7 An to Bn 1.7 Bn to An 0.9 DE to Bn 1.8 DE to Bn 1.8 DE to Bn 1.7 DE to Bn 1.5 DE to Bn 1.5 DE to Bn 1.5 DE to Bn 1.5 DE to Bn 1.8 DE to Bn 1.5 DE to Bn 1.5 DE to Bn 1.6 DE to Bn 1.6 DE to Bn 1.7 DE to Bn 1.8 DE to Bn 1.8 DE to Bn 1.8 DE to Bn 1.8 DE to Bn 1.7 DE to Bn 1.8 DE to Bn 1.8	An to Bn Description An to Bn 1.7 27	An to Bn	And to Bn 1.7 27 1.7 23 Bn to An 0.9 27 0.9 25 OE to An 1.5 30 1.5 30 DE to Bn 2.4 34 2.4 33 Ide time OE to An 0.4 34 0.4 34 DE to Bn 1.8 36 1.8 34 ± 0.15 V Bn to An 0.9 23 0.9 23.8 Determine OE to An 1.5 30 1.5 29.6 DE to Bn 2.4 33 2.4 32.2 Determine OE to An 0.4 24 0.4 24.0 DE to Bn 1.8 34 1.8 32.0 ± 0.2 V Bn to An 1.2 18 1.2 9.3 Determine OE to An 1.4 9.0 1.4 9.0 Determine OE to An 1.0 10.9 1.0 10.9 Determine OE to An	An to Bn	And to Bn 1.7 27 1.7 23 1.3 18 Bn to An 0.9 27 0.9 25 0.8 23 Ole time OE to An 1.5 30 1.5 30 1.5 30 OE to Bn 2.4 34 2.4 33 1.9 15 Ide time OE to An 0.4 34 0.4 34 0.4 34 Jet time OE to An 0.4 34 0.4 34 0.4 34 Jet time OE to Bn 1.8 36 1.8 34 1.5 18 Jet time OE to An 0.9 23 0.9 23.8 0.8 23.6 Jet time OE to An 1.5 30 1.5 29.6 1.5 29.4 Jet time OE to An 0.4 24 0.4 24.0 0.4 23.8 Jet time OE to An 1.5 23 1.5 21.5 21.9	An to Bn	An to Bn	An to Bn 1.7 27 1.7 23 1.3 18 1.0 15 0.8 Bn to An 0.9 27 0.9 25 0.8 23 0.7 23 0.7 Gle time ÖE to An 1.5 30 1.5 30 1.5 30 1.4 1.3 Ide time ÖE to Bn 2.4 34 2.4 33 1.9 15 1.7 14 1.3 Ide time ÖE to An 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.4 34 0.5 38 23.6 0.7 23.4 0.7 det time ÖE to An 0.9 23 0	An to Bn 1.7 27 1.7 23 1.3 18 1.0 15 0.8 13 An to Bn to An 0.9 27 0.9 25 0.8 23 0.7 23 0.7 22 Be time OE to An 1.5 30 1.5 30 1.5 30 1.5 30 1.4 30 Be time OE to An 0.4 34 0.8 7.1 0.8 7.1 0.8 7.1 0.8 3.1 <t< td=""></t<>

^[1] t_{pd} is the same as t_{PLH} and t_{PHL} ; t_{dis} is the same as t_{PLZ} and t_{PHZ} ; t_{en} is the same as t_{PZL} and t_{PZH} .


Table 12. Dynamic characteristics for temperature range -40 °C to +125 °C[1]

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 7; for wave forms see Figure 5 and Figure 6.

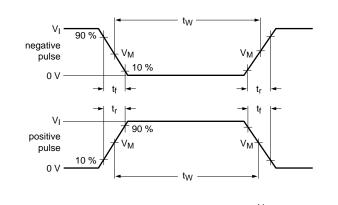
18 0.8 28 0.3 34 1.4 17 1.3 40 0.4 18 0.8 27.4 0.3 33.3 1.4	Max 3 16 7 26 4 34 3 15 4 40 9 16 3 11.1 7 27.4	ns ns ns ns ns
18 0.8 28 0.7 34 1.4 17 1.3 40 0.4 18 0.9 11.4 0.8 27.4 0.7 33.3 1.4	3 16 7 26 4 34 3 15 4 40 9 16 3 11.1 7 27.4	ns ns ns ns ns
28 0.3 34 1.4 17 1.3 40 0.4 18 0.9 11.4 0.8 27.4 0.3 33.3 1.4	7 26 4 34 3 15 4 40 9 16 3 11.1 7 27.4	ns ns ns ns ns
28 0.3 34 1.4 17 1.3 40 0.4 18 0.9 11.4 0.8 27.4 0.3 33.3 1.4	7 26 4 34 3 15 4 40 9 16 3 11.1 7 27.4	ns ns ns ns ns
34 1.4 17 1.3 40 0.4 18 0.9 11.4 0.8 27.4 0.3 33.3 1.4	4 34 3 15 4 40 9 16 3 11.1 7 27.4	ns ns ns ns
17 1.3 40 0.4 18 0.9 11.4 0.8 27.4 0.3 33.3 1.4	3 15 4 40 9 16 3 11.1 7 27.4	ns ns ns
40 0.4 18 0.9 11.4 0.8 27.4 0.7 33.3 1.4	4 40 9 16 3 11.1 7 27.4	ns ns
18 0.9 11.4 0.8 27.4 0.7 33.3 1.4	9 16 3 11.1 7 27.4	ns
11.4 0.8 27.4 0.7 33.3 1.4	3 11.1 7 27.4	ns
27.4 0.7 33.3 1.4	7 27.4	
27.4 0.7 33.3 1.4	7 27.4	
33.3 1.4		
	1 22.2	ns
160 11	4 33.2	ns
. 0.0	3 14.3	ns
27.7 0.4	4 27.7	ns
16.6 0.9	9 14.8	ns
10.2 0.6	8.8	ns
12.9 0.9	9 12.8	ns
13 1.4	4 13	ns
14.3 0.9	9 10.9	ns
17.2 1.0	17.3	ns
14.1 1.0	11.2	ns
10.3 0.5	5 10.4	ns
10.1 0.6	6 10	ns
12.2 1.6	6 12.2	ns
12.6 0.8	3 10.3	ns
13.2 0.8	3 13.6	ns
12.9 0.9	9 10.9	ns
10 0.4	4 8.2	ns
8.5 0.3	8.3	ns
9.4 0.3	3 9.4	ns
12 0.7	7 9.7	ns
10.9 0.7	7 10.9	ns
13.7 0.9	9 10.7	ns
	27.7 0.4 16.6 0.9 10.2 0.6 12.9 0.9 13 1.4 14.3 0.9 17.2 1.6 10.1 0.6 12.2 1.6 12.6 0.8 13.2 0.8 12.9 0.9 10 0.4 8.5 0.6 9.4 0.6 12 0.7 10.9 0.7	27.7 0.4 27.7 16.6 0.9 14.8 10.2 0.6 8.8 12.9 0.9 12.8 13 1.4 13 14.3 0.9 10.9 17.2 1.0 17.3 14.1 1.0 11.2 10.3 0.5 10.4 10.1 0.6 10 12.2 1.6 12.2 12.6 0.8 10.3 13.2 0.8 13.6 12.9 0.9 10.9 10 0.4 8.2 8.5 0.3 8.3 9.4 0.3 9.4 12 0.7 9.7 10.9 0.7 10.9

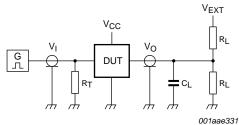

^[1] t_{pd} is the same as t_{PLH} and t_{PHL} ; t_{dis} is the same as t_{PLZ} and t_{PHZ} ; t_{en} is the same as t_{PZL} and t_{PZH} .

11. Waveforms

V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig 5. The data input (An, Bn) to output (Bn, An) propagation delay times


Measurement points


Supply voltage	Input ^[1]	Output ^[2]				
V _{CC(A)} , V _{CC(B)}	V _M	V _M	V _X	V _Y		
1.2 V to 1.6 V	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.1 V	$V_{OH}-0.1\ V$		
1.65 V to 2.7 V	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.15 V	V _{OH} – 0.15 V		
3.0 V to 5.5 V	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.3 V	V _{OH} – 0.3 V		

- [1] V_{CCI} is the supply voltage associated with the data input port.
- [2] V_{CCO} is the supply voltage associated with the output port.

74LVC_LVCH8T245

Table 13.

Test data is given in Table 14.

R_L = Load resistance.

 C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance.

 V_{EXT} = External voltage for measuring switching times.

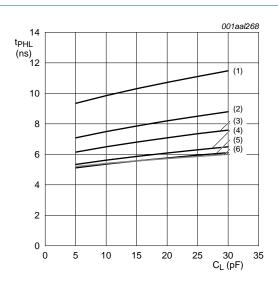
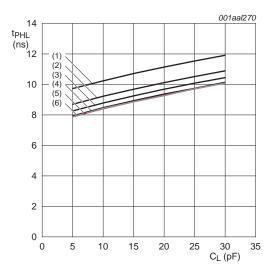
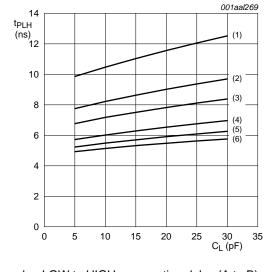
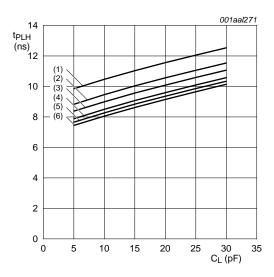

Fig 7. Load circuitry for switching times

Table 14. Test data

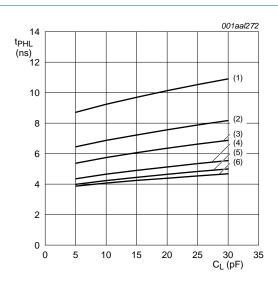

Supply voltage	Input		Load		V _{EXT}		
V _{CC(A)} , V _{CC(B)}	V _I [1]	∆ t/ ∆ V [2]	CL	R _L	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ} [3]
1.2 V to 5.5 V	V_{CCI}	≤ 1.0 ns/V	15 pF	2 kΩ	open	GND	2V _{CCO}

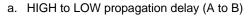
- [1] V_{CCI} is the supply voltage associated with the data input port.
- [2] dV/dt ≥ 1.0 V/ns.
- [3] V_{CCO} is the supply voltage associated with the output port.

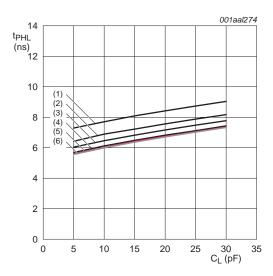

12. Typical propagation delay characteristics


a. HIGH to LOW propagation delay (A to B)

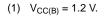
- c. HIGH to LOW propagation delay (B to A)
- (1) $V_{CC(B)} = 1.2 \text{ V}.$
- (2) $V_{CC(B)} = 1.5 \text{ V}.$
- (3) $V_{CC(B)} = 1.8 \text{ V}.$
- (4) $V_{CC(B)} = 2.5 \text{ V}.$
- (5) $V_{CC(B)} = 3.3 \text{ V}.$
- (6) $V_{CC(B)} = 5.0 \text{ V}.$

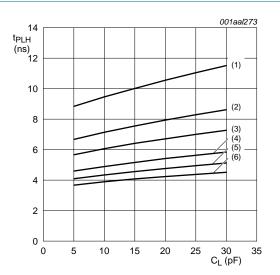



b. LOW to HIGH propagation delay (A to B)

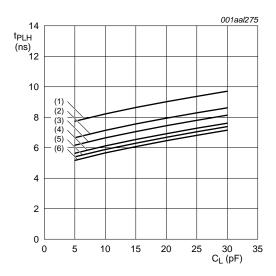


d. LOW to HIGH propagation delay (B to A)

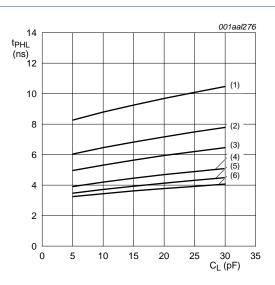

Fig 8. Typical propagation delay versus load capacitance; T_{amb} = 25 °C; V_{CC(A)} = 1.2 V

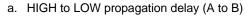


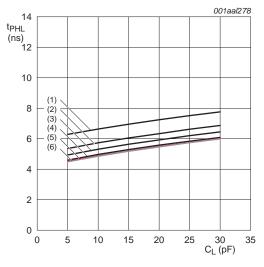
c. HIGH to LOW propagation delay (B to A)

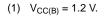


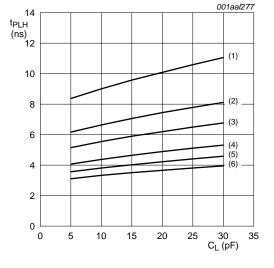
- (2) $V_{CC(B)} = 1.5 \text{ V}.$
- (3) $V_{CC(B)} = 1.8 \text{ V}.$
- (4) $V_{CC(B)} = 2.5 \text{ V}.$
- (5) $V_{CC(B)} = 3.3 \text{ V}.$
- (6) $V_{CC(B)} = 5.0 \text{ V}.$


Fig 9. Typical propagation delay versus load capacitance; T_{amb} = 25 °C; V_{CC(A)} = 1.5 V

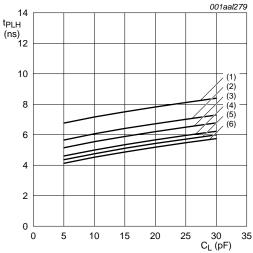



b. LOW to HIGH propagation delay (A to B)


d. LOW to HIGH propagation delay (B to A)

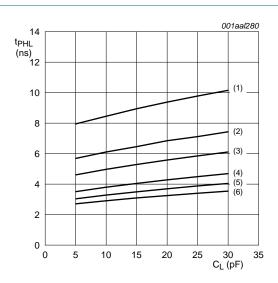


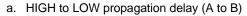
c. HIGH to LOW propagation delay (B to A)

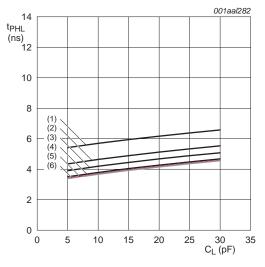


- (2) $V_{CC(B)} = 1.5 \text{ V}.$
- (3) $V_{CC(B)} = 1.8 \text{ V}.$
- (4) $V_{CC(B)} = 2.5 \text{ V}.$
- (5) $V_{CC(B)} = 3.3 \text{ V}.$
- (6) $V_{CC(B)} = 5.0 \text{ V}.$

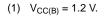
2 0 15

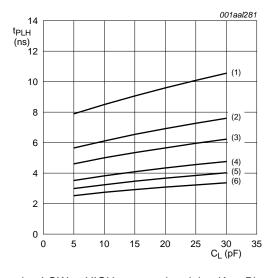


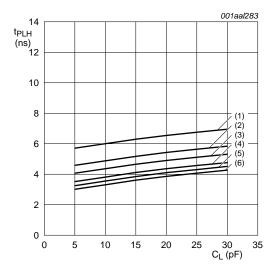

b. LOW to HIGH propagation delay (A to B)



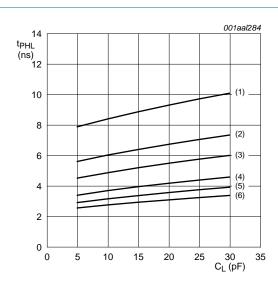
d. LOW to HIGH propagation delay (B to A)

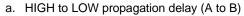

Fig 10. Typical propagation delay versus load capacitance; T_{amb} = 25 °C; V_{CC(A)} = 1.8 V

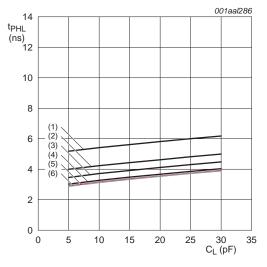



c. HIGH to LOW propagation delay (B to A)

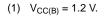
- (2) $V_{CC(B)} = 1.5 \text{ V}.$
- (3) $V_{CC(B)} = 1.8 \text{ V}.$
- (4) $V_{CC(B)} = 2.5 \text{ V}.$
- (5) $V_{CC(B)} = 3.3 \text{ V}.$
- (6) $V_{CC(B)} = 5.0 \text{ V}.$

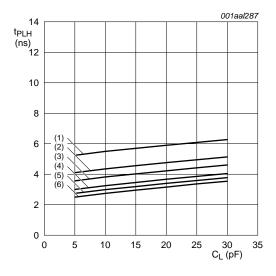



b. LOW to HIGH propagation delay (A to B)

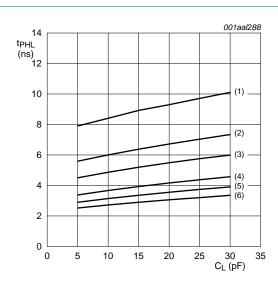


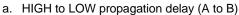
d. LOW to HIGH propagation delay (B to A)

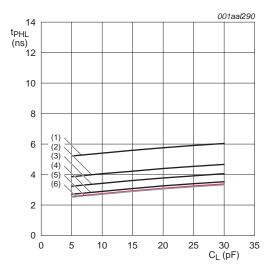




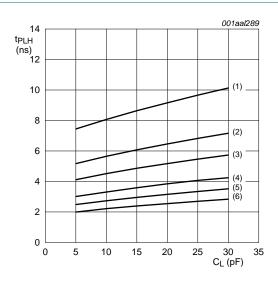
c. HIGH to LOW propagation delay (B to A)


- (2) $V_{CC(B)} = 1.5 \text{ V}.$
- (3) $V_{CC(B)} = 1.8 \text{ V}.$
- (4) $V_{CC(B)} = 2.5 \text{ V}.$
- (5) $V_{CC(B)} = 3.3 \text{ V}.$
- (6) $V_{CC(B)} = 5.0 \text{ V}.$

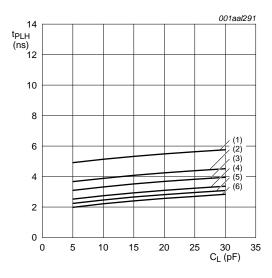

b. LOW to HIGH propagation delay (A to B)



d. LOW to HIGH propagation delay (B to A)



c. HIGH to LOW propagation delay (B to A)



- (2) $V_{CC(B)} = 1.5 \text{ V}.$
- (3) $V_{CC(B)} = 1.8 \text{ V}.$
- (4) $V_{CC(B)} = 2.5 \text{ V}.$
- (5) $V_{CC(B)} = 3.3 \text{ V}.$
- (6) $V_{CC(B)} = 5.0 \text{ V}.$

Fig 13. Typical propagation delay versus load capacitance; $T_{amb} = 25 \, ^{\circ}C$; $V_{CC(A)} = 5 \, V$

b. LOW to HIGH propagation delay (A to B)

d. LOW to HIGH propagation delay (B to A)

13. Application information

13.1 Unidirectional logic level-shifting application

The circuit given in <u>Figure 14</u> is an example of the 74LVC8T245; 74LVCH8T245 being used in an unidirectional logic level-shifting application.

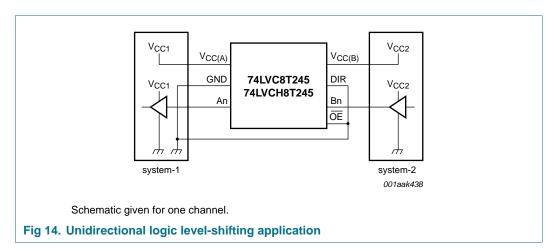
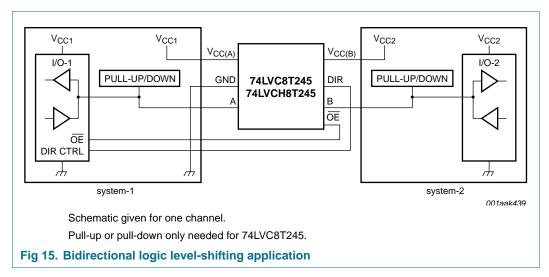



Table 15. Description unidirectional logic level-shifting application

Name	Function	Description
$V_{CC(A)}$	V_{CC1}	supply voltage of system-1 (1.2 V to 5.5 V)
GND	GND	device GND
Α	OUT	output level depends on V _{CC1} voltage
В	IN	input threshold value depends on V _{CC2} voltage
DIR	DIR	the GND (LOW level) determines B port to A port direction
V _{CC(B)}	V_{CC2}	supply voltage of system-2 (1.2 V to 5.5 V)
ŌE	ŌĒ	The GND (LOW level) enables the output ports

13.2 Bidirectional logic level-shifting application

<u>Figure 15</u> shows the 74LVC8T245; 74LVCH8T245 being used in a bidirectional logic level-shifting application.

<u>Table 16</u> gives a sequence that will illustrate data transmission from system-1 to system-2 and then from system-2 to system-1.

Table 16. Description bidirectional logic level-shifting application[1]

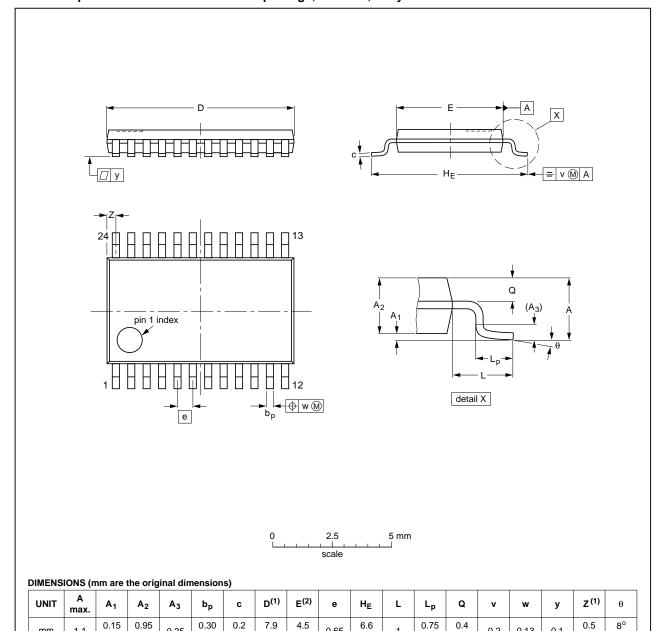
State	DIR CTRL	OE	I/O-1	I/O-2	Description
1	Н	L	output	input	system-1 data to system-2
2	Н	Н	Z	Z	system-2 is getting ready to send data to system-1. I/O-1 and I/O-2 are disabled. The bus-line state depends on bus hold.
3	L	Н	Z	Z	DIR bit is set LOW. I/O-1 and I/O-2 still are disabled. The bus-line state depends on bus hold.
4	L	L	input	output	system-2 data to system-1

^[1] H = HIGH voltage level; L = LOW voltage level; Z = high-impedance OFF-state.

13.3 Power-up considerations

The device is designed such that no special power-up sequence is required other than GND being applied first.

Table 17. Typical total supply current $(I_{CC(A)} + I_{CC(B)})$


V _{CC(A)}	V _{CC(B)}	V _{CC(B)}							
	0 V	1.8 V	2.5 V	3.3 V	5.0 V				
0 V	0	< 1	< 1	< 1	< 1	μΑ			
1.8 V	< 1	< 2	< 2	< 2	2	μΑ			
2.5 V	< 1	< 2	< 2	< 2	< 2	μΑ			
3.3 V	< 1	< 2	< 2	< 2	< 2	μΑ			
5.0 V	< 1	2	< 2	< 2	< 2	μΑ			

74LVC_LVCH8T245

14. Package outline

TSSOP24: plastic thin shrink small outline package; 24 leads; body width 4.4 mm

SOT355-1

mm

1.1

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

0.25

0.80

2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

ISSUE DATE	EUROPEAN	REFERENCES					
ECTION	PROJECTION	JEITA	JEDEC	IEC	VERSION		
99-12-27 03-02-19			MO-153		SOT355-1		
∄ —			MO-153		SOT355-1		

0.65

Fig 16. Package outline SOT355-1 (TSSOP24)

74LVC_LVCH8T245

0.2

0.13

DHVQFN24: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 24 terminals; body $3.5 \times 5.5 \times 0.85$ mm

SOT815-1

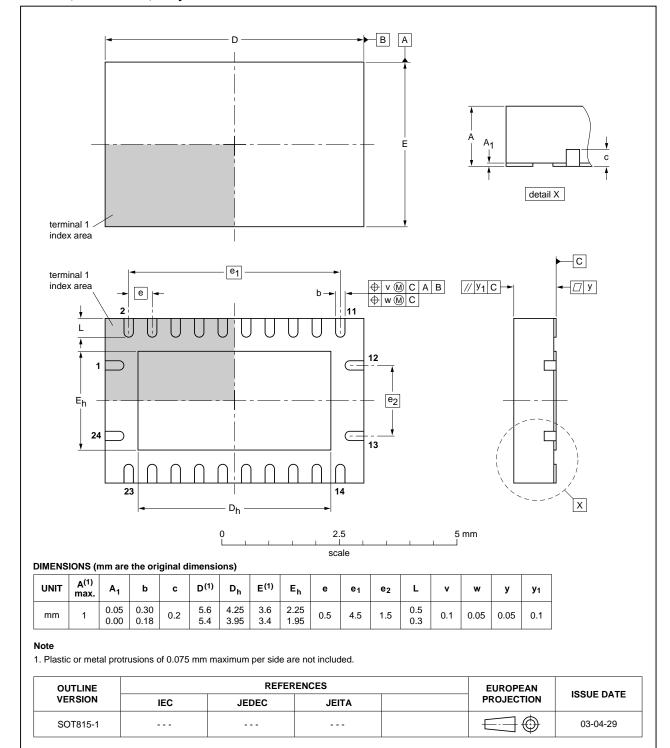


Fig 17. Package outline SOT815-1 (DHVQFN24)

74LVC_LVCH8T245 All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2011. All rights reserved.

15. Abbreviations

Table 18. Abbreviations

Acronym	Description
CDM	Charged Device Model
DUT	Device Under Test
HBM	Human Body Model
MM	Machine Model

16. Revision history

Table 19. Revision history

Release date	Data sheet status	Change notice	Supersedes
20111212	Product data sheet	-	74LVC_LVCH8T245 v.2
Legal pages updated.			
20110211	Product data sheet	-	74LVC_LVCH8T245 v.1
20100111	Product data sheet	-	-
	20111212 • Legal pages 20110211	 20111212 Product data sheet Legal pages updated. 20110211 Product data sheet 	20111212 Product data sheet - • Legal pages updated. 20110211 Product data sheet -

17. Legal information

17.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

17.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

17.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

74LVC_LVCH8T245

74LVC8T245; 74LVCH8T245

8-bit dual supply translating transceiver; 3-state

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

17.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

18. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

19. Contents

1	General description
2	Features and benefits
3	Ordering information 2
4	Functional diagram 2
5	Pinning information 3
5.1	Pinning
5.2	Pin description 4
6	Functional description 4
7	Limiting values 4
8	Recommended operating conditions 5
9	Static characteristics 5
10	Dynamic characteristics 10
11	Waveforms
12	Typical propagation delay characteristics 15
13	Application information 21
13.1	Unidirectional logic level-shifting application . 21
13.2	Bidirectional logic level-shifting application 22
13.3	Power-up considerations
14	Package outline
15	Abbreviations
16	Revision history
17	Legal information
17.1	Data sheet status
17.2	Definitions
17.3 17.4	Disclaimers
17. 4 18	Trademarks
10	Contact information

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for nxp manufacturer:

Other Similar products are found below:

MC13211R2 LFSTBEB865X MC33399PEFR2 PCA9551PW,112 MC34825EPR2 CBTW28DD14AETJ PCF8583P MC68340AB16E
MC8640DTVJ1250HE EVBCRTOUCH MC9S08PT8AVTG MC9S08SH32CTL MCF54415CMJ250 MCIMX6Q-SDB MCIMX6SX-SDB
74ALVC125BQ,115 74HC4050N 74HC4514N MK21FN1M0AVLQ12 MKV30F128VFM10 FRDM-K66F FRDM-KW40Z FRDM-MC-LVBLDC PESD18VF1BSFYL PMF63UNEX PSMN4R0-60YS,115 HEF4028BPN RAPPID-567XFSW MPC565MVR56 MPC574XG176DS MPC8548VJAUJD MPC860PCVR66D4 BCV61A,215 BFU520XAR BT137-600E BT137S-600D.115 BT138-600E.127 BT139X-600.127 BT258-600R.127 BUK7628-100A118 BUK765R0-100E.118 P5020NSE7VNB S12ZVML12EVBLIN SCC2692AC1N40
LPC1785FBD208K LPC2124FBD64/01 LS1020ASN7KQB LS1020AXN7HNB LS1020AXN7KQB LS1043ASE7PQA