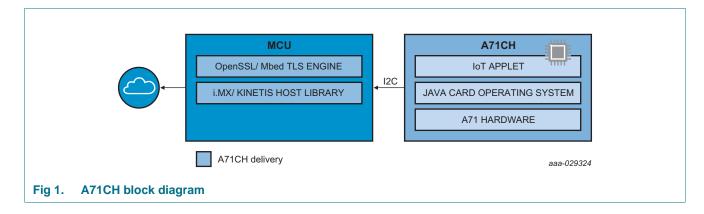


A71CH

Plug & Trust Secure Element


Rev. 1.2 — 27 September 2018 449312

Data sheet COMPANY PUBLIC

1. Introduction

The A71CH is a ready-to-use solution providing a root of trust at the IC level and proven, chip-to-cloud security right out of the box. It is a platform capable of securely storing and provisioning credentials, securely connecting IoT devices to cloud services and performing cryptographic node authentication.

The A71CH solution provides basic security measures protecting the IC against many physical and logical attacks. It can be used with various host platforms and host operating systems to secure a broad range of applications. It is complemented by a comprehensive product support package, offering easy design-in with plug & play host application code, easy to use development kits, reference designs, and extensive documentation for product evaluation.

Plug & Trust Secure Element

2. General description

2.1 A71CH naming conventions

The following table explains the naming conventions of the commercial product name of the A71CH products. Every A71CH product gets assigned such a commercial name, which includes also customer and application specific data.

The A71CH commercial names have the following format.

A71CHxagpp(p)/mvsrrff

The 'A71CH' is a constant, all other letters are variables, which are explained in Table 1.

Table 1. A71CH commercial name format

Variable	Meaning	Values	Description
variable	•		·
X	IC hardware specification code	1	standard operational ambient temperature: -25 °C to +85 °C I ² C interface supported
		2	standard operational ambient temperature: -40 °C to +90 °C I ² C interface supported
а	embedded operating system code	С	Java card operating system
g	embedded application firmware (applet) code	Н	H is a fixed value = IoT security applet pre installed
pp(p)	package type code dd(d)= Delivery Type, TK2= HVSON8 (4x4), UK= WLCSP12		
m	Manufacturing Site Code	T	
V	Silicon Version Code	0	
S	Silicon Version Subcode	В	
rr	ROM Code ID		
ff	FabKey ID		

2.2 I²C interface

The A71CH has an I^2C interface in slave mode, supporting data rates up to 400 kbit/s operating in Fast-Mode (FM). The I^2C interface is using the Smartcard I^2C protocol as defined in Ref. 3 which is based on SMBus.

2.3 Security licensing

NXP Semiconductors has obtained a patent license for SPA and DPA countermeasures from Cryptography Research Incorporated (CRI). This license covers both hardware and software countermeasures. It is important to customers that countermeasures within the operation system are covered under this license agreement with CRI. Further details can be obtained on request.

Plug & Trust Secure Element

3. Features and benefits

3.1 Key benefits

- Secure, zero-touch connectivity
- End-to-end security, from chip to edge to cloud
- Secure credential injection for IC-level root of trust
- Fast design-in with complete product support package
- Easy to integrate with different MCU platforms

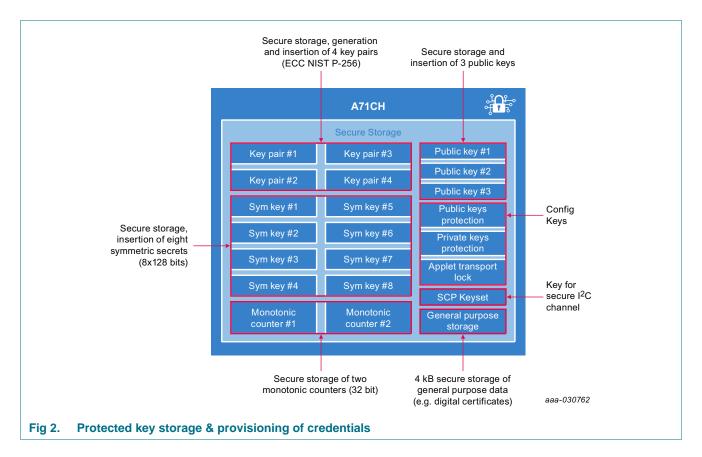
3.2 Security features

The A71CH security concepts includes many security measures to protect the chip.

The A71CH operates fully autonomously based on an integrated Javacard operating system and applet. Direct memory access is possible by the fixed functionalities of the applet only. With that, the content from the memory is fully isolated from the host system.

Attack protection by integrated design measures in the chip layout, the logic and the functional blocks.

3.3 Cryptography features


The A71CH Secure Element provides the following functionality:

- Protected Access storage, generation, insertion or deletion of 4 key pairs (ECC NIST P-256)
- Systematic enforced authentication
- Secure key management
- Protected Access storage, insertion or deletion of 3 public keys
- Signature generation and verification (ECDSA)
- Shared secret calculation for Key Agreement (ECDH or ECDH-E)
- Protected Access storage and use of 2 monotonic counters (32 bits each)
- Protected Access storage, insertion or deletion of symmetric secrets (8x 128 bits);
 longer keys can be used by using a ConstructedSecret type
- Content protected access to keys
- A unique chip ID (18 bytes)
- HKDF key derivation using the symmetric secrets as key, Extract & Expand or Expand only modes
- HMAC SHA256 calculation in one shot or sequential
- Freezing of credentials (= OTP behavior)
- Secure channel SCPO3 GP support
- (Optional) trust provisioning of key pairs, public keys, symmetric secrets, etc.
- Possibility to lock the A71CH module as transport lock mechanism

ECC keys and operations support the following ECC curve:

NIST P-256

Plug & Trust Secure Element

3.4 Functional features

- Dedicated MX51 security CPU
- 400 kbit/s I²C Fast-mode interface
- -40 °C to +90 °C operational ambient temperature (A7102)
- On-chip Javacard operating system
- 40 μA typical sleep mode current with I²C pads in tristate mode
- 10 μA max deep sleep mode current with I²C pads in tristate mode
- High-performance Public Key Infrastructure (PKI)
- EEPROM with min 500,000 cycles endurance and min 25 years retention time
- HVSON8 package and small WLCSP available

Plug & Trust Secure Element

4. Applications

4.1 Use Cases and target applications

- A710xCH EXAMPLE USE CASES
 - Secure connection to public/private clouds, edge computing platforms, infrastructure
 - Secure Amazon Web Services-compliant connectivity
 - Secure commissioning
 - Device-to-device authentication
 - Proof of origin / anti-counterfeiting
 - Key storage and data protection
 - Secure provisioning of credentials
 - Ecosystem protection
- A710xCH TARGET APPLICATIONS
 - Connected industrial devices
 - Sensor networks
 - ◆ IP cameras
 - Home gateways
 - Home appliances

Plug & Trust Secure Element

5. Ordering information

5.1 Ordering options

Table 2. Ordering information

Type number[1]	Package				
	Name	Description	Version		
A7101agTK2/ A7102agTK2/	HVSON-8	plastic thermal enhanced very thin small outline package; no leads; 8 terminals; body 4 \times 4 \times 0.85 mm	SOT909-1		
A7101agUK/ A7102agUK/	WLCSP12	wafer level chip scale package, 12 bumping, 0.5 mm ball pitch	not applicable		

^[1] a = A or C, g = G, C or A, according to the A71CH type classification see Section 2.1 "A71CH naming conventions"

Table 3. A71CH type table

12NC	Type number	Product	Configuration	Package	Orderable part no
9353 68 097118	A7101CHTK2/T0BC2V6	A71(01)CH	customer programmable	HVSON8	A7101CHTK2/T0BC2VJ
9353 635 15118	A7102CHTK2/T0BC2A5	A71(02)CH	customer programmable	HVSON8	A7102CHTK2/T0BC2AJ
9353 694 82023	A7101CHUK/T0BC2HA	A71(01)CH	customer programmable	WLCSP	A7101CHUK/T0BC2HAZ
9353 695 02023	A7102CHUK/T0BC2VA	A71(02)CH	customer programmable	WLCSP	A7102CHUK/T0BC2VAZ
9353 737 63118	A7101CHTK2/T0BC2BM	A71(01)CH	Provisioned & Programmable 'Ready for IBM Watson IoT'	HVSON8	A7101CHTK2/T0BC2BJ
9353 741 46118	A7102CHTK2/T0BC2CH	A71(02)CH	Provisioned & Programmable 'Ready for IBM Watson IoT'	HVSON8	A7102CHTK2/T0BC2CJ

Table 4. A71CH development tools type table

12NC	Type number	Development kit	Description
935368997598	OM3710/A71CHARD	OM3710/A71CHARD	Arduino compatible development kit
935369302598	OM3710/A71CHPCB	OM3710/A71CHPCB	Mini PCB

Table 5 gives an overview of available A71CH product types.

Table 5. A71CH feature table

Product type[1]	Operational ambient temperature	Interface option
A7101Cgpp(p)	−25 °C to +85 °C	I ² C
A7102Cgpp(p)	–40 °C to +90 °C	

^[1] g = G, C, or A; pp(p) = UA or HN1, according the A71CH type classification see Section 2.1 "A71CH naming conventions"

5.1.1 Samples and final products

Section 5.1.2, gives details of how to order samples and final products.

449312

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2018. All rights reserved.

Plug & Trust Secure Element

5.1.2 Ordering A71CH samples

Samples can be ordered from NXP Semiconductors via nxp.com using the "Buy Direct" button.

Note that NXP Semiconductors can provide up to 5 pieces free of charge. Larger quantities have to be ordered separately.

5.2 Configuration

The A71CH is available in configurations as specified in <u>Table 3</u>. The Configuration defines the default memory and key contents. The table below describes the default configuration "customer programmable". Other configurations will be described in addenda to this data sheet.

Table 6. A71CH type table

Credential/ State	Amount	Description
Asymmetric Key Pairs	4 x ECDSA NIST P-256 private + public key	Not set, not locked
Asymmetric Public Keys	3 x ECDSA NIST P-256 public keys	Not set, not locked
Config Keys	3 x AES128	Not set, cannot be locked
Symmetric Secret	8 x 128 bit key data	Not set, cannot be locked
Monotonic Counter	2 x upcounting counter with 32 bit	Counter set to 0, cannot be locked
SCP channel	SCP03 keyset with 3 AES128 keys	Keys not set, SCP03 not active
GP Data	128 segments of 32 bytes each	All bytes set to 0x00
Plain Injection Mode		Plain secrets can be inserted
Debug Mode		Debug Mode is active
TransportLock		Module can be set to "LOCKED"

Plug & Trust Secure Element

6. Marking

Table 7. Marking codes

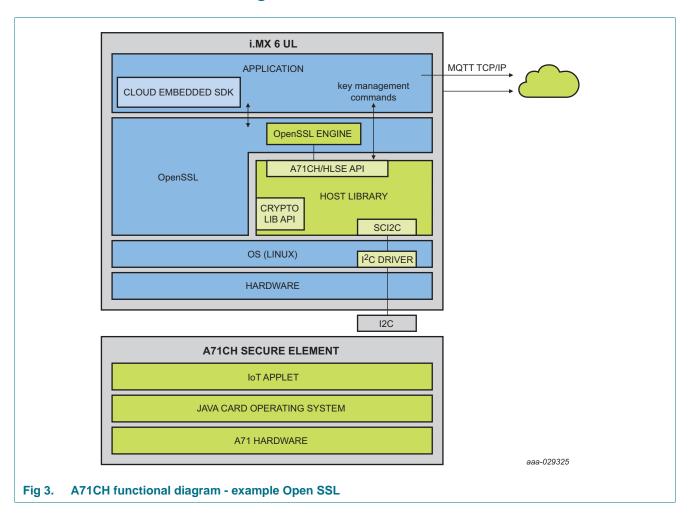
Type number	Marking code
A710xTK2/	Line A: 710* (* = '1' for A7101, '2' for A7102, '3' for A7103) Line B: **** (**** = 4 digit Batch code[1]) Line C: ZnD***0 (*** = 3 digit Date code[2]) Z: diffusion center, SSMC Systems on Silicon Manufactoring (SSMC), Singapore n: assembly center D: code to indicate conformance to RHF-2006 0: Mask version code

[1] Batch code: 5 digits available, 2 for DBSN, 2 for ASID: mark "YY ZZ" or 4 digits available, 2 for DBSN, 2 for ASID: mark "YYZZ"

The Assembly Sequence ID (ASID) is a 2-digit indicator that counts the number of assembly batches (transport lots) within one diffusion batch id and one weekly date code. The week start and end dates are defined by the assembly center algorithm. The ASID is assigned sequentially starting with 01 and ranging through 99, then each digit ranges upper case alphabet letters in combination with numeric, then numeric in combination with upper case alphabet letters, then upper case alphabet letters in combination with upper case alphabet letters providing 1175 possible values within a week-code. The numeric zero '0' is only allowed within the sequence of 01 to 99. The alphabet letter 'O' is not allowed to avoid confusion with numeric '0'.

The Diffusion Batch Sequence Number (DBSN) is a 2-digit indicator that counts the number of diffusion batches (DBID) within one Package Type (i.e. HVSON8) and one weekly date code. The DBSN is assigned sequentially starting with 01 and ranging through 99, then each digit ranges upper case alphabet letters in combination with numeric, then numeric in combination with upper case alphabet letters, then upper case alphabet letters in combination with upper case alphabet letters providing 1175 possible values within a week-code. The numeric zero '0' is only allowed within the sequence of 01 to 99. The alphabet letter 'O' is not allowed to avoid confusion with numeric '0'.

[2] 3 digit Date code: "YWW"


"Y" is a code indicating the year in which the IC is assembled. Examples: for year 1999 is Y = 9, for year 2000 is Y = 0, for year 2001 is Y = 1. "WW" is a code indicating the week in which the IC is assembled. It is determined from the date the assembly transport lot is created or alternately the date die is issued from die stores to assembly start or the date die attach (Diebond) occurs or the date encapsulation occurs. Examples: for week 01 is WW = 01, for week 52 is WW = 52, for week 53 is WW = 53.

In the case of bumped die (WL-CSP) the code indicates the week in which the IC was bumped.

Plug & Trust Secure Element

7. Functional description

7.1 Functional diagram

The A71CH uses I²C as communication interface as described in the following section. The A71CH commands are wrapped using the Smartcard I² protocol (SCI2C). The detailed documentation for the A71CH commands [ref to APDU Spec] and SCI2C encapsulation (Ref. 3) is available in NXP docstore."

In order to simplify the product usage a host library was created which takes care for the A71CH commands and SCI2C protocol encapsulation. The host library for various platforms is available for download with complete sources on the A71CH website.

7.2 Credential Storage & Memory

The I²C interface of the A71CH is supporting a Smart Card I²C (SCIIC) Protocol using an Inter-IC (I²C) based physical interface and data link layer using Fast-mode (FM) up to 400 kBit/s, a SMBus based network layer and bus protocol as well as a mapping layer to convey [ISO/IEC 7816-4] based communication. This protocol is specified in [Ref to SCI²C].

Plug & Trust Secure Element

- A71CH is compliant to <u>Ref. 3</u> and implements the following SCIIC protocol options:
- Usage of the optional error detection code supported
- CDBMS MAX of 255 and a CDBSM MAX of 252
- Default Frame Waiting Time is 320 ms
- Protocol binding selection is not supported (not needed as only 7816-4 APDU mapping is supported)
- The I2C address is 90h (8-bit address) equals 48h (7-bit address) and optional 92h (8-bit address) which equals 49h (7-bit address)

7.3 I²C Interface

The A71CH has an I²C interface in slave mode, supporting data rates up to 400 kbit/s operating in Fast-Mode (FM). The I²C interface is using the Smartcard I²C protocol as defined in Ref. 3 which is based on SMBus. The default I²C address after power-on-reset depends on the bootup condition as shown in Table 8.

7.4 Automatic Communication Mode detection at Power on

The IC configures its interface according to the pin state as shown in the table below. The host system must keep the voltage levels stable at these pins for at least 500 μ s after power-on-reset.

Table 8. I²C address

Value at startup			I ² C address		
IF0	IF1	I2C_SCL	I2C_SDA	Write	Read
0	Х	0	0	n.a.	n.a.
1	0	1	1	0x90	0x91
1	1	1	1	0x92	0x93

7.5 Power-saving modes

The device provides two power-saving operation modes, the SLEEP mode and the DEEP SLEEP mode. These modes are activated via pad RST_N (DEEP SLEEP mode) or by the device.

7.5.1 SLEEP mode

The SLEEP mode has the following properties:

- · all internal clocks are frozen,
- CPU enters power saving mode with program execution being stopped,
- · CPU registers keep their contents,
- RAM keeps its contents,

Plug & Trust Secure Element

The A71CH enters automatically into SLEEP mode after 312 ms of inactivity on the I²C lines and also wakes up automatically from SLEEP mode. In SLEEP mode, all internal clocks are stopped. The IOs hold the logical states they had at the time IDLE was activated. During SLEEP mode security sensors HVS, LVS, LTS, HTS, Light Sensors, Glitch Sensors and Active Shielding are disabled.

There are two ways to exit from the SLEEP mode:

- A reset signal on RST_N
- An External Interrupt edge triggered by a falling edge on I2C_SDA

7.5.2 DEEP SLEEP mode

The A71CHx provides a special sleep mode offering maximum power saving. It is reached by pulling RST_N to a logic zero level for more than 500 μs.

While in deep sleep mode the internal power is completely switched off and only the IO pads stay supplied. All digital pads will stay in high-Z mode.

To leave the DEEP SLEEP mode RST_N has to be released and set to a logic "1" level.

Plug & Trust Secure Element

8. Pinning information

8.1 Pinning

8.1.1 Pinning HVSON8

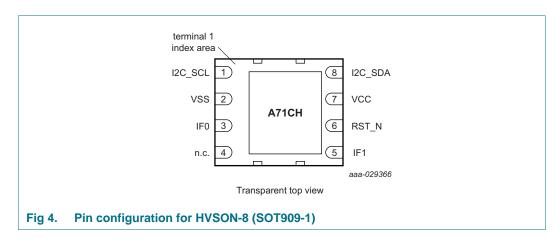


Table 9. Pin description HVSON8

Symbol	Pin	Description
I2C_SCL	1	I ² C clock
VSS	2	ground
IF0	3	interface activation, apply high on startup
n.c.	4	not connected
IF1	5	I ² C address selection
RST_N	6	reset input, active LOW
VCC	7	power supply voltage input
I2C_SDA	8	I ² C data

The center pad of the IC is not connected, although it is recommended to connect it to ground for thermal reasons.

Plug & Trust Secure Element

8.1.2 Pinning WLCSP

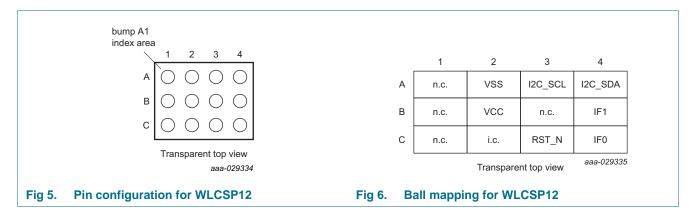


Table 10. Pin description WLCSP

Symbol	Pin	Description
n.c.	A1	not connected
VSS	A2	ground
I2C_SCL	A3	I ² C Clock
I2C_SDA	A4	I ² C Data
n.c.	B1	not connected
VCC	B2	Power supply voltage input
n.c.	B3	not connected
IF1	B4	I ² C address selection
n.c.	C1	not connected
i.c.	C2	internally connected; connect to ground
RST_N	C3	Reset input, active LOW
IF0	C4	interface activation, apply high on startup

The pins/balls A1, B1, C1, and B3 are not connected internally. These pins/balls can be used for routing to connect to B2 (VCC) in order to have an easier PCB layout.

9. Package outline

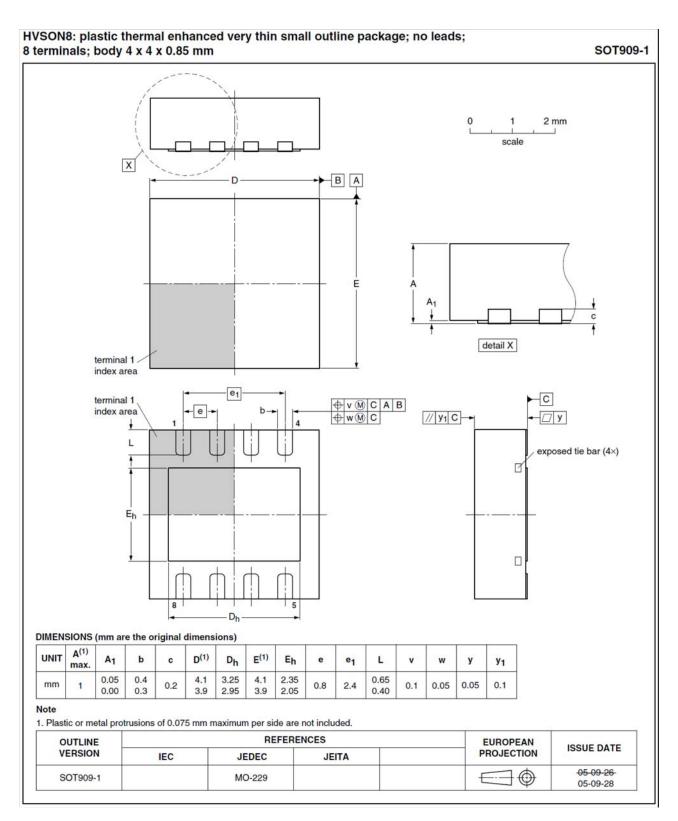


Fig 7. Package outline SOT909-1

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2018. All rights reserved.

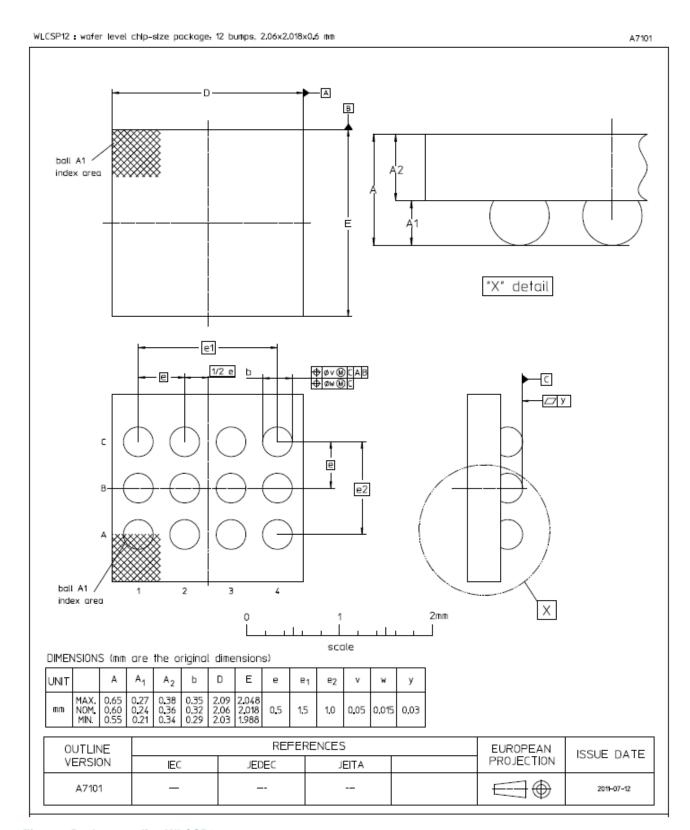


Fig 8. Package outline WLCSP12

449312

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2018. All rights reserved.

10. Packing information

10.1 Reel packing

The A71CH product is available on 7" tape on reel and 13" tape on reel. Details are provided in <u>Table 11</u>.

Table 11. Reel packing options

Package type	Reel type	Minimum packing quantity
HVSON8	7" tape on reel	1500
HVSON8	13" tape on reel[1]	6000
WLCSP12	7" tape on reel	3000

^[1] For details about packing method, product orientation, tape dimensions and labeling for A71 parts in HVSON8 package having an ordering code (12NC) ending 118 refer to Ref. 2.

11. Electrical and timing characteristics

The electrical interface characteristics of static (DC) and dynamic (AC) parameters for pads and functions used for I²C are in accordance with the NXP I²C specification (see Ref. 1).

12. Limiting values

Table 12. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to VSS (ground = 0 V).

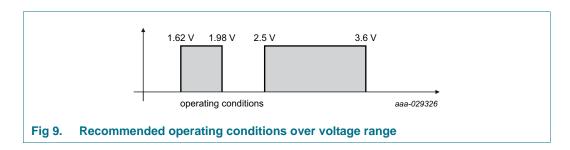
Symbol	Parameter	Conditions		Min	Max	Unit
V_{DD}	supply voltage			-0.3	+4.6	V
VI	input voltage	any signal pad		-0.3	+4.6	V
I _I	input current	pad I2C_SDA, I2C_SCL		-	10	mA
Io	output current	pad I2C_SDA, I2C_SCL		-	10	mA
I _{lu}	latch-up current	$V_I < 0 \text{ V or } V_I > V_{DD}$		-	100	mA
V _{esd_hbm}	electrostatic discharge voltage (Human Body Model)	pads VCC, VSS, RST_N, I2C_SDA, I2C_SCL	[1]		± 2.0	kV
V_{esd_cdm}	electrostatic discharge voltage (Charge Device Model)	pads VCC, VSS, RST_N, I2C_SDA, I2C_SCL	[3]		± 500	V
P _{tot}	Total power dissipation		[2]	-	1	W
T _{stg}	Storage temperature			-55	+125	°C

^[1] MIL Standard 883-D method 3015; human body model; C = 100 pF, R = 1.5 k Ω ; T_{amb} = -25 °C to +85 °C.

449312

^[2] Depending on appropriate thermal resistance of the package.

^[3] JESD22-C101, JEDEC Standard Field induced charge device model test method.


Plug & Trust Secure Element

13. Recommended operating conditions

The A71CH offers two operation modes, the so-called 1V8 mode and the 3V3 mode targeted for battery supplied applications.

Table 13. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DD}	supply voltage range	3V3 mode range CPU in free runing mode	2.50	3.3	3.6	V
		1V8 mode	1.62	1.8	1.98	V
VI	DC input voltage on digital I/O pads I2C_SCL, I2C_SDA	3V3 mode	0		3.6	V
		1V8 mode	0		3.6	V
VI	DC input voltage on digital input pad RST_N	3V3 mode	0		3.6	V
		1V8 mode	0		3.6	V
T _{amb}	Operating ambient temperature	A7101	-25		+85	°C
		A7102	-40		+90	°C

Plug & Trust Secure Element

14. Characteristics

14.1 DC characteristics

Measurement conventions

Testing measurements are performed at the contact pads of the device under test. All voltages are defined with respect to the ground contact pad VSS. All currents flowing into the device are considered positive.

14.1.1 General and I²C I/O interface

Table 14. Electrical DC characteristics of I2C_SCL, I2C_SDA and RST_N

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Input/Out	put: I2C_SCL, I2C_SDA in push-p	oull mode					
V _{IH}	HIGH level input voltage			$0.7~V_{DD}$		V _{Imax} [1]	V
V _{IL}	LOW level input voltage			-0.5		0.3 V _{DD}	V
I _{IH}	HIGH level input current in input mode	$V_{IHmin} < V_{I} < V_{IHmax}$				± 10	μΑ
I _{IL}	LOW level input current	$V_{ILmin} < V_I < V_{ILmax}$				± 10	μΑ
V _{OH}	HIGH level output voltage	$I_{OH} = -3.0 \text{ mA};$ 3V3 mode	[2]	0.7 V _{DD}			V
		$I_{OH} = -3.0 \text{ mA};$ 1V8 mode	[2]	0.7 V _{DD}			V
V _{OL}	LOW level output voltage	I _{OL} = 3.0 mA 3V3 mode				0.4	V
		I _{OL} = 2.0 mA 1V8 mode				0.2 V _{DD}	V
Input/Out V _{IH}	put: I2C_SCL, I2C_SDA in open-or HIGH level input voltage	Irain mode		0.7 V _{DD}		V _{Imax} [1]	V
V _{IL}	LOW level input voltage			-0.5			
I _{IH}	• •			0.0			1//
	HIGH level input current in input mode	$V_{IHmin} < V_{I} < V_{IHmax}$				0.3 V _{DD} ± 10	V μA
I _{IL}	·	$V_{IHmin} < V_I < V_{IHmax}$ $V_{ILmin} < V_I < V_{ILmax}$					
I _{IL} V _{OL}	mode					± 10	μΑ
	mode LOW level input current	$V_{ILmin} < V_I < V_{ILmax}$ $I_{OL} = 3.0 \text{ mA}$				± 10 ± 10	μΑ
V _{OL}	mode LOW level input current LOW level output voltage	$V_{ILmin} < V_I < V_{ILmax}$ $I_{OL} = 3.0 \text{ mA}$ $3V3 \text{ mode}$ $I_{OL} = 2.0 \text{ mA}$				± 10 ± 10 0.4	μΑ μΑ V
V _{OL}	mode LOW level input current LOW level output voltage	$V_{ILmin} < V_I < V_{ILmax}$ $I_{OL} = 3.0 \text{ mA}$ $3V3 \text{ mode}$ $I_{OL} = 2.0 \text{ mA}$		0.7 V _{DD}		± 10 ± 10 0.4	μΑ μΑ V
V _{OL} Input: RS	mode LOW level input current LOW level output voltage	$V_{ILmin} < V_I < V_{ILmax}$ $I_{OL} = 3.0 \text{ mA}$ $3V3 \text{ mode}$ $I_{OL} = 2.0 \text{ mA}$		0.7 V _{DD} -0.3		± 10 ± 10 0.4 0.2 V _{DD}	μΑ μΑ V
	mode LOW level input current LOW level output voltage ST_N HIGH level input voltage	$V_{ILmin} < V_I < V_{ILmax}$ $I_{OL} = 3.0 \text{ mA}$ $3V3 \text{ mode}$ $I_{OL} = 2.0 \text{ mA}$ $1V8 \text{ mode}$	[3]			± 10 ± 10 0.4 0.2 V _{DD}	μΑ

^[1] Maximum value according to Table 13 "Recommended operating conditions"

A71CH NXP Semiconductors

Plug & Trust Secure Element

- : External pull-up resistor 20 k Ω to VDD. The worst case test condition for parameter V_{OH} is present at minimum V_{DD}. For class A supply voltage conditions $V_{DD} = 4.5 \text{ V}$ is the worst case with respect to the fix specification limit $V_{OHmin} = 3.8 \text{ V}$ (0.844 V_{DD}). The supply voltage related limit "0.7 V_{DD} "is a stricter requirement than the fix value 3.8 V at high V_{DD} (0.7 $V_{DD} = 3.85 \text{ V}$ at $V_{DD} = 5.5 \text{ V}$). So, in the V_{DD} range 4.5 V to 5.5 V, V_{OHmin} is specified as "the larger value of 0.7 V_{DD} and 3.8 V, respectively".
- The active low RST_N input internally has a resistive pull-down device to VSS. Accordingly a current is flowing into the pad voltages above 0 V. Figure 10 shows the RST_N input characteristic.

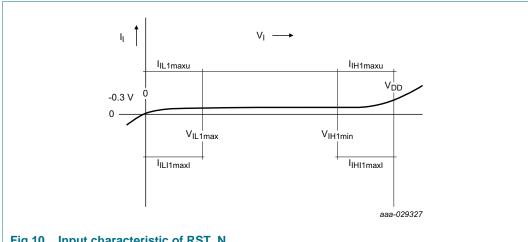


Fig 10. Input characteristic of RST_N

Plug & Trust Secure Element

14.1.2 I²C interface at 3V3 mode operation[1]

Table 15. Electrical characteristics of IC supply voltage V_{DD} ; $V_{SS} = 0$ V; $T_{amb} = -40$ to +90 °C

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Supply					'	
V_{DD}	supply voltage range	3V3 mode range CPU in free running mode	2.50	3.3	3.6	V
I _{DD}	no coprocessor active	CPU in free running mode		6.3	7.0	mΑ
	EPROM programming in progress	CPU in free running mode		7.3	8.0	mΑ
	AES coprocessor active	CPU in free running mode		9.3	10.3	mΑ
	ECC coprocessor active	CPU in free running mode		13.7	15.1	mΑ
I _{DD(SLP)}	supply current SLEEP mode	T _{amb} = 25 °C		45	150	μΑ
I _{DD(DSLP)}	supply current deep sleep mode	RST_N at 0V, $T_{amb} = 25 ^{\circ}\text{C}$			10	μΑ
		RST_N at 0V, $T_{amb} = 90 ^{\circ}\text{C}$			10	μΑ

^[1] All appropriately marked values are typical values and only referenced for information. They are subject to change without notice.

Plug & Trust Secure Element

14.1.3 I²C interface at 1V8 mode operation[1]

Table 16. Electrical characteristics of IC supply voltage V_{DD} ; V_{SS} = 0 V; T_{amb} = -40 to +90 °C

		,	IIID			
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Supply			'		'	
V_{DD}	supply voltage range	1V8 mode range	1.62	1.8	1.98	V
I _{DD}	no coprocessor active	CPU in free running mode		2.45		mA
	AES coprocessor active	CPU in free running mode		2.7		mA
	ECC coprocessor active	CPU in free running mode		7.5		mA
I _{DD(SLP)}	supply current SLEEP mode	T _{amb} = 25 °C		40	80	μΑ
I _{DD(DSLP)}	supply current deep sleep mode	RST_N at 0V, $T_{amb} = 25 ^{\circ}\text{C}$			10	μΑ
		RST_N at 0V, $T_{amb} = 90 ^{\circ}\text{C}$			10	μΑ

^[1] All appropriately marked values are typical values and only referenced for information. They are subject to change without notice.

14.2 AC characteristics

Table 17. Non-volatile memory timing characteristics; V_{DD} = 1.8 V \pm 10% or 3 V \pm 10% V; V_{SS} = 0 V; T_{amb} = -40 to 90 °C

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t_{EEP}	EEPROM erase + program time			2.7		ms
t _{EEE}	EEPROM erase time			1.7		ms
t _{EEW}	EEPROM program time			1.0		ms
t _{EER}	EEPROM data retention time	T _{amb} = +55 °C	25			years
N _{EEC}	EEPROM endurance (number of programming cycles)		5 × 10 ⁵			cycles

Table 18. Electrical AC characteristics of I2C_SDA, I2C_SCL, and RST_N[1]; $V_{DD}=1.8~V\pm10\%~or~3~V\pm10\%~V; V_{SS}=0~V; T_{amb}=-40~to~90~^{\circ}C$

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Input/O	utput: I2C_SDA, I2C_SCL in op	en-drain mode	'	1	'	'	'
tr _{IO}	I/O Input rise time	Input/reception mode	[4]			1	μs
tf _{IO}	I/O Input fall time	Input/reception mode	<u>[4]</u>			1	μs
tf _{OIO}	I/O Output fall time	Output/transmission mode; C _L = 30 pF	[4]			0.3	μs
f _{CLK}	External clock frequency in I ² C applications	t_{CLKW} , T_{amb} and V_{DD} in their spec'd limits		-		400	kHz
t _{CLKW}	Clock pulse width i.r.t. clock period (positive pulse duty cycle of CLK)		[3]	40		60	%
Inputs:	RST_N						
t _{RW}	Reset pulse width (RST_N low) without entering deep sleep mode			40		400	μs
t _{RDSLP}	Reset pulse width (RST_N low) to enter deep sleep mode			500			μs
t _{WKP}	Wake-up time from SLEEP mode	$f_{\text{CLKmin}} < f_{\text{CLK}} < f_{\text{CLKmax}}$		-	8	10	μs

449312

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2018. All rights reserved.

Table 18. Electrical AC characteristics of I2C_SDA, I2C_SCL, and RST_N $\frac{[1]}{[1]}$; V_{DD} = 1.8 V \pm 10% or 3 V \pm 10% V; V_{SS} = 0 V; T_{amb} = -40 to 90 °C

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{WKPIO}	Pad LOW time for wake-up from SLEEP mode	level triggered ext.int.	-	8	10	μs
		edge triggered ext.int.	-	8	10	μs
t _{WKPRST}	RST_N LOW time for wake-up from SLEEP mode		40		-	μs
t _{WKWT}	Time from SLEEP mode wake/up event to I2C_SDA valid			50	100	ns
C _{PIN}	Pin capacitances RST_N, I2C_SDA, /I2C_SCL	Test frequency = 1 MHz; T _{amb} = 25 °C	-		10	pF

- [1] All appropriately marked values are typical values and only referenced for information. They are subject to change without notice.
- [2] t_r is defined as rise time between 20% and 80% of the signal amplitude. t_f is defined as fall time between 80% and 20% of the signal amplitude.
- [3] During AC testing the inputs RST_N, I2C_SDA, I2C_SCL are driven at 0 V to +0.3 V for a LOW input level and at V_{DD} -0.3 V to V_{DD} for a HIGH input level. Clock period and signal pulse (duty cycle) timing is measured at 50% of V_{DD}.
- [4] t_r is defined as rise time between 30% and 70% of the signal amplitude. t_f is defined as fall time between 70% and 30% of the signal amplitude.

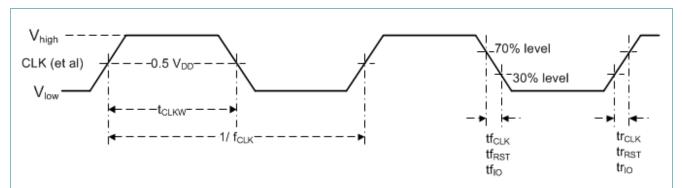


Fig 11. External clock drive and AC test timing reference points of I2C_SDA, I2C_SCL, and RST_N (see <u>Table</u> note [3] and <u>Table</u> note [4]) in open drain mode

14.3 EMC/EMI

EMC and EMI resistance according to IEC 61967-4.

Plug & Trust Secure Element

15. Abbreviations

Table 19. Abbreviations

Acronym	Description
AES	Advanced Encryption Standard
CRC	Cyclic Redundancy Check
DES	Digital Encryption Standard
DPA	Differential Power Analysis
DSS	Digital Signature Standard
ECC	Elliptic Curve Cryptography
EEPROM	Electrically Erasable Programmable Read-Only Memory
I/O	Input/Output
MAC	Message Authentication Code
OS	Operating System
PKI	Public Key Infrastructure
SFI	Single Fault Injection
SHA	Secure Hash Algorithm

Plug & Trust Secure Element

16. References

- I²C-bus specification and user manual, Rev. 3.0 June-19-2007, NXP Semiconductors
- [2] SOT909-1; HVSON8; Reel pack; Ordering code (12NC) ending 118; Packing Information; Rev. 2 19 April 2013
- [3] Application note SCIIC Protocol Specification, Application note, Rev 1.x, AN12207 (document number an19501x)

Plug & Trust Secure Element

17. Revision history

Table 20. Revision history

D = = ID	Dalassa data	Data about status	Observation	0			
Document ID	Release date	Data sheet status	Change notice	Supersedes			
449312	20180927	Data sheet		449311			
Modifications:	• <u>Table 1 "A7</u>	1CH commercial name format	": Added WLCSP				
	 <u>Table 3 "A71CH type table"</u>: Updated 						
	Section 3.4 "Functional features": Added WLCSP						
	 Section 8.1.1 "Pinning HVSON8": Added paragraph 						
	 Section 8.1.2 "Pinning WLCSP": Added section 						
	• Figure 5 "Pi	• Figure 5 "Pin configuration for WLCSP12": Added pin configuration					
	• Figure 6 "Ba	Figure 6 "Ball mapping for WLCSP12": Updated					
	 Table 10 "P 	Table 10 "Pin description WLCSP": Updated					
	• <u>Table 11 "R</u>	eel packing options": Added W	/LCSP				
449311	20180801	Data sheet		449310			
449310	20180221	Objective short data she	eet				
Modifications:	 Initial version 	n					
iviodifications:	• initial version	on					

Plug & Trust Secure Element

18. Legal information

18.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

18.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

18.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

All information provided in this document is subject to legal disclaimers

© NXP B.V. 2018. All rights reserved.

Plug & Trust Secure Element

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

18.4 Licenses

ICs with DPA Countermeasures functionality

NXP ICs containing functionality implementing countermeasures to Differential Power Analysis and Simple Power Analysis are produced and sold under applicable license from Cryptography Research, Inc.

18.5 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

FabKey — is a trademark of NXP B.V.

I²C-bus — logo is a trademark of NXP B.V.

19. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Plug & Trust Secure Element

20. Tables

Table 12 Table 12 Table 13	Ordering information	Table 16 Table 17 Table 18	I2C_SDA and RST_N
21. F	igures		
Fig 1. Fig 2.	A71CH block diagram	Fig 8. Fig 9.	Package outline WLCSP12
Fig 3. Fig 4. Fig 5. Fig 6. Fig 7.	A71CH functional diagram - example Open SSL9 Pin configuration for HVSON-8 (SOT909-1)	Fig 10. Fig 11.	Input characteristic of RST_N
22. C	Contents		
1	Introduction	6	Marking 8
2	General description 2	7	Functional description 9
2.1	A71CH naming conventions 2	7.1	Functional diagram 9
2.2	I ² C interface	7.2	Credential Storage & Memory 9
2.3	Security licensing	7.3 7.4	I ² C Interface
3	Features and benefits	7.4	Power on
3.1	Key benefits	7.5	Power-saving modes
3.2 3.3	Security features	7.5.1	SLEEP mode
3.4	Functional features 4	7.5.2	DEEP SLEEP mode11
4	Applications 5	8	Pinning information 12
4.1	Use Cases and target applications 5	8.1	Pinning 12
5	Ordering information	8.1.1	Pinning HVSON8
5.1	Ordering options	8.1.2	Pinning WLCSP
5.1.1	Samples and final products 6	9	Package outline
5.1.2	Ordering A71CH samples	10	Packing information
5.2	Configuration 7	10.1	Reel packing

continued >>

A71CH NXP Semiconductors

Plug & Trust Secure Element

11	Electrical and timing characteristics	16
12	Limiting values	16
13	Recommended operating conditions	17
14	Characteristics	18
14.1	DC characteristics	18
14.1.1	General and I2C I/O interface	
14.1.2	I2C interface at 3V3 mode operation[1]	20
14.1.3	I2C interface at 1V8 mode operation 11	21
14.2	AC characteristics	21
14.3	EMC/EMI	22
15	Abbreviations	23
16	References	24
17	Revision history	25
18	Legal information	26
18.1	Data sheet status	26
18.2	Definitions	26
18.3	Disclaimers	26
18.4	Licenses	27
18.5	Trademarks	27
19	Contact information	27
20	Tables	28
21	Figures	28
22	Contents	28

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Security ICs / Authentication ICs category:

Click to view products by NXP manufacturer:

Other Similar products are found below:

A1007TL/TA4STZ DS2476Q+T DS28C36Q+T DS28C22Q+T DS2401-SL+T&R DS28E35P+ ATECC608B-RBHCZ-T ATECC608B-RBHCZ-B DS28E18Q+T W74M12JWSSIQ ATECC508A-MAHAW-S SLB9656TT12FW432XUMA1 SLB9660XT12FW440XUMA2 SLS32AIA020A4USON10XTMA2 SLB9645XT12FW13332XUMA1 DS2401T&R DS1990R-F5# DS2411P+T&R A1006TL/TA1NXZ ATAES132A-SHER-B ATSHA204A-RBHCZ-B ATECC608A-SSHDA-T ATECC508A-RBHCZ-T A1006UK/TA1NXZ ATAES132A-MAHEQ-S ATECC608A-MAHCZ-S IPL-CHP ATAES132A-MAHER-S AT88SC118-SH-CN-T AT88SC118-SH-CM-T SE050C2HQ1/Z01SDZ SE050A2HQ1/Z01SHZ SE050A1HQ1/Z01SGZ SE050B2HQ1/Z01SFZ ATECC608A-MAHCZ-T AT88SC118-SH-CM AT88SC118-SH-CN ATAES132A-MAHER-T ATAES132-SH-EQ ATAES132-SH-ER-T ATECC508A-MAHCZ-T ATAES132A-SHEQ-B ATAES132A-MAHER-T ATECC108A-SSHDA-B ATECC508A-SSHCZ-B ATECC508A-SSHDA-B DS2460S+ SLB9645TT12FW13333XUMA2 SLB9665TT20FW563XUMA3 SLB9670VQ20FW785XTMA1