Product data sheet

1. Product profile

1.1 General description

Planar PIN diode in a SOD882T leadless ultra small plastic SMD package.

1.2 Features

- High voltage, current controlled
- RF resistor for RF attenuators and switches
- Low diode capacitance
- Low diode forward resistance
- Very low series inductance
- For applications up to 3 GHz

1.3 Applications

RF attenuators and switches

2. Pinning information

Table 1. Discrete pinning

Pin	Description	Si	mplified outline	Symbol
1	cathode	<u>[1]</u>		
2	anode		Transparent top view	sym006

^[1] The marking bar indicates the cathode.

3. Ordering information

Table 2. Ordering information

Type number	Package		
	Name	Description	Version
BAP1321LX	-	leadless ultra small plastic package; 2 terminals; body 1 \times 0.6 \times 0.4 mm	SOD882T

4. Marking

Table 3. Marking

Type number	Marking code
BAP1321LX	LH

5. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{R}	reverse voltage		-	60	V
I _F	forward current		-	100	mA
P _{tot}	total power dissipation	$T_{sp} = 90 ^{\circ}C$	-	130	mW
T_{stg}	storage temperature		-65	+150	°C
Tj	junction temperature		-65	+150	°C

6. Thermal characteristics

Table 5. Thermal characteristics

Symbol	Parameter	Conditions	Тур	Unit
$R_{th(j-sp)}$	thermal resistance from junction to solder point		74	K/W

7. Characteristics

Table 6. Characteristics

 T_{amb} = 25 °C unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{F}	forward voltage	$I_F = 50 \text{ mA}$	-	0.95	1.1	V
I _R	reverse current	V _R = 60 V	-	-	100	nA
C_d	diode capacitance	see Figure 1; f = 1 MHz;				
		$V_R = 0 V$	-	0.32	-	pF
		$V_R = 1 V$	-	0.27	0.38	pF
		V _R = 20 V	-	0.21	0.28	pF
r _D diode forward resistance	see Figure 2; f = 100 MHz;					
		$I_F = 0.5 \text{ mA}$	-	3.3	5.0	Ω
		I _F = 1 mA	-	2.4	3.6	Ω
		I _F = 10 mA	-	1.2	1.8	Ω
		I _F = 100 mA	-	0.9	1.3	Ω
ISL	isolation	see Figure 3; V _R = 0 V;				
		f = 900 MHz	-	17	-	dB
		f = 1800 MHz	-	12	-	dB
		f = 2450 MHz	-	10	-	dB
BAP1321LX_1					© NXP B.V. 2007	'. All rights reserved

Table 6. Characteristics ... continued $T_{amb} = 25 \,^{\circ}C$ unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
L _{ins} insertion loss	insertion loss	see Figure 4; $I_F = 0.5 \text{ mA}$;				
		f = 900 MHz	-	0.25	-	dB
		f = 1800 MHz	-	0.26	-	dB
		f = 2450 MHz	-	0.27	-	dB
L _{ins}	insertion loss	see Figure 4; I _F = 1 mA;				
		f = 900 MHz	-	0.19	-	dB
		f = 1800 MHz	-	0.20	-	dB
		f = 2450 MHz	-	0.21	-	dB
L _{ins} insertion loss	insertion loss	see Figure 4; I _F = 10 mA;				
		f = 900 MHz	-	0.11	-	dB
		f = 1800 MHz	-	0.13	-	dB
	f = 2450 MHz	-	0.14	-	dB	
L _{ins}	insertion loss	see Figure 4; I _F = 100 mA;				
		f = 900 MHz	-	0.09	-	dB
		f = 1800 MHz	-	0.11	-	dB
		f = 2450 MHz	-	0.12	-	dB
τ∟	charge carrier life time	when switched from I $_{F}$ = 10 mA to I $_{R}$ = 6 mA; R $_{L}$ = 100 $\Omega;$ measured at I $_{R}$ = 3 mA	-	0.48	-	μs
L _S	series inductance	I _F = 100 mA; f = 100 MHz	-	0.4	-	nΗ

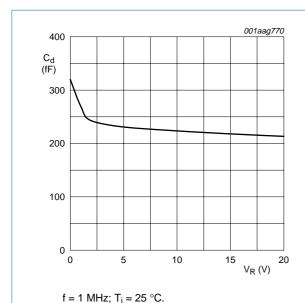


Fig 1. Diode capacitance as a function of reverse voltage; typical values

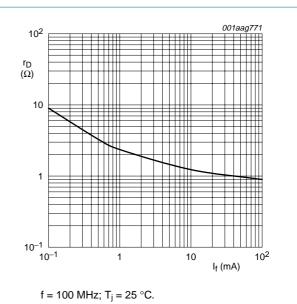
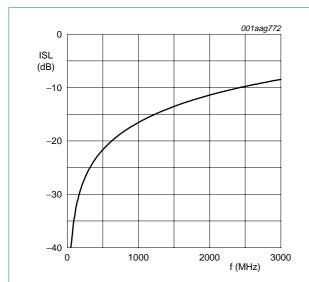
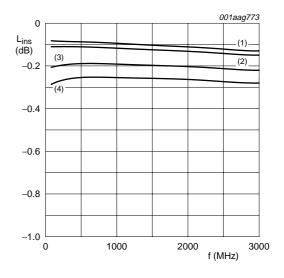




Fig 2. Forward resistance as a function of forward current; typical values

 $T_{amb} = 25 \, ^{\circ}C$

Diode zero biased and inserted in series with a 50 Ω stripline circuit

 $T_{amb} = 25 \, ^{\circ}C$

- (1) $I_F = 100 \text{ mA}$
- (2) $I_F = 10 \text{ mA}$
- (3) $I_F = 1 \text{ mA}$
- (4) $I_F = 0.5 \text{ mA}$

Diode inserted in series with a 50 Ω stripline circuit and biased via the analyzer Tee network

4 of 8

Fig 4. Insertion loss of the diode as a function of frequency; typical values

Fig 3. Isolation of the diode as a function of frequency; typical values

5 of 8

Package outline

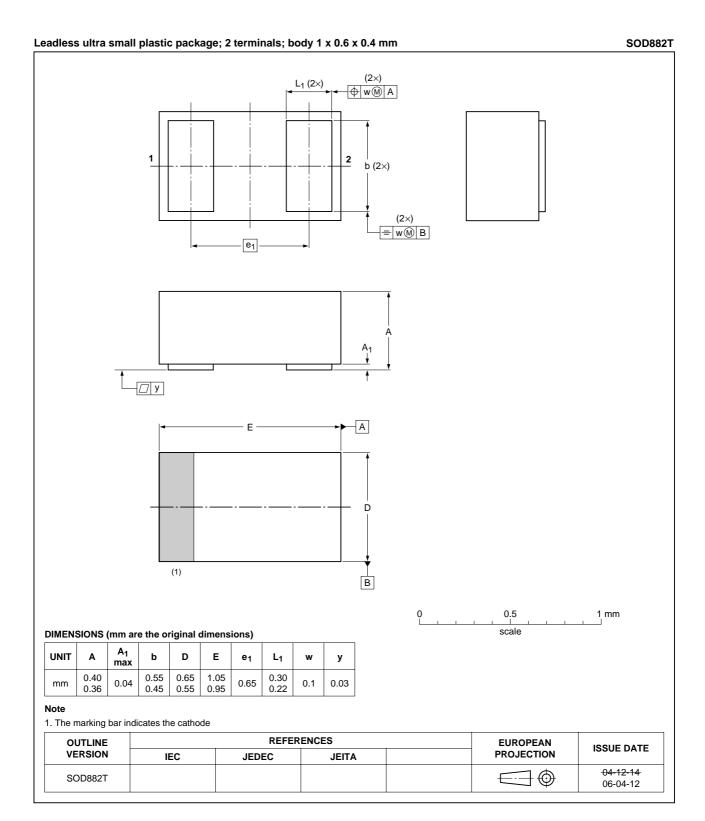


Fig 5. Package outline SOD882T

BAP1321LX_1 © NXP B.V. 2007. All rights reserved. Rev. 01 — 30 July 2007

9. Abbreviations

Table 7. Abbreviations

Acronym	Description
PIN	P-type, Intrinsic, N-type
SMD	Surface Mounted Device
RF	Radio Frequency

10. Revision history

Table 8. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
BAP1321LX_1	20070730	Product data sheet	-	-

11. Legal information

11.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

11.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

11.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of a NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

11.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

12. Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, send an email to: salesaddresses@nxp.com

13. Contents

Product profile
General description
Features
Applications
Pinning information 1
Ordering information 1
Marking 2
Limiting values
Thermal characteristics
Characteristics
Package outline 5
Abbreviations 6
Revision history 6
Legal information 7
Data sheet status
Definitions
Disclaimers
Trademarks 7
Contact information 7
Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for PIN Diodes category:

Click to view products by NXP manufacturer:

Other Similar products are found below:

MA45471 MA4PK3004 MA4SPS502 APD2220-000 BAR 63-02L E6327 BAR 64-02EL E6327 BAR 90-02ELS E6327

BAR9002ELSE6327XTSA1 1SV271TPH3F APD0810-000 MA4GP907 MA4L032-186 MA4P7435NM-1091T MA4PK2000 MA4PK2001

MA4PK2002 MA4PK2003 MA4PK2004 MADP-007167-12250T BAT 15-04R E6152 RKP300KJ#P1 HVB187YPTR-E

BAR61E6327HTSA1 BAR 64-02V H6327 MA4SPS421 MA4PBL027 MA4P404-30 MA4L022-30 CLA4610-000 BAR 89-02LRH E6327

UM7108B 1SV308,L3F UM7104D 5082-3077 DMF2822-000 GC4723-42 UM4301B UM4301D SMP1321-000 DMJ2852-000 M17X1008

MA4P7447ST-287T MA4GP022-277 UM4001SM UMX7201SM GC4271-01 UM7006B MADP-000015-000030 MGPN1503-C01A

MPL4701-206