Product data sheet

## 1. Product profile

## 1.1 General description

Silicon Monolithic Microwave Integrated Circuit (MMIC) wideband amplifier with internal matching circuit in a 6-pin SOT363 plastic SMD package.

## 1.2 Features and benefits

- Internally matched to 50  $\Omega$
- A gain of 26 dB at 950 MHz
- Output power at 1 dB gain compression = 1 dBm
- Supply current = 12.5 mA at a supply voltage of 3.3 V
- Reverse isolation > 36 dB up to 2 GHz
- Good linearity with low second order and third order products
- Noise figure = 4.1 dB at 950 MHz
- Unconditionally stable (K > 1)
- No output inductor required

## 1.3 Applications

- LNB IF amplifiers
- General purpose low noise wideband amplifier for frequencies between DC and 2.2 GHz

# 2. Pinning information

Table 1. Pinning

| Pin  | Description     | Simplified outline | Graphic symbol |
|------|-----------------|--------------------|----------------|
| 1    | V <sub>CC</sub> |                    | ,              |
| 2, 5 | GND2            | 6 5 4              |                |
| 3    | RF_OUT          |                    | 6—             |
| 4    | GND1            |                    | 4 2.5          |
| 6    | RF_IN           | <u> </u> 1         | ולה לה         |
|      |                 |                    | sym052         |



### **MMIC** wideband amplifier

# 3. Ordering information

Table 2. Ordering information

| Type number | Package | Package                                  |         |  |  |  |  |  |  |
|-------------|---------|------------------------------------------|---------|--|--|--|--|--|--|
|             | Name    | Description                              | Version |  |  |  |  |  |  |
| BGA2802     | -       | plastic surface-mounted package; 6 leads | SOT363  |  |  |  |  |  |  |

# 4. Marking

Table 3. Marking

| Type number                           | Marking code | Description               |
|---------------------------------------|--------------|---------------------------|
| BGA2802 MA* * = - : made in Hong Kong |              | * = - : made in Hong Kong |
|                                       |              | * = p : made in Hong Kong |
|                                       |              | * = W : made in China     |
|                                       |              | * = t : made in Malaysia  |

# 5. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

| Symbol             | Parameter               | Conditions              | Min  | Max  | Unit |
|--------------------|-------------------------|-------------------------|------|------|------|
| V <sub>CC</sub>    | supply voltage          | RF input AC coupled     | -0.5 | +5.0 | V    |
| Icc                | supply current          |                         | -    | 55   | mA   |
| P <sub>tot</sub>   | total power dissipation | T <sub>sp</sub> = 90 °C | -    | 200  | mW   |
| T <sub>stg</sub>   | storage temperature     |                         | -40  | +125 | °C   |
| Tj                 | junction temperature    |                         | -    | 125  | °C   |
| P <sub>drive</sub> | drive power             |                         | -    | +10  | dBm  |

## 6. Thermal characteristics

Table 5. Thermal characteristics

| Symbol                | Parameter                                        | Conditions                                               | Тур | Unit |
|-----------------------|--------------------------------------------------|----------------------------------------------------------|-----|------|
| R <sub>th(j-sp)</sub> | thermal resistance from junction to solder point | $P_{tot} = 200 \text{ mW}; T_{sp} = 90 ^{\circ}\text{C}$ | 300 | K/W  |

## 7. Characteristics

#### Table 6. Characteristics

 $V_{CC} = 3.3 \text{ V}; Z_S = Z_L = 50 \Omega; P_i = -40 \text{ dBm}; T_{amb} = 25 \text{ °C}; measured on demo board; unless otherwise specified.}$ 

| Symbol          | Parameter      | Conditions | Min | Тур  | Max  | Unit |
|-----------------|----------------|------------|-----|------|------|------|
| $V_{CC}$        | supply voltage |            | 3.0 | 3.3  | 3.6  | V    |
| I <sub>CC</sub> | supply current |            | 9.8 | 12.5 | 15.2 | mΑ   |

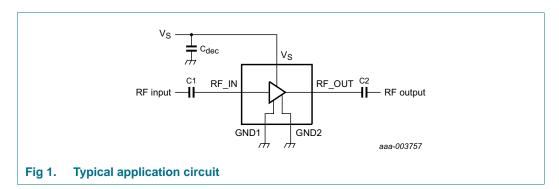
BGA2802

## **MMIC** wideband amplifier

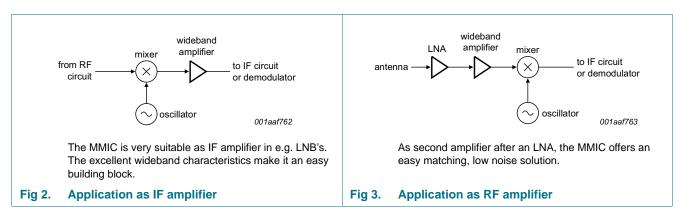
 Table 6.
 Characteristics ...continued

 $V_{CC} = 3.3 \text{ V; } Z_S = Z_L = 50 \Omega; P_i = -40 \text{ dBm; } T_{amb} = 25 \text{ °C; measured on demo board; unless otherwise specified.}$ 

| F = 950 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Symbol              | Parameter                             | Conditions                                            | Min  | Тур  | Max  | Unit |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------|-------------------------------------------------------|------|------|------|------|
| RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Gp                  | power gain                            | f = 250 MHz                                           | 25.0 | 25.6 | 26.2 | dB   |
| RL   Input return loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |                                       | f = 950 MHz                                           | 25.2 | 26   | 26.7 | dB   |
| F = 950 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                       | f = 2150 MHz                                          | 23.7 | 25.1 | 26.6 | dB   |
| RL_out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RLin                | input return loss                     | f = 250 MHz                                           | 12   | 14   | 16   | dB   |
| RLout   Output return loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                                       | f = 950 MHz                                           | 14   | 17   | 19   | dB   |
| F = 950 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                       | f = 2150 MHz                                          | 16   | 22   | 29   | dB   |
| F = 2150 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RL <sub>out</sub>   | output return loss                    | f = 250 MHz                                           | 19   | 23   | 27   | dB   |
| Solution   F = 250 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |                                       | f = 950 MHz                                           | 15   | 16   | 17   | dB   |
| F = 950 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                       | f = 2150 MHz                                          | 11   | 14   | 17   | dB   |
| F = 2150 MHz   S   S   S   S   S   S   S   S   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ISL                 | isolation                             | f = 250 MHz                                           | 43   | 64   | 84   | dB   |
| NF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                                       | f = 950 MHz                                           | 47   | 49   | 51   | dB   |
| F = 950 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                       | f = 2150 MHz                                          | 36   | 40   | 42   | dB   |
| F = 2150 MHz   3.1   3.6   4.0   dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NF                  | noise figure                          | f = 250 MHz                                           | 3.7  | 4.2  | 4.7  | dB   |
| B_3dB       −3 dB bandwidth       3 dB below gain at 1 GHz       2.5       2.7       2.9       GHz         K       Rollett stability factor       f = 250 MHz       25       40       56       7.5         f = 950 MHz       5       6.5       7.5       3         FL(sat)       saturated output power       f = 250 MHz       4       5       5       dBm         FL(1dB)       output power at 1 dB gain compression       f = 250 MHz       2       4       5       dBm         FL(1dB)       output power at 1 dB gain compression       f = 250 MHz       2       3       3 dBm         f = 950 MHz       6       2       3       3 dBm         f = 250 MHz       0       1       3       dBm         f = 950 MHz       0       1       3       dBm         f = 950 MHz       0       1       3       dBm         f = 250 MHz       0       1       3       dBm         f = 250 MHz       1       -4       -3       -2       dBm         d = 2150 MHz       1       -4       -3       -2       dBm         f = 250 MHz       1       -5       -13       -11       dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                       | f = 950 MHz                                           | 3.7  | 4.1  | 4.5  | dB   |
| Rollett stability factor   F = 250 MHz   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                                       | f = 2150 MHz                                          | 3.1  | 3.6  | 4.0  | dB   |
| F = 950 MHz   F = 2150 MHz   F =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B <sub>-3dB</sub>   | -3 dB bandwidth                       | 3 dB below gain at 1 GHz                              | 2.5  | 2.7  | 2.9  | GHz  |
| $ \begin{array}{c} F_{L(sat)} \\ P_{L(sat)} \\ P_{L(sat)} \\ P_{L(sat)} \\ P_{L(1dB)} \\ P_{L(1dB)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | K                   | Rollett stability factor              | f = 250 MHz                                           | 25   | 40   | 56   |      |
| $\begin{array}{c} P_{L(sat)} \\ P_{L(sat)} \\ P_{L(sat)} \\ P_{L(sat)} \\ P_{L(1dB)} \\ P_{L(2d)} \\ P_{L(2d)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                                       | f = 950 MHz                                           | 5    | 6.5  | 7.5  |      |
| $ \begin{array}{c}                                   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |                                       | f = 2150 MHz                                          | 1.5  | 2.5  | 3    |      |
| $\begin{array}{c} F = 2150 \text{ MHz} & -2 & -1 & 0 & \text{dBm} \\ F_{L(1dB)} & \text{output power at 1 dB gain compression} & f = 250 \text{ MHz} & 2 & 3 & 3 & \text{dBm} \\ \hline f = 950 \text{ MHz} & 0 & 1 & 3 & \text{dBm} \\ \hline f = 950 \text{ MHz} & 0 & 1 & 3 & \text{dBm} \\ \hline f = 2150 \text{ MHz} & -4 & -3 & -2 & \text{dBm} \\ \hline IP3_I & \text{input third-order intercept point} & P_{drive} = -40 \text{ dBm (for each tone)} & -12 & -10 & -8 & \text{dBm} \\ \hline f_1 = 250 \text{ MHz}; f_2 = 251 \text{ MHz} & -12 & -10 & -8 & \text{dBm} \\ \hline f_1 = 950 \text{ MHz}; f_2 = 951 \text{ MHz} & -15 & -13 & -11 & \text{dBm} \\ \hline f_1 = 2150 \text{ MHz}; f_2 = 2151 \text{ MHz} & -22 & -19 & -16 & \text{dBm} \\ \hline IP3_O & \text{output third-order intercept point} & P_{drive} = -40 \text{ dBm (for each tone)} & -22 & -19 & -16 & \text{dBm} \\ \hline f_1 = 250 \text{ MHz}; f_2 = 251 \text{ MHz} & 13 & 15 & 17 & \text{dBm} \\ \hline f_1 = 250 \text{ MHz}; f_2 = 251 \text{ MHz} & 13 & 15 & 17 & \text{dBm} \\ \hline f_1 = 250 \text{ MHz}; f_2 = 251 \text{ MHz} & 11 & 13 & 15 & \text{dBm} \\ \hline f_1 = 2150 \text{ MHz}; f_2 = 2151 \text{ MHz} & 3 & 6 & 9 & \text{dBm} \\ \hline F_{11} = 250 \text{ MHz}; f_{21} = 500 \text{ MHz} & -58 & -56 & -54 & \text{dBm} \\ \hline f_{11} = 250 \text{ MHz}; f_{22} = 1900 \text{ MHz} & -48 & -46 & -45 & \text{dBm} \\ \hline I_{11} = 950 \text{ MHz}; f_{21} = 1900 \text{ MHz} & -48 & -46 & -45 & \text{dBm} \\ \hline I_{11} = 250 \text{ MHz}; f_{22} = 251 \text{ MHz} & -48 & -46 & -45 & \text{dBm} \\ \hline I_{11} = 250 \text{ MHz}; f_{22} = 251 \text{ MHz} & -48 & -46 & -45 & \text{dBm} \\ \hline I_{11} = 250 \text{ MHz}; f_{22} = 251 \text{ MHz} & -48 & -46 & -45 & \text{dBm} \\ \hline I_{11} = 250 \text{ MHz}; f_{22} = 251 \text{ MHz} & -48 & -46 & -45 & \text{dBm} \\ \hline I_{11} = 250 \text{ MHz}; f_{22} = 251 \text{ MHz} & -48 & -46 & -45 & \text{dBm} \\ \hline I_{12} = 250 \text{ MHz}; f_{22} = 251 \text{ MHz} & -48 & -46 & -45 & \text{dBm} \\ \hline I_{12} = 250 \text{ MHz}; f_{22} = 251 \text{ MHz} & -48 & -46 & -45 & \text{dBm} \\ \hline I_{12} = 250 \text{ MHz}; f_{22} = 251 \text{ MHz} & -48 & -46 & -45 & \text{dBm} \\ \hline I_{12} = 250 \text{ MHz}; f_{22} = 251 \text{ MHz} & -48 & -46 & -45 & \text{dBm} \\ \hline I_{13} = 250 \text{ MHz}; f_{22} = 251 \text{ MHz} & -48 & -46 & -45 & \text{dBm} \\ \hline I_{13} = 250 \text{ MHz}; f_{22} = 251 \text{ MHz} & -48 & -46 & -45 & \text{dBm} \\ \hline I_{13} = 250 \text{ MHz}; f_{22} = 251 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P <sub>L(sat)</sub> | saturated output power                | f = 250 MHz                                           | 4    | 5    | 5    | dBm  |
| $\begin{array}{c} P_{L(1dB)} \\ P_{L(1d)} \\ P_{L(1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                                       | f = 950 MHz                                           | 2    | 4    | 5    | dBm  |
| $ \begin{array}{c} f = 950 \text{ MHz} \\ f = 2150 \text{ MHz} \\ f = 2150 \text{ MHz} \\ \end{array} \begin{array}{c} 0 \\ -4 \\ -3 \\ -2 \\ \end{array} \begin{array}{c} 3 \\ -2 \\ \end{array} \begin{array}{c} \text{dBm} \\ \end{array} \end{array} $ input third-order intercept point $ \begin{array}{c} P_{drive} = -40 \text{ dBm (for each tone)} \\ f_1 = 250 \text{ MHz; } f_2 = 251 \text{ MHz} \\ f_1 = 950 \text{ MHz; } f_2 = 251 \text{ MHz} \\ \end{array} \begin{array}{c} -12 \\ -10 \\ -8 \\ \end{array} \begin{array}{c} -4 \\ -3 \\ \end{array} \begin{array}{c} -2 \\ \end{array} \begin{array}{c} -4 \\ \end{array} \begin{array}{c} -3 \\ \end{array} \begin{array}{c} -2 \\ \end{array} \begin{array}{c} -4 \\ \end{array} \begin{array}{c} -3 \\ \end{array} \begin{array}{c} -2 \\ \end{array} \begin{array}{c} -4 \\ \end{array} \begin{array}{c} -3 \\ \end{array} \begin{array}{c} -2 \\ \end{array} \begin{array}{c} -4 \\ \end{array} \begin{array}{c} -3 \\ \end{array} \begin{array}{c} -2 \\ \end{array} \begin{array}{c} -4 \\ \end{array} \begin{array}{c} -3 \\ \end{array} \begin{array}{c} -2 \\ \end{array} \begin{array}{c} -4 \\ \end{array} \begin{array}{c} -3 \\ \end{array} \begin{array}{c} -2 \\ \end{array} \begin{array}{c} -10 \\ \end{array} \begin{array}{c} -8 \\ \end{array} \begin{array}{c} -8 \\ \end{array} \begin{array}{c} -8 \\ \end{array} \begin{array}{c} -10 \\ \end{array} \begin{array}{c} -8 \\ \end{array} \begin{array}{c} -10 \\ \end{array} \begin{array}{c} -8 \\ \end{array} \begin{array}{c} -10 \\ \end{array} \begin{array}{c} -8 \\ \end{array} \begin{array}{c} -11 \\ \end{array} \begin{array}{c} -10 \\ \end{array} \begin{array}{c} -8 \\ \end{array} \begin{array}{c} -11 $ |                     |                                       | f = 2150 MHz                                          | -2   | -1   | 0    | dBm  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P <sub>L(1dB)</sub> | output power at 1 dB gain compression | f = 250 MHz                                           | 2    | 3    | 3    | dBm  |
| $ \begin{array}{c} \text{IP3}_{\text{l}} \\ \text{IP3}_{\text{l}} \\ \text{Input third-order intercept point} \\ \end{array} \begin{array}{c} P_{\text{drive}} = -40 \text{ dBm (for each tone)} \\ \hline f_1 = 250 \text{ MHz; } f_2 = 251 \text{ MHz} \\ \hline f_1 = 950 \text{ MHz; } f_2 = 951 \text{ MHz} \\ \hline f_1 = 2150 \text{ MHz; } f_2 = 951 \text{ MHz} \\ \hline f_1 = 2150 \text{ MHz; } f_2 = 2151 \text{ MHz} \\ \hline \end{array} \begin{array}{c} -15 \\ -13 \\ -11 \\ \text{dBm} \\ \hline \end{array} \begin{array}{c} -16 \\ \text{dBm} \\ \hline \end{array} \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                                       | f = 950 MHz                                           | 0    | 1    | 3    | dBm  |
| $ \begin{array}{c} f_1 = 250 \text{ MHz}; \ f_2 = 251 \text{ MHz} & -12 & -10 & -8 & \text{dBm} \\ f_1 = 950 \text{ MHz}; \ f_2 = 951 \text{ MHz} & -15 & -13 & -11 & \text{dBm} \\ f_1 = 2150 \text{ MHz}; \ f_2 = 2151 \text{ MHz} & -22 & -19 & -16 & \text{dBm} \\ \hline \\ IP3_O \\ & & & & & & & & & & & & & & \\ P_{drive} = -40 \text{ dBm} \text{ (for each tone)} \\ & & & & & & & & & & & & \\ f_1 = 250 \text{ MHz}; \ f_2 = 251 \text{ MHz} & 13 & 15 & 17 & \text{dBm} \\ & & & & & & & & & & & \\ f_1 = 250 \text{ MHz}; \ f_2 = 251 \text{ MHz} & 11 & 13 & 15 & \text{dBm} \\ & & & & & & & & & & \\ f_1 = 2150 \text{ MHz}; \ f_2 = 2151 \text{ MHz} & 3 & 6 & 9 & \text{dBm} \\ \hline \\ P_{L(2H)} \\ & & & & & & & & & \\ P_{drive} = -40 \text{ dBm} & & & & & \\ \hline \\ f_{1H} = 250 \text{ MHz}; \ f_{2H} = 500 \text{ MHz} & -58 & -56 & -54 & \text{dBm} \\ \hline \\ f_{1H} = 950 \text{ MHz}; \ f_{2H} = 1900 \text{ MHz} & -48 & -46 & -45 & \text{dBm} \\ \hline \\ \Delta IM2 \\ & & & & & & & & & \\ \hline \\ \Delta IM2 \\ & & & & & & & & & \\ \end{array} $ second-order intermodulation distance $ \begin{array}{c} P_{drive} = -40 \text{ dBm} \text{ (for each tone)} \\ \hline \\ f_1 = 250 \text{ MHz}; \ f_2 = 251 \text{ MHz} & 45 & 47 & 49 & \text{dBc} \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                                       | f = 2150 MHz                                          | -4   | -3   | -2   | dBm  |
| $ \begin{array}{c} f_1 = 950 \text{ MHz}; \ f_2 = 951 \text{ MHz} & -15 & -13 & -11 & \text{dBm} \\ f_1 = 2150 \text{ MHz}; \ f_2 = 2151 \text{ MHz} & -22 & -19 & -16 & \text{dBm} \\ \hline \\ IP3_O \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IP3 <sub>I</sub>    | input third-order intercept point     | P <sub>drive</sub> = -40 dBm (for each tone)          |      |      |      |      |
| $ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                                       | f <sub>1</sub> = 250 MHz; f <sub>2</sub> = 251 MHz    | -12  | -10  | -8   | dBm  |
| $ \begin{array}{c} \text{IP3}_{O} \\ \text{P}_{drive} = -40 \text{ dBm (for each tone)} \\ \text{f}_{1} = 250 \text{ MHz; f}_{2} = 251 \text{ MHz} \\ \text{f}_{1} = 950 \text{ MHz; f}_{2} = 951 \text{ MHz} \\ \text{f}_{1} = 2150 \text{ MHz; f}_{2} = 2151 \text{ MHz} \\ \text{f}_{1} = 2150 \text{ MHz; f}_{2} = 2151 \text{ MHz} \\ \text{g}_{1} = 2150 \text{ MHz; f}_{2} = 2151 \text{ MHz} \\ \text{g}_{2} = 2151 \text{ MHz} \\ \text{g}_{3} = 2150 \text{ MHz; f}_{2} = 2151 \text{ MHz} \\ \text{g}_{3} = 2150 \text{ MHz; f}_{2} = 2151 \text{ MHz} \\ \text{g}_{3} = 2150 \text{ MHz; f}_{2} = 2151 \text{ MHz} \\ \text{g}_{3} = 2150 \text{ MHz; f}_{2} = 2151 \text{ MHz} \\ \text{g}_{3} = 2150 \text{ MHz; f}_{2} = 2151 \text{ MHz} \\ \text{g}_{4} = 2150 \text{ MHz; f}_{2} = 2151 \text{ MHz} \\ \text{g}_{4} = 2150 \text{ MHz; f}_{2} = 2151 \text{ MHz} \\ \text{g}_{4} = 2150 \text{ MHz; f}_{2} = 2151 \text{ MHz} \\ \text{g}_{4} = 2150 \text{ MHz; f}_{2} = 2151 \text{ MHz} \\ \text{g}_{4} = 2150 \text{ MHz; f}_{2} = 2151 \text{ MHz} \\ \text{g}_{4} = 2150 \text{ MHz; f}_{2} = 2151 \text{ MHz} \\ \text{g}_{4} = 2150 \text{ MHz; f}_{2} = 2151 \text{ MHz} \\ \text{g}_{4} = 2150 \text{ MHz; f}_{2} = 2151 \text{ MHz} \\ \text{g}_{4} = 2150 \text{ MHz; f}_{2} = 2151 \text{ MHz} \\ \text{g}_{4} = 2150 \text{ MHz; f}_{2} = 2151 \text{ MHz} \\ \text{g}_{4} = 2150 \text{ MHz; f}_{2} = 2151 \text{ MHz} \\ \text{g}_{4} = 2150 \text{ MHz; f}_{2} = 2151 \text{ MHz} \\ \text{g}_{4} = 2150 \text{ MHz; f}_{2} = 2151 \text{ MHz} \\ \text{g}_{4} = 2150 \text{ MHz; f}_{2} = 2151 \text{ MHz} \\ \text{g}_{4} = 2150 \text{ MHz; f}_{2} = 2151 \text{ MHz} \\ \text{g}_{4} = 2150 \text{ MHz; f}_{2} = 2151 \text{ MHz} \\ \text{g}_{4} = 2150 \text{ MHz; f}_{2} = 2151 \text{ MHz} \\ \text{g}_{4} = 2150 \text{ MHz; f}_{2} = 2151 \text{ MHz} \\ \text{g}_{4} = 2150 \text{ MHz; f}_{2} = 2151 \text{ MHz} \\ \text{g}_{4} = 2150 \text{ MHz; f}_{2} = 2151 \text{ MHz} \\ \text{g}_{4} = 2150 \text{ MHz; f}_{2} = 2151 \text{ MHz} \\ \text{g}_{4} = 2150 \text{ MHz; f}_{2} = 2151 \text{ MHz} \\ \text{g}_{4} = 2150 \text{ MHz; f}_{2} = 2151 \text{ MHz} \\ \text{g}_{4} = 2150 \text{ MHz; f}_{2} = 2151 \text{ MHz} \\ \text{g}_{4} = 2150 \text{ MHz; f}_{2} = 2151 \text{ MHz} \\ \text{g}_{4} = 2150 \text{ MHz; f}_{2} = 2151 \text{ MHz} \\ \text{g}_{4} = 2150 \text{ MHz; f}_{2} = 2151 \text{ MHz} \\ \text{g}_{4} = 2150 \text{ MHz; f}_{2} = 2151 \text{ MHz} \\ \text{g}_{4} = 2150 \text{ MHz; f}_{2} = 2151 \text{ MHz} \\ \text{g}_{4} = 2150 \text{ MHz; f}_{2} = 2151 \text{ MHz} \\ \text{g}_{4} = 2150 \text{ MHz; f}_{2} = 2151 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |                                       | f <sub>1</sub> = 950 MHz; f <sub>2</sub> = 951 MHz    | -15  | -13  | -11  | dBm  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                                       | f <sub>1</sub> = 2150 MHz; f <sub>2</sub> = 2151 MHz  | -22  | -19  | -16  | dBm  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IP3 <sub>O</sub>    | output third-order intercept point    | P <sub>drive</sub> = -40 dBm (for each tone)          |      |      |      |      |
| $ \begin{array}{c} f_{1} = 2150 \text{ MHz};  f_{2} = 2151 \text{ MHz} & 3 & 6 & 9 & \text{dBm} \\ \hline P_{L(2H)} & \text{second harmonic output power} & P_{drive} = -40 \text{ dBm} & & & \\ \hline f_{1H} = 250 \text{ MHz};  f_{2H} = 500 \text{ MHz} & -58 & -56 & -54 & \text{dBm} \\ \hline f_{1H} = 950 \text{ MHz};  f_{2H} = 1900 \text{ MHz} & -48 & -46 & -45 & \text{dBm} \\ \hline \Delta IM2 & \text{second-order intermodulation distance} & P_{drive} = -40 \text{ dBm (for each tone)} & & & & \\ \hline f_{1} = 250 \text{ MHz};  f_{2} = 251 \text{ MHz} & 45 & 47 & 49 & \text{dBc} \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                                       | f <sub>1</sub> = 250 MHz; f <sub>2</sub> = 251 MHz    | 13   | 15   | 17   | dBm  |
| $ \begin{array}{c} P_{L(2H)} \\ \hline \\ P_{L(2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                                       | f <sub>1</sub> = 950 MHz; f <sub>2</sub> = 951 MHz    | 11   | 13   | 15   | dBm  |
| $f_{1H} = 250 \text{ MHz}; \ f_{2H} = 500 \text{ MHz} \qquad -58 \qquad -56 \qquad -54 \qquad \text{dBm}$ $f_{1H} = 950 \text{ MHz}; \ f_{2H} = 1900 \text{ MHz} \qquad -48 \qquad -46 \qquad -45 \qquad \text{dBm}$ $\Delta \text{IM2} \qquad \text{second-order intermodulation distance} \qquad P_{\text{drive}} = -40 \text{ dBm (for each tone)} \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                       | f <sub>1</sub> = 2150 MHz; f <sub>2</sub> = 2151 MHz  | 3    | 6    | 9    | dBm  |
| $f_{1H} = 950 \text{ MHz}; f_{2H} = 1900 \text{ MHz} \qquad -48 \qquad -46 \qquad -45 \qquad \text{dBm}$ $\Delta \text{IM2} \qquad \text{second-order intermodulation distance} \qquad P_{\text{drive}} = -40 \text{ dBm (for each tone)} \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P <sub>L(2H)</sub>  | second harmonic output power          | P <sub>drive</sub> = -40 dBm                          |      |      |      |      |
| $\Delta$ IM2 second-order intermodulation distance $ P_{drive} = -40 \text{ dBm (for each tone)}  $ $ f_1 = 250 \text{ MHz}; f_2 = 251 \text{ MHz}  $ $ 45  47  49  dBc $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                                       | f <sub>1H</sub> = 250 MHz; f <sub>2H</sub> = 500 MHz  | -58  | -56  | -54  | dBm  |
| $f_1 = 250 \text{ MHz}; f_2 = 251 \text{ MHz}$ 45 47 49 dBc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                       | f <sub>1H</sub> = 950 MHz; f <sub>2H</sub> = 1900 MHz | -48  | -46  | -45  | dBm  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ΔΙΜ2                | second-order intermodulation distance | P <sub>drive</sub> = -40 dBm (for each tone)          |      |      |      |      |
| $f_1 = 950 \text{ MHz}; f_2 = 951 \text{ MHz}$ 38 40 41 dBc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                       | f <sub>1</sub> = 250 MHz; f <sub>2</sub> = 251 MHz    | 45   | 47   | 49   | dBc  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                                       | f <sub>1</sub> = 950 MHz; f <sub>2</sub> = 951 MHz    | 38   | 40   | 41   | dBc  |

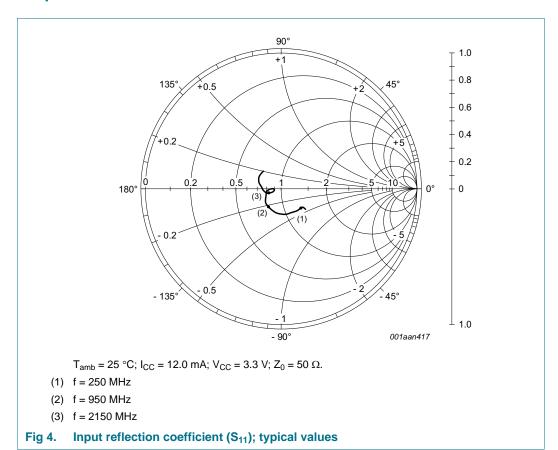

**MMIC** wideband amplifier

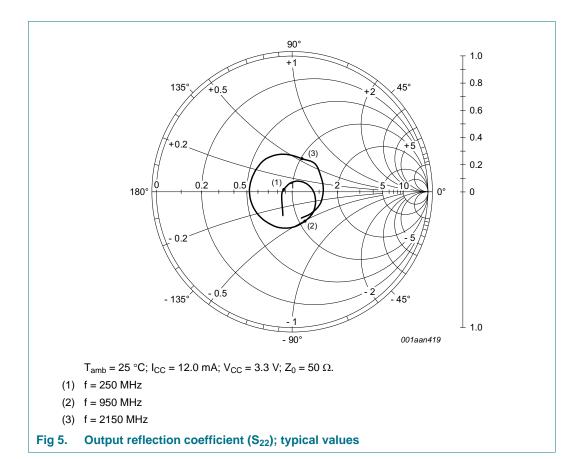
# 8. Application information


<u>Figure 1</u> shows a typical application circuit for the BGA2802 MMIC. The device is internally matched to  $50~\Omega$ , and therefore does not need any external matching. The value of the input and output DC blocking capacitors C2 and C3 should not be more than 100 pF for applications above 100 MHz. However, when the device is operated below 100 MHz, the capacitor value should be increased.

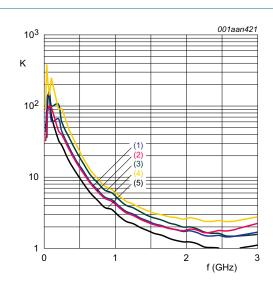
The location of the 470 pF supply decoupling capacitor (C<sub>dec</sub>) can be precisely chosen for optimum performance.

The PCB top ground plane, connected to pins 2, 4 and 5 must be as close as possible to the MMIC, preferably also below the MMIC. When using via holes, use multiple via holes as close as possible to the MMIC.





### 8.1 Application examples

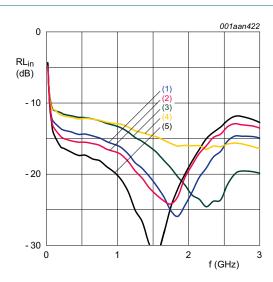



## **MMIC** wideband amplifier

# 8.2 Graphs





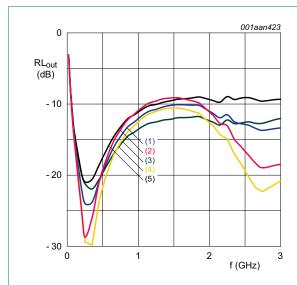

## **MMIC** wideband amplifier



 $P_{drive} = -40 \text{ dBm}; Z_0 = 50 \Omega.$ 

- (1)  $V_{CC} = 3.0 \text{ V}$ ;  $T_{amb} = 85 \,^{\circ}\text{C}$ ;  $I_{CC} = 10.00 \,\text{mA}$
- (2)  $V_{CC} = 3.0 \text{ V}$ ;  $T_{amb} = -40 \,^{\circ}\text{C}$ ;  $I_{CC} = 11.10 \,\text{mA}$
- (3)  $V_{CC} = 3.3 \text{ V}$ ;  $T_{amb} = 25 \,^{\circ}\text{C}$ ;  $I_{CC} = 12.00 \,\text{mA}$
- (4)  $V_{CC} = 3.6 \text{ V}$ ;  $T_{amb} = 85 \,^{\circ}\text{C}$ ;  $I_{CC} = 12.90 \,\text{mA}$
- (5)  $V_{CC} = 3.6 \text{ V}$ ;  $T_{amb} = -40 \,^{\circ}\text{C}$ ;  $I_{CC} = 14.20 \,\text{mA}$

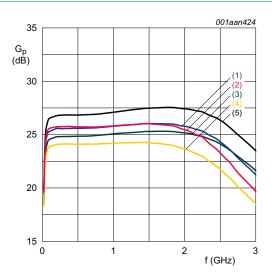
Fig 6. Rollett stability factor as function of frequency; typical values




 $P_{drive} = -40 \text{ dBm}; Z_0 = 50 \Omega.$ 

- (1)  $V_{CC} = 3.0 \text{ V}$ ;  $T_{amb} = 85 \,^{\circ}\text{C}$ ;  $I_{CC} = 10.00 \,\text{mA}$
- (2)  $V_{CC} = 3.0 \text{ V}$ ;  $T_{amb} = -40 \,^{\circ}\text{C}$ ;  $I_{CC} = 11.10 \,\text{mA}$
- (3)  $V_{CC} = 3.3 \text{ V}$ ;  $T_{amb} = 25 \,^{\circ}\text{C}$ ;  $I_{CC} = 12.00 \,\text{mA}$
- (4)  $V_{CC} = 3.6 \text{ V}$ ;  $T_{amb} = 85 \,^{\circ}\text{C}$ ;  $I_{CC} = 12.90 \,\text{mA}$
- (5)  $V_{CC} = 3.6 \text{ V}$ ;  $T_{amb} = -40 \,^{\circ}\text{C}$ ;  $I_{CC} = 14.20 \,\text{mA}$

Fig 7. Input return loss as function of frequency; typical values

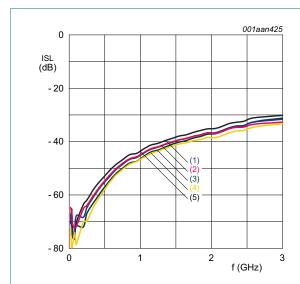

## **MMIC** wideband amplifier



 $P_{drive} = -40 \text{ dBm}; Z_0 = 50 \Omega.$ 

- (1)  $V_{CC} = 3.0 \text{ V}$ ;  $T_{amb} = 85 \,^{\circ}\text{C}$ ;  $I_{CC} = 10.00 \,\text{mA}$
- (2)  $V_{CC} = 3.0 \text{ V}$ ;  $T_{amb} = -40 \,^{\circ}\text{C}$ ;  $I_{CC} = 11.10 \,\text{mA}$
- (3)  $V_{CC} = 3.3 \text{ V}$ ;  $T_{amb} = 25 \,^{\circ}\text{C}$ ;  $I_{CC} = 12.00 \,\text{mA}$
- (4)  $V_{CC} = 3.6 \text{ V}; T_{amb} = 85 \,^{\circ}\text{C}; I_{CC} = 12.90 \text{ mA}$
- (5)  $V_{CC} = 3.6 \text{ V}$ ;  $T_{amb} = -40 \,^{\circ}\text{C}$ ;  $I_{CC} = 14.20 \,\text{mA}$

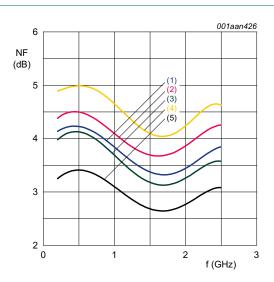
Fig 8. Output return loss as function of frequency; typical values




 $P_{drive} = -40 \text{ dBm}; Z_0 = 50 \Omega.$ 

- (1)  $V_{CC} = 3.0 \text{ V}$ ;  $T_{amb} = 85 \,^{\circ}\text{C}$ ;  $I_{CC} = 10.00 \,\text{mA}$
- (2)  $V_{CC} = 3.0 \text{ V}$ ;  $T_{amb} = -40 \,^{\circ}\text{C}$ ;  $I_{CC} = 11.10 \,\text{mA}$
- (3)  $V_{CC} = 3.3 \text{ V}$ ;  $T_{amb} = 25 \,^{\circ}\text{C}$ ;  $I_{CC} = 12.00 \,\text{mA}$
- (4)  $V_{CC} = 3.6 \text{ V}$ ;  $T_{amb} = 85 \,^{\circ}\text{C}$ ;  $I_{CC} = 12.90 \,\text{mA}$
- (5)  $V_{CC} = 3.6 \text{ V}$ ;  $T_{amb} = -40 \,^{\circ}\text{C}$ ;  $I_{CC} = 14.20 \,\text{mA}$

Fig 9. Power gain as function of frequency; typical values


#### **MMIC** wideband amplifier



 $P_{drive} = -40 \text{ dBm}; Z_0 = 50 \Omega.$ 

- (1)  $V_{CC} = 3.0 \text{ V}$ ;  $T_{amb} = 85 \,^{\circ}\text{C}$ ;  $I_{CC} = 10.00 \,\text{mA}$
- (2)  $V_{CC} = 3.0 \text{ V}$ ;  $T_{amb} = -40 \,^{\circ}\text{C}$ ;  $I_{CC} = 11.10 \,\text{mA}$
- (3)  $V_{CC} = 3.3 \text{ V}$ ;  $T_{amb} = 25 \,^{\circ}\text{C}$ ;  $I_{CC} = 12.00 \,\text{mA}$
- (4)  $V_{CC} = 3.6 \text{ V}$ ;  $T_{amb} = 85 \,^{\circ}\text{C}$ ;  $I_{CC} = 12.90 \,\text{mA}$
- (5)  $V_{CC} = 3.6 \text{ V}$ ;  $T_{amb} = -40 \,^{\circ}\text{C}$ ;  $I_{CC} = 14.20 \,\text{mA}$

Fig 10. Isolation as function of frequency; typical values



 $Z_0 = 50 \Omega$ .

- (1)  $V_{CC} = 3.0 \text{ V}$ ;  $T_{amb} = 85 \,^{\circ}\text{C}$ ;  $I_{CC} = 10.00 \,\text{mA}$
- (2)  $V_{CC} = 3.0 \text{ V}$ ;  $T_{amb} = -40 \,^{\circ}\text{C}$ ;  $I_{CC} = 11.10 \,\text{mA}$
- (3)  $V_{CC} = 3.3 \text{ V}$ ;  $T_{amb} = 25 \,^{\circ}\text{C}$ ;  $I_{CC} = 12.00 \,\text{mA}$
- (4)  $V_{CC} = 3.6 \text{ V}$ ;  $T_{amb} = 85 \,^{\circ}\text{C}$ ;  $I_{CC} = 12.90 \,\text{mA}$
- (5)  $V_{CC} = 3.6 \text{ V}$ ;  $T_{amb} = -40 \,^{\circ}\text{C}$ ;  $I_{CC} = 14.20 \,\text{mA}$

Fig 11. Noise figure as function of frequency; typical values

#### 8.3 Tables

Table 7. Supply current over temperature and supply voltages Typical values.

| Symbol          | Parameter      | Conditions               | T <sub>amb</sub> (°C) |       |       | T <sub>amb</sub> (°C) |  |  | Unit |
|-----------------|----------------|--------------------------|-----------------------|-------|-------|-----------------------|--|--|------|
|                 |                |                          | -40                   | +25   | +85   |                       |  |  |      |
| I <sub>cc</sub> | supply current | $V_{CC} = 3.0 \text{ V}$ | 11.10                 | 10.50 | 10.00 | mA                    |  |  |      |
|                 |                | $V_{CC} = 3.3 \text{ V}$ | 12.70                 | 12.00 | 11.50 | mA                    |  |  |      |
|                 |                | $V_{CC} = 3.6 \text{ V}$ | 14.20                 | 13.50 | 12.90 | mA                    |  |  |      |

Table 8. Second harmonic output power over temperature and supply voltages Typical values.

| Symbol             | Parameter                    | Conditions                                         | T <sub>amb</sub> (°C) |     | Unit |     |
|--------------------|------------------------------|----------------------------------------------------|-----------------------|-----|------|-----|
|                    |                              |                                                    | -40                   | +25 | +85  |     |
| P <sub>L(2H)</sub> | second harmonic output power | $f = 250 \text{ MHz}; P_{drive} = -40 \text{ dBm}$ |                       |     |      |     |
|                    |                              | V <sub>CC</sub> = 3.0 V                            | -52                   | -55 | -59  | dBm |
|                    |                              | V <sub>CC</sub> = 3.3 V                            | -53                   | -56 | -59  | dBm |
|                    |                              | V <sub>CC</sub> = 3.6 V                            | -54                   | -56 | -59  | dBm |
|                    |                              | $f = 950 \text{ MHz}; P_{drive} = -40 \text{ dBm}$ |                       |     |      |     |
|                    |                              | V <sub>CC</sub> = 3.0 V                            | -46                   | -47 | -48  | dBm |
|                    |                              | V <sub>CC</sub> = 3.3 V                            | -45                   | -46 | -48  | dBm |
|                    |                              | V <sub>CC</sub> = 3.6 V                            | -45                   | -46 | -47  | dBm |

BGA2802

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors N.V. 2015. All rights reserved.

Table 9. Input power at 1 dB gain compression over temperature and supply voltages *Typical values*.

| Symbol              | Parameter                            | Conditions               | T <sub>amb</sub> | (°C) |     | Unit |
|---------------------|--------------------------------------|--------------------------|------------------|------|-----|------|
|                     |                                      |                          | -40              | +25  | +85 |      |
| P <sub>i(1dB)</sub> | input power at 1 dB gain compression | f = 250 MHz              |                  |      |     |      |
|                     |                                      | V <sub>CC</sub> = 3.0 V  | -23              | -23  | -23 | dBm  |
|                     |                                      | $V_{CC} = 3.3 \text{ V}$ | -22              | -22  | -22 | dBm  |
|                     |                                      | V <sub>CC</sub> = 3.6 V  | -21              | -22  | -22 | dBm  |
|                     |                                      | f = 950 MHz              |                  |      |     |      |
|                     |                                      | V <sub>CC</sub> = 3.0 V  | -23              | -24  | -24 | dBm  |
|                     |                                      | $V_{CC} = 3.3 \text{ V}$ | -23              | -23  | -24 | dBm  |
|                     |                                      | V <sub>CC</sub> = 3.6 V  | -22              | -23  | -24 | dBm  |
|                     |                                      | f = 2150 MHz             |                  |      |     |      |
|                     |                                      | V <sub>CC</sub> = 3.0 V  | -26              | -27  | -28 | dBm  |
|                     |                                      | V <sub>CC</sub> = 3.3 V  | -26              | -27  | -29 | dBm  |
|                     |                                      | V <sub>CC</sub> = 3.6 V  | -26              | -28  | -29 | dBm  |

Table 10. Output power at 1 dB gain compression over temperature and supply voltages *Typical values.* 

| Symbol              | Parameter                             | Conditions              | T <sub>amb</sub> (°C) |     | Unit |     |
|---------------------|---------------------------------------|-------------------------|-----------------------|-----|------|-----|
|                     |                                       |                         | -40                   | +25 | +85  |     |
| P <sub>L(1dB)</sub> | output power at 1 dB gain compression | f = 250 MHz             |                       |     |      |     |
|                     |                                       | V <sub>CC</sub> = 3.0 V | 1                     | 1   | 1    | dBm |
|                     |                                       | V <sub>CC</sub> = 3.3 V | 3                     | 3   | 2    | dBm |
|                     |                                       | V <sub>CC</sub> = 3.6 V | 4                     | 4   | 3    | dBm |
|                     |                                       | f = 950 MHz             |                       |     |      |     |
|                     |                                       | V <sub>CC</sub> = 3.0 V | +1                    | 0   | -1   | dBm |
|                     |                                       | V <sub>CC</sub> = 3.3 V | 2                     | 1   | 0    | dBm |
|                     |                                       | V <sub>CC</sub> = 3.6 V | 3                     | 2   | 1    | dBm |
|                     |                                       | f = 2150 MHz            |                       |     |      |     |
|                     |                                       | V <sub>CC</sub> = 3.0 V | -2                    | -3  | -6   | dBm |
|                     |                                       | V <sub>CC</sub> = 3.3 V | -1                    | -3  | -5   | dBm |
|                     |                                       | V <sub>CC</sub> = 3.6 V | 0                     | -2  | -5   | dBm |

Table 11. Saturated output power over temperature and supply voltages *Typical values*.

| Symbol              | Parameter               | Conditions              | T <sub>amb</sub> | (°C) |     | Unit |
|---------------------|-------------------------|-------------------------|------------------|------|-----|------|
|                     |                         |                         | -40              | +25  | +85 |      |
| P <sub>L(sat)</sub> | saturated output power  | f = 250 MHz             |                  |      |     |      |
|                     |                         | V <sub>CC</sub> = 3.0 V | 3                | 3    | 3   | dBm  |
|                     |                         | V <sub>CC</sub> = 3.3 V | 5                | 5    | 4   | dBm  |
|                     |                         | V <sub>CC</sub> = 3.6 V | 7                | 6    | 5   | dBm  |
|                     |                         | f = 950 MHz             |                  |      |     |      |
|                     |                         | V <sub>CC</sub> = 3.0 V | 3                | 2    | 2   | dBm  |
|                     |                         | V <sub>CC</sub> = 3.3 V | 4                | 4    | 3   | dBm  |
|                     |                         | V <sub>CC</sub> = 3.6 V | 6                | 5    | 3   | dBm  |
|                     |                         | f = 2150 MHz            |                  |      |     |      |
|                     |                         | V <sub>CC</sub> = 3.0 V | 0                | -2   | -4  | dBm  |
|                     |                         | V <sub>CC</sub> = 3.3 V | +1               | -1   | -3  | dBm  |
|                     | V <sub>CC</sub> = 3.6 V | +1                      | -1               | -3   | dBm |      |

Table 12. Second-order intermodulation distance over temperature and supply voltages *Typical values*.

| Symbol                                     | Parameter | Conditions                                                                            | T <sub>amb</sub> (°C) |     |     | Unit |
|--------------------------------------------|-----------|---------------------------------------------------------------------------------------|-----------------------|-----|-----|------|
|                                            |           |                                                                                       | -40                   | +25 | +85 |      |
| ΔIM2 second-order intermodulation distance |           | $f_1 = 250 \text{ MHz};$<br>$f_2 = 251 \text{ MHz};$<br>$P_{drive} = -40 \text{ dBm}$ |                       |     |     |      |
|                                            |           | V <sub>CC</sub> = 3.0 V                                                               | 36                    | 42  | 56  | dBc  |
|                                            |           | V <sub>CC</sub> = 3.3 V                                                               | 40                    | 47  | 67  | dBc  |
|                                            |           | V <sub>CC</sub> = 3.6 V                                                               | 44                    | 51  | 63  | dBc  |
|                                            |           | $f_1 = 950 \text{ MHz};$<br>$f_2 = 951 \text{ MHz};$<br>$P_{drive} = -40 \text{ dBm}$ |                       |     |     |      |
|                                            |           | V <sub>CC</sub> = 3.0 V                                                               | 34                    | 37  | 39  | dBc  |
|                                            |           | V <sub>CC</sub> = 3.3 V                                                               | 37                    | 40  | 42  | dBc  |
|                                            |           | V <sub>CC</sub> = 3.6 V                                                               | 40                    | 42  | 44  | dBc  |

Table 13. Output third-order intercept point over temperature and supply voltages *Typical values*.

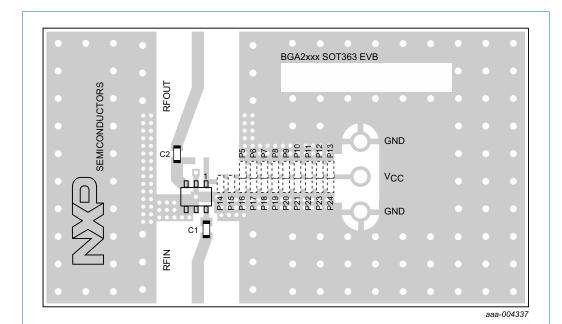

| Symbol           | Parameter                          | Conditions                                                                              | T <sub>amb</sub> | T <sub>amb</sub> (°C) |     |     |
|------------------|------------------------------------|-----------------------------------------------------------------------------------------|------------------|-----------------------|-----|-----|
|                  |                                    |                                                                                         | -40              | +25                   | +85 |     |
| IP3 <sub>O</sub> | output third-order intercept point | $f_1 = 250 \text{ MHz};$<br>$f_2 = 251 \text{ MHz};$<br>$P_{drive} = -40 \text{ dBm}$   |                  |                       |     |     |
|                  |                                    | V <sub>CC</sub> = 3.0 V                                                                 | 14               | 13                    | 12  | dBm |
|                  |                                    | V <sub>CC</sub> = 3.3 V                                                                 | 16               | 15                    | 14  | dBm |
|                  |                                    | V <sub>CC</sub> = 3.6 V                                                                 | 18               | 17                    | 15  | dBm |
|                  |                                    | $f_1 = 950 \text{ MHz};$<br>$f_2 = 951 \text{ MHz};$<br>$P_{drive} = -40 \text{ dBm}$   |                  |                       |     |     |
|                  |                                    | V <sub>CC</sub> = 3.0 V                                                                 | 13               | 11                    | 10  | dBm |
|                  |                                    | V <sub>CC</sub> = 3.3 V                                                                 | 14               | 13                    | 11  | dBm |
|                  |                                    | V <sub>CC</sub> = 3.6 V                                                                 | 16               | 14                    | 12  | dBm |
|                  |                                    | $f_1 = 2150 \text{ MHz};$<br>$f_2 = 2151 \text{ MHz};$<br>$P_{drive} = -40 \text{ dBm}$ |                  |                       |     |     |
|                  |                                    | V <sub>CC</sub> = 3.0 V                                                                 | 8                | 6                     | 3   | dBm |
|                  |                                    | V <sub>CC</sub> = 3.3 V                                                                 | 9                | 6                     | 4   | dBm |
|                  |                                    | V <sub>CC</sub> = 3.6 V                                                                 | 9                | 6                     | 4   | dBm |

Table 14. -3 dB bandwidth over temperature and supply voltages *Typical values*.

| Symbol                        | Parameter       | Conditions              | T <sub>amb</sub> (°C) |       |       | Unit |  |
|-------------------------------|-----------------|-------------------------|-----------------------|-------|-------|------|--|
|                               |                 |                         | -40                   | +25   | +85   |      |  |
| B <sub>-3dB</sub> –3 dB bandy | -3 dB bandwidth | V <sub>CC</sub> = 3.0 V | 2.922                 | 2.768 | 2.595 | GHz  |  |
|                               |                 | V <sub>CC</sub> = 3.3 V | 2.912                 | 2.756 | 2.584 | GHz  |  |
|                               |                 | V <sub>CC</sub> = 3.6 V | 2.902                 | 2.743 | 2.568 | GHz  |  |

**MMIC** wideband amplifier

## 9. Test information



For decoupling a decoupling capacitor ( $C_{dec}$ ) is used on one of the positions of P5 to P24. The results mentioned in this data sheet have been obtained using the decoupling capacitor  $C_{dec}$  on position P22. The distance between the center of pin 1 and the center of position P22 is 7.43 mm.

Fig 12. PCB layout and demo board with components

Table 15. List of components used for the typical application

| Component     | Description                                                     | Value  | Dimensions | Remarks                     |
|---------------|-----------------------------------------------------------------|--------|------------|-----------------------------|
| C1, C2        | multilayer ceramic chip capacitor                               | 470 pF | 0603       | X7R RF coupling capacitor   |
| P5 to P24 [1] | position for multilayer ceramic chip capacitor C <sub>dec</sub> | 470 pF | 0603       | X7R RF decoupling capacitor |
| IC1           | BGA2802 MMIC                                                    | -      | SOT363     |                             |

[1] For decoupling a decoupling capacitor (C<sub>dec</sub>) is used on one of the positions of P5 to P24. The results mentioned in this data sheet have been obtained using the decoupling capacitor C<sub>dec</sub> on position P22.

### **MMIC** wideband amplifier

# 10. Package outline

## Plastic surface-mounted package; 6 leads

**SOT363** 

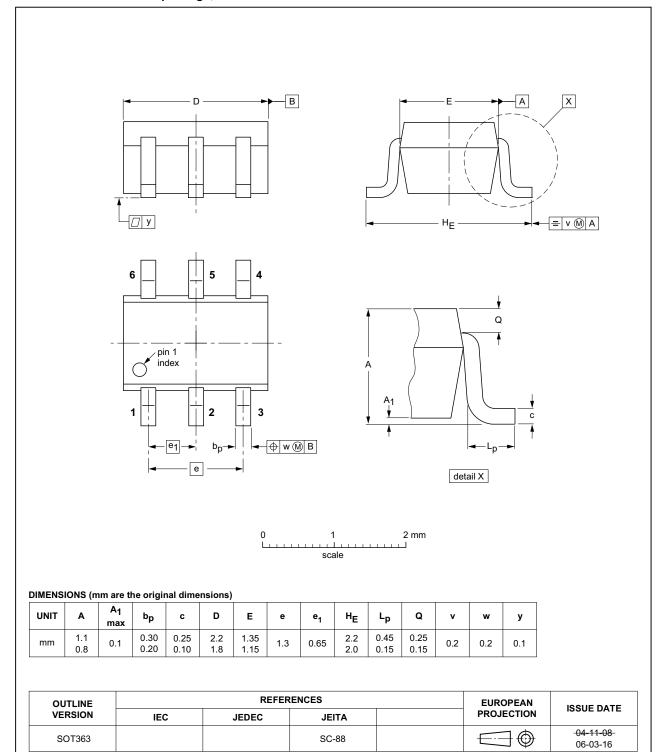



Fig 13. Package outline SOT363

## **MMIC** wideband amplifier

# 11. Abbreviations

Table 16. Abbreviations

| Acronym | Description               |
|---------|---------------------------|
| IF      | Intermediate Frequency    |
| LNA     | Low-Noise Amplifier       |
| LNB     | Low-Noise Block converter |
| PCB     | Printed-Circuit Board     |
| SMD     | Surface Mounted Device    |

# 12. Revision history

Table 17. Revision history

| Document ID    | Release date                         | Data sheet status            | Change notice       | Supersedes   |
|----------------|--------------------------------------|------------------------------|---------------------|--------------|
| BGA2802 v.6    | 20150713                             | Product data sheet           | -                   | BGA2802 v.5  |
| Modifications: | of NXP Semic                         |                              |                     |              |
|                | <ul> <li>Legal texts have</li> </ul> | ve been adapted to the new c | ompany name where a | appropriate. |
| BGA2802 v.5    | 20141209                             | Product data sheet           | -                   | BGA2802 v.4  |
| BGA2802 v.4    | 20130823                             | Product data sheet           | -                   | BGA2802 v.3  |
| BGA2802 v.3    | 20121010                             | Product data sheet           | -                   | BGA2802 v.2  |
| BGA2802 v.2    | 20110415                             | Product data sheet           | -                   | BGA2802 v.1  |
| BGA2802 v.1    | 20110224                             | Product data sheet           | -                   | -            |

#### **MMIC** wideband amplifier

## 13. Legal information

#### 13.1 Data sheet status

| Document status[1][2]          | Product status[3] | Definition                                                                            |
|--------------------------------|-------------------|---------------------------------------------------------------------------------------|
| Objective [short] data sheet   | Development       | This document contains data from the objective specification for product development. |
| Preliminary [short] data sheet | Qualification     | This document contains data from the preliminary specification.                       |
| Product [short] data sheet     | Production        | This document contains the product specification.                                     |

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <a href="http://www.nxp.com">http://www.nxp.com</a>.

#### 13.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

**Product specification** — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

#### 13.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

**Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at <a href="http://www.nxp.com/profile/terms">http://www.nxp.com/profile/terms</a>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

**No offer to sell or license** — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

BGA2802

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors N.V. 2015. All rights reserved.

#### **MMIC** wideband amplifier

**Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

**Translations** — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

#### 13.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

## 14. Contact information

For more information, please visit: <a href="http://www.nxp.com">http://www.nxp.com</a>

For sales office addresses, please send an email to: salesaddresses@nxp.com

**BGA2802 NXP Semiconductors** 

## **MMIC** wideband amplifier

# 15. Contents

| 1    | Product profile           |
|------|---------------------------|
| 1.1  | General description 1     |
| 1.2  | Features and benefits     |
| 1.3  | Applications              |
| 2    | Pinning information 1     |
| 3    | Ordering information 2    |
| 4    | Marking 2                 |
| 5    | Limiting values 2         |
| 6    | Thermal characteristics 2 |
| 7    | Characteristics 2         |
| 8    | Application information 4 |
| 8.1  | Application examples 4    |
| 8.2  | Graphs                    |
| 8.3  | Tables                    |
| 9    | Test information          |
| 10   | Package outline           |
| 11   | Abbreviations             |
| 12   | Revision history 15       |
| 13   | Legal information 16      |
| 13.1 | Data sheet status         |
| 13.2 | Definitions               |
| 13.3 | Disclaimers               |
| 13.4 | Trademarks17              |
| 14   | Contact information 17    |
| 15   | Contents 18               |

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by NXP manufacturer:

Other Similar products are found below:

A82-1 BGA622H6820XTSA1 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC397-SX HMC405 HMC561-SX HMC8120-SX HMC8121-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SMA3101-TL-E SMA39 A66-1 A66-3 A67-1 LX5535LQ LX5540LL MAAM02350 HMC3653LP3BETR HMC549MS8GETR HMC-ALH435-SX SMA101 SMA32 SMA411 SMA531 SST12LP17E-XX8E SST12LP19E-QX6E WPM0510A HMC5929LS6TR HMC5879LS7TR HMC1126 HMC1087F10 HMC1086 HMC1016 SMA1212 MAX2689EWS+T MAAMSS0041TR MAAM37000-A1G LTC6430AIUF-15#PBF CHA5115-QDG SMA70-2 SMA4011 A231 HMC-AUH232 LX5511LQ LX5511LQ-TR HMC7441-SX HMC-ALH310