

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.nxp.com, http://www.nexperia.com, http://www.nexperia.com)

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

Product data sheet

1. General description

Logic level N-channel enhancement mode Field-Effect Transistor (FET) in a plastic package using TrenchMOS technology. This product has been designed and qualified to the appropriate AEC standard for use in automotive critical applications.

2. Features and benefits

- AEC Q101 compliant
- Electrostatically robust due to integrated protection diodes
- Low conduction losses due to low on-state resistance

3. Applications

Automotive and general purpose power switching

4. Quick reference data

Table 1. Quick reference data

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{DS}	drain-source voltage	T _j ≥ 25 °C; T _j ≤ 150 °C		-	-	55	V
I _D	drain current	T _{sp} = 25 °C		-	-	10.7	Α
P _{tot}	total power dissipation	T _{sp} = 25 °C; <u>Fig. 4</u>		-	-	8.3	W
Static characte	eristics					'	
R _{DSon}	drain-source on-state resistance	$V_{GS} = 5 \text{ V}; I_D = 5 \text{ A}; T_j = 25 \text{ °C}$		-	30	40	mΩ
Avalanche rug	Avalanche ruggedness						
E _{DS(AL)S}	non-repetitive drain- source avalanche energy	I_D = 3.6 A; $V_{sup} \le$ 25 V; R_{GS} = 50 Ω; V_{GS} = 5 V; $T_{j(init)}$ = 25 °C; unclamped		-	-	60	mJ

N-channel TrenchMOS logic level FET

5. Pinning information

Table 2. Pinning information

Pin	Symbol	Description	Simplified outline	Graphic symbol
1	G	gate	4	D I
2	D	drain		
3	S	source		G T
4	D	drain	⊟1 ⊟2 ⊟3 SC-73 (SOT223)	S Sym116

6. Ordering information

Table 3. Ordering information

Type number	Package					
	Name	Description	Version			
BUK9840-55	SC-73	plastic surface-mounted package with increased heatsink; 4 leads	SOT223			
BUK9840-55/CU	SC-73	plastic surface-mounted package with increased heatsink; 4 leads	SOT223			

7. Marking

Table 4. Marking codes

Type number	Marking code
BUK9840-55	94055
BUK9840-55/CU	xxYWW 94055

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{DS}	drain-source voltage	T _j ≥ 25 °C; T _j ≤ 150 °C	-	55	V
V_{DGR}	drain-gate voltage	R_{GS} = 20 k Ω	-	55	V
V_{GS}	gate-source voltage		-10	10	V
P _{tot}	total power dissipation	T _{sp} = 25 °C; <u>Fig. 4</u>	-	8.3	W
I _D	drain current	T _{sp} = 25 °C	-	10.7	Α
		T _{sp} = 100 °C	-	6.8	Α

BUK9840-55

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors N.V. 2016. All rights reserved

N-channel TrenchMOS logic level FET

Symbol	Parameter	Conditions	Min	Max	Unit
I _{DM}	peak drain current	T _{sp} = 25 °C; pulsed	-	40	Α
T _{stg}	storage temperature		-55	150	°C
Tj	junction temperature		-55	150	°C
Source-drain o	liode				-
Is	source current	T _{sp} = 25 °C	-	10.7	Α
I _{SM}	peak source current	pulsed; T _{sp} = 25 °C	-	40	Α
Avalanche rug	gedness				-
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	I_D = 3.6 A; $V_{sup} \le 25$ V; R_{GS} = 50 Ω; V_{GS} = 5 V; $T_{j(init)}$ = 25 °C; unclamped	-	60	mJ
Electrostatic d	ischarge				·
V _{esd}	electrostatic discharge voltage	HBM; C = 100 pF; R = 1.5 kΩ	-	2	kV

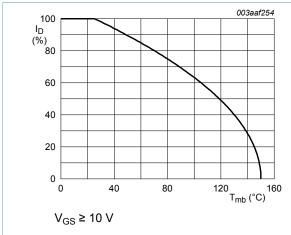
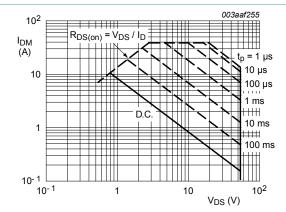



Fig. 1. Normalized continuous drain current as a function of solder point temperature

$$I_{der} = \frac{I_D}{I_{D(25^{\circ}C)}} \times 100 \%$$

 T_{sp} = 25 °C; I_{DM} is single pulse

Fig. 2. Safe operating area; continuous and peak drain currents as a function of drain-source voltage

N-channel TrenchMOS logic level FET

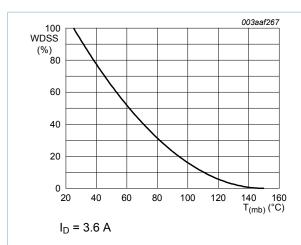


Fig. 3. Normalised drain-source non-repetitive avalanche energy rating; avalanche energy as a function of mounting base temperature

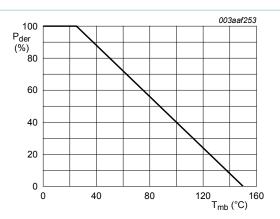


Fig. 4. Normalized total power dissipation as a function of solder point temperature

$$P_{der} = \frac{P_{tot}}{P_{tot(25^{\circ}C)}} \times 100\%$$

9. Thermal characteristics

Table 6. Thermal characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{th(j-sp)}	thermal resistance from junction to solder point	Mounted on any printed-circuit board	-	12	15	K/W
R _{th(j-a)}	thermal resistance from junction to ambient	Mounted on a printed-circuit	-	120	-	K/W

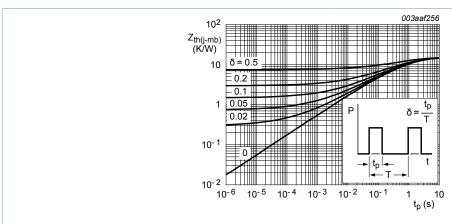


Fig. 5. Transient thermal impedance from junction to solder point as a function of pulse duration

N-channel TrenchMOS logic level FET

10. Characteristics

Table 7. Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static chara	acteristics					
V _{(BR)DSS}	drain-source	$I_D = 0.25 \text{ mA}; V_{GS} = 0 \text{ V}; T_j = 25 ^{\circ}\text{C}$	55	-	-	V
	breakdown voltage	$I_D = 0.25 \text{ mA}; V_{GS} = 0 \text{ V}; T_j = -55 ^{\circ}\text{C}$	50	-	-	V
V _{GS(th)}	gate-source threshold	I _D = 1 mA; V _{DS} = V _{GS} ; T _j = 150 °C	0.6	-	-	V
	voltage	$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = -55 \text{ °C}$	-	-	2.3	V
		$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = 25 \text{ °C}$	1	1.5	2	V
I _{DSS}	drain leakage current	V _{DS} = 55 V; V _{GS} = 0 V; T _j = 150 °C	-	-	100	μΑ
		V _{DS} = 55 V; V _{GS} = 0 V; T _j = 25 °C	-	0.05	10	μA
I _{GSS}	gate leakage current	V _{GS} = 5 V; V _{DS} = 0 V; T _j = 25 °C	-	0.02	1	μΑ
		$V_{GS} = -5 \text{ V}; V_{DS} = 0 \text{ V}; T_j = 25 ^{\circ}\text{C}$	-	0.02	1	μA
		V _{GS} = 5 V; V _{DS} = 0 V; T _j = 150 °C	-	-	5	μΑ
		V _{GS} = -5 V; V _{DS} = 0 V; T _j = 150 °C	-	-	5	μA
Doon	drain-source on-state	V _{GS} = 5 V; I _D = 5 A; T _j = 150 °C	-	-	74	mΩ
	resistance	V _{GS} = 5 V; I _D = 5 A; T _j = 25 °C	-	30	40	mΩ
V _{(BR)GSS}	gate-source	$V_{DS} = 0 \text{ V}; T_j = 25 \text{ °C}; I_G = 1 \text{ mA}$	10	-	-	V
	breakdown voltage	$V_{DS} = 0 \text{ V}; T_j = 25 \text{ °C}; I_G = -1 \text{ mA}$	10	-	-	V
Dynamic ch	naracteristics				1	
C _{iss}	input capacitance	V _{GS} = 0 V; V _{DS} = 25 V; f = 1 MHz;	-	1050	1400	pF
C _{oss}	output capacitance	T _j = 25 °C	-	205	245	pF
C _{rss}	reverse transfer capacitance		-	110	150	pF
t _{d(on)}	turn-on delay time	V_{DS} = 30 V; R_L = 3.3 Ω ; V_{GS} = 5 V;	-	17	25	ns
t _r	rise time	$R_{G(ext)} = 10 \Omega; T_j = 25 °C; I_D = 9 A$	-	65	100	ns
t _{d(off)}	turn-off delay time		-	70	105	ns
t _f	fall time		-	70	105	ns
9 _{fs}	transfer conductance	V _{DS} = 25 V; I _D = 5 A; T _j = 25 °C	11	19	-	S
Source-drai	in diode	,	1	1	1	
V_{SD}	source-drain voltage	$I_S = 5 \text{ A}; V_{GS} = 0 \text{ V}; T_j = 25 ^{\circ}\text{C}$	-	0.85	1.1	V
t _{rr}	reverse recovery time	$I_S = 5 \text{ A}$; $dI_S/dt = -100 \text{ A/}\mu\text{s}$;	-	45	-	ns
Q _r	recovered charge $V_{GS} = -10 \text{ V}; V_{DS} = 30 \text{ V}; T_j = 25 ^{\circ}\text{C}$	-	0.3	-	μC	
		I .				

N-channel TrenchMOS logic level FET

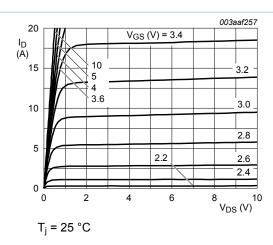


Fig. 6. Output characteristics: drain current as a function of drain-source voltage; typical values

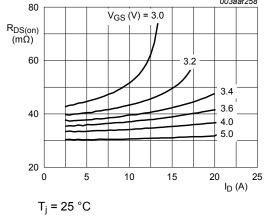


Fig. 7. Drain-source on-state resistance as a function of drain current; typical values

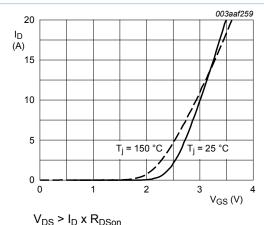


Fig. 8. Transfer characteristics: drain current as a function of gate-source voltage; typical values

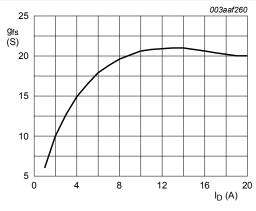


Fig. 9. Forward transconductance as a function of drain current; typical values

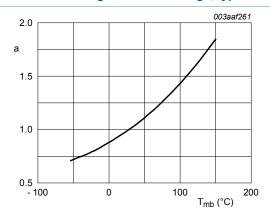
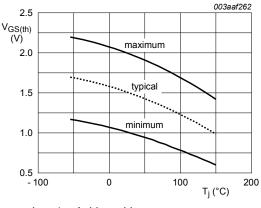



Fig. 10. Normalized drain-source on-state resistance factor as a function of junction temperature

 I_D = 1 mA; V_{DS} = V_{GS}

Fig. 11. Gate-source threshold voltage as a function of junction temperature

N-channel TrenchMOS logic level FET

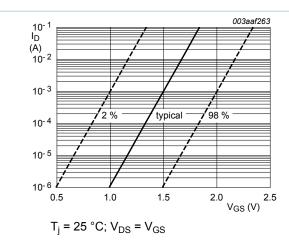


Fig. 12. Sub-threshold drain current as a function of gate-source voltage

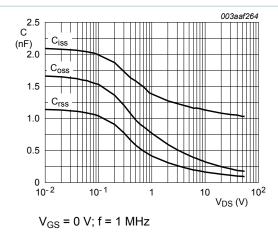


Fig. 13. Input, output and reverse transfer capacitances as a function of drain-source voltage; typical values

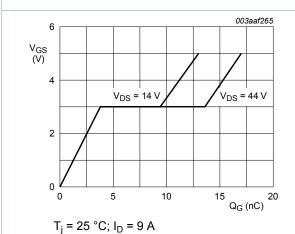


Fig. 14. Gate-source voltage as a function of gate charge; typical values

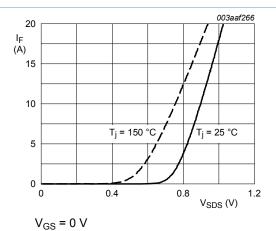
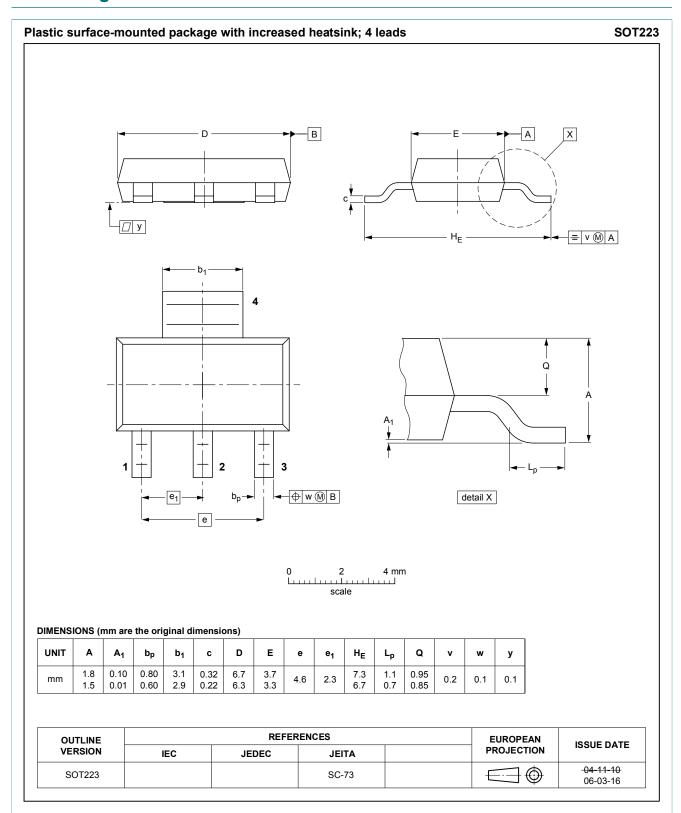



Fig. 15. Source (diode forward) current as a function of source-drain (diode forward) voltage; typical values

N-channel TrenchMOS logic level FET

11. Package outline

N-channel TrenchMOS logic level FET

12. Legal information

12.1 Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

12.2 Definitions

Preview — The document is a preview version only. The document is still subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

12.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

BUK9840-55

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors N.V. 2016. All rights reserved

N-channel TrenchMOS logic level FET

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

12.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Bitsound, CoolFlux, CoReUse, DESFire, FabKey, GreenChip, HiPerSmart, HITAG, I*C-bus logo, ICODE, I-CODE, ITEC, MIFARE, MIFARE Plus, MIFARE Ultralight, SmartXA, STARPlug, TOPFET, TrenchMOS, TriMedia and UCODE — are trademarks of NXP Semiconductors N.V.

 $\ensuremath{\mathbf{HD}}$ $\ensuremath{\mathbf{Radio}}$ and $\ensuremath{\mathbf{HD}}$ $\ensuremath{\mathbf{Radio}}$ logo — are trademarks of iBiquity Digital Corporation.

10 / 11

N-channel TrenchMOS logic level FET

13. Contents

1	General description	1
2	Features and benefits	1
3	Applications	1
4	Quick reference data	1
5	Pinning information	2
6	Ordering information	2
7	Marking	2
8	Limiting values	2
9	Thermal characteristics	4
10	Characteristics	5
11	Package outline	8
12	Legal information	9
12.1	Data sheet status	9
12.2	Definitions	9
12.3	Disclaimers	9
12.4	Trademarks	10

© NXP Semiconductors N.V. 2016. All rights reserved

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Date of release: 16 March 2016

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by NXP manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D

TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C

IPS70R2K0CEAKMA1 BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI

DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384

NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956

NTE2911 US6M2GTR TK10A80W,S4X(S SSM6P69NU,LF