Important notice

Dear Customer,
On 7 February 2017 the former NXP Standard Product business became a new company with the tradename Nexperia. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.philips.com/ or http://www.semiconductors.philips.com/, use http://www.nexperia.com

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved
Should be replaced with:
- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via salesaddresses@nexperia.com). Thank you for your cooperation and understanding,

Kind regards,
Team Nexperia

DATAA SMEET

CBT3125
 Quadruple FET bus switch

Product data

File under Integrated Circuits - ICL03

DESCRIPTION

The CBT3125 quadruple FET bus switch features independent line switches. Each switch is disabled when the associated Output Enable ($\overline{\mathrm{OE}}$) input is HIGH.

FEATURES

- Standard '125-type pinout (D, DB, and PW packages)
- 5Ω switch connection between two ports
- TTL-compatible input levels
- Latch-up testing is done to JESDEC Standard JESD78 which exceeds 500 mA
- ESD protection exceeds 2000 V HBM per JESD22-A114, 200 V MM per JESD22-A115, and 1000 V CDM per JESD22-C101

PIN CONFIGURATION

Figure 1. SO14, SSOP14, and TSSOP14

NC = no internal connection
Figure 2. SSOP(QSOP)16

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE	DRAWING NUMBER
14-Pin Plastic SO	-40 to $+85^{\circ} \mathrm{C}$	CBT3125D	SOT108-1
14-Pin Plastic SSOP	-40 to $+85^{\circ} \mathrm{C}$	CBT3125DB	SOT337-1
16-Pin Plastic SSOP(QSOP)	-40 to $+85^{\circ} \mathrm{C}$	CBT3125DS	SOT519-1
$14-$-Pin Plastic TSSOP	-40 to $+85^{\circ} \mathrm{C}$	CBT3125PW	SOT402-1

[^0]LOGIC DIAGRAM

Pin numbers shown are for 14-pin package-types.
Figure 3. CBT3125 logic diagram (positive logic)

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

Over operating free-air temperature range, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{CC}	supply voltage range		-0.5	7	V
$\mathrm{~V}_{\mathrm{I}}$	input voltage range	see Note 2	-0.5	7	V
	continuous channel current		-	128	mA
I_{K}	input clamp current	$\mathrm{V}_{\mathrm{I} / \mathrm{O}}<0$	-	-50	mA
$\mathrm{~T}_{\text {stg }}$	storage temperature range		-65	+150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
3. The package thermal impedance is calculated in accordance with JESD 51-7.

RECOMMENDED OPERATING CONDITIONS ${ }^{1}$

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{CC}	supply voltage		4.5	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	high-level control input voltage		2	-	V
V_{IL}	low-level control input voltage		-	0.8	V
$\mathrm{~T}_{\mathrm{amb}}$	operating ambient temperature in free-air		-40	+85	${ }^{\circ} \mathrm{C}$

NOTE:

1. All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

DC ELECTRICAL CHARACTERISTICS
Over recommended operating free-air temperature range, unless otherwise noted.

SYMBOL	PARAMETER		CONDITIONS	MIN.	TYP. ${ }^{1}$	MAX.	UNIT
V_{IK}	Input clamp voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA} \end{aligned}$	-	-	-1.2	V
I	Input leakage current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V} \text { or GND } \end{aligned}$	-	-	± 1	$\mu \mathrm{A}$
$I_{\text {cc }}$	Quiescent supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=0 ; \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } G N D \end{aligned}$	-	-	3	$\mu \mathrm{A}$
$\Delta_{\text {l }}$	Additional supply current per input pin (Note 2)	control inputs	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ;$ one input at 3.4 V , other inputs at V_{CC} or GND	-	-	2.5	mA
C_{1}	Input capacitance	control inputs	$\mathrm{V}_{1}=3 \mathrm{~V}$ or 0	-	1.7	-	pF
$\mathrm{C}_{\text {IO(OFF) }}$	Power-off leakage current		$\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ or 0; $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{CC}}$	-	3.4	-	pF
V_{P}	Pass gate voltage		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{V}_{1}=5.0 \mathrm{~V}$	-	3.8	-	V
$r_{\text {on }}$	On-resistance (Note 3)		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=0 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{I}}=64 \mathrm{~mA} \end{aligned}$	-	5	7	Ω
			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=0 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{I}}=30 \mathrm{~mA} \end{aligned}$	-	5	7	Ω
			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{I}}=-15 \mathrm{~mA} \end{aligned}$	-	10	15	Ω

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, unless otherwise noted. $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
2. This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.
3. Measured by the voltage drop between the A and the B terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two (A or B) terminals.

AC CHARACTERISTICS

$\mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, unless otherwise noted.

SYMBOL	PARAMETER	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	$\mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$		UNIT
				Min	Max	
t_{pd}	Propagation delay ${ }^{1}$	A or B	B or A	-	0.25	ns
$t_{\text {en }}$	Output enable time to High and Low level	$\overline{O E}$	A or B	1.0	5.4	ns
$t_{\text {dis }}$	Output disable time from High and Low level	$\overline{O E}$	A or B	1	4.7	ns

NOTE:

1. This parameter is warranted but not production tested. The propagation delay is based on the RC time constant of the typical on-state resistance of the switch and a load capacitance of 50 pF , when driven by an ideal voltage source (zero output impedance).

AC WAVEFORMS

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{GND}$ to 3.0 V

$t_{\text {PLH }}$ and $t_{\text {PHL }}$ are the same as $t_{\text {pd }}$.
Waveform 1. Input to Output Propagation Delays

Note:
Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
$t_{\text {PLZ }}$ and $t_{P H Z}$ are the same as $t_{\text {dis }}$.
$t_{P Z L}$ and $t_{P Z H}$ are the same as $t_{\text {en }}$.
Waveform 2. Output Enable and Disable Times

TEST CIRCUIT

DEFINITIONS

$C_{L}=\quad$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.

SA00012
$t_{P L Z}$ and $t_{P H Z}$ are the same as $t_{\text {dis }}$.
$t_{P Z L}$ and $t_{P Z H}$ are the same as $t_{\text {en }}$.

NOTES:

1. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
2. The outputs are measured one at a time with one transition per measurement.

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$z^{(1)}$	θ
mm	1.75	$\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 8.75 \\ & 8.55 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$	1.27	$\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$	1.05	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.7 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 8^{0} \\ & 0^{\circ} \end{aligned}$
inches	0.069	$\begin{aligned} & 0.010 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.057 \\ & 0.049 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{array}{l\|} \hline 0.0100 \\ 0.0075 \end{array}$	$\begin{aligned} & 0.35 \\ & 0.34 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$	0.050	$\begin{aligned} & 0.244 \\ & 0.228 \end{aligned}$	0.041	$\begin{aligned} & 0.039 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.028 \\ & 0.024 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.028 \\ & 0.012 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT108-1	076E06	MS-012		$\square \oplus$	$\begin{aligned} & 97-05-22 \\ & 99-12-27 \end{aligned}$

detail X

DIMENSIONS (mm are the original dimensions)

UNIT	$\begin{gathered} A \\ \text { max. } \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	2.0	$\begin{aligned} & 0.21 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 1.80 \\ & 1.65 \end{aligned}$	0.25	$\begin{aligned} & 0.38 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.09 \end{aligned}$	$\begin{aligned} & \hline 6.4 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 5.2 \end{aligned}$	0.65	$\begin{aligned} & 7.9 \\ & 7.6 \end{aligned}$	1.25	$\begin{aligned} & \hline 1.03 \\ & 0.63 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 0.7 \end{aligned}$	0.2	0.13	0.1	1.4 0.9	8^{0} 0°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT337-1		MO-150		- ($\begin{aligned} & -96-01-10 \\ & 99-12-27 \end{aligned}$

DIMENSIONS (mm are the original dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	v	w	y	$Z^{(1)}$	θ
mm	1.73	$\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.55 \\ & 1.40 \end{aligned}$	0.25	$\begin{aligned} & 0.31 \\ & 0.20 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.18 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$	0.635	$\begin{aligned} & \hline 6.2 \\ & 5.8 \end{aligned}$	1.0	$\begin{aligned} & 0.89 \\ & 0.41 \end{aligned}$	0.2	0.18	0.09	$\begin{aligned} & 0.18 \\ & 0.05 \end{aligned}$	8^{0} 0

Note

1. Plastic or metal protrusions of 0.20 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT519-1						

detail X

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} $\mathbf{m a x}$.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(2)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(1)}$	θ
mm	1.10	0.15	0.95	0.25	0.30	0.2	5.1	4.5	0.6	6.6	1.0	0.75	0.4	0.2	0.13	0.1	0.72	8^{0}
0.05	0.80	0.19	0.1	4.9	4.3	0.68	6.2		0.50	0.3	0.2	0.3						

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT402-1		MO-153		\square (+)	$\begin{aligned} & -95-04-04 \\ & 99-12-27 \end{aligned}$

Data sheet status

Data sheet status ${ }^{[1]}$	Product status ${ }^{[2]}$	Definitions
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

[1] Please consult the most recently issued data sheet before initiating or completing a design.
[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support - These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes - Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

For additional information please visit
http://www.semiconductors.philips.com.
For sales offices addresses send e-mail to:
sales.addresses@www.semiconductors.philips.com.
© Koninklijke Philips Electronics N.V. 2001
All rights reserved. Printed in U.S.A.
Fax: +31 402724825
Date of release: 12-01
Document order number:
939775009218

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Digital Bus Switch ICs category:

Click to view products by NXP manufacturer:

Other Similar products are found below :
MT8986AE1 MT90812AP1 MT90869AG2 CA91L8260B-100CEV TC7MPB9307FT(EL) MT8986AP1 72V8985JG8 732757E
ZL50020QCG1 ZL50012QCG1 PI3C32X384BE PI5C3861QEX ZL50023GAG2 MT8986AL1 MT8981DP1 PI3VT3245-ALE
ZL50016GAG2 TC7MBL3257CFT(EL) PI3CH800QE MT90823AB1 ZL50075GAG2 PI5C32X245BEX PI5C3126QEX PI5C3125QEX
PI3VT3245-AQE PI3CH800QEX PI3C3384QE PI3C3305UEX PI3B3861QEX PI3B3861QE PI3B32X245BEX PI3B3245QEX PI3B3245QE PI3CH800ZHEX PI3CH1000LE PI3CH400ZBEX 728981JG8 TC7MBL3257CFK(EL) 728985JG8 PI3CH401LE PI3CH401LEX FST3126DR2G QS34X245Q3G8 QS3VH125S1G8 TC7WBL3305CFK(5L,F 74CB3Q3125DBQRE4 74FST6800PGG8 74CB3Q3244DBQRE4 74CBTLV3125PGG8 TC7MBL3125CFT(EL)

[^0]: Standard packing quantities and other packaging data is available at www.philipslogic.com/packaging.

