10-bit bus switch with 5-bit output enables Rev. 06 — 2 November 2009

Product data sheet

General description 1.

The CBT3384 provides ten bits of high-speed TTL-compatible bus switching. The low ON resistance of the switch allows connections to be made with minimal propagation delay.

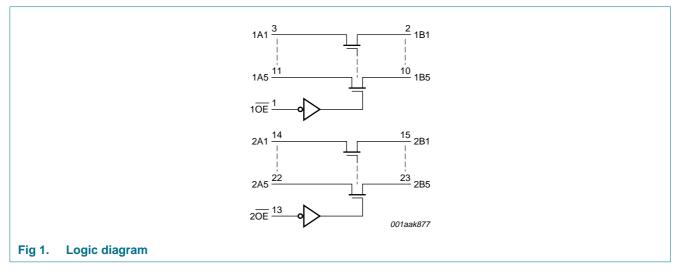
The CBT3384 device is organized as two 5-bit bus switches with two separate output enable (1OE, 2OE) inputs. When nOE is LOW, the switch is on and port A is connected to the B port. When $n\overline{OE}$ is HIGH, each switch is disabled.

The CBT3384 is characterized for operation from -40 °C to +85 °C.

Features 2.

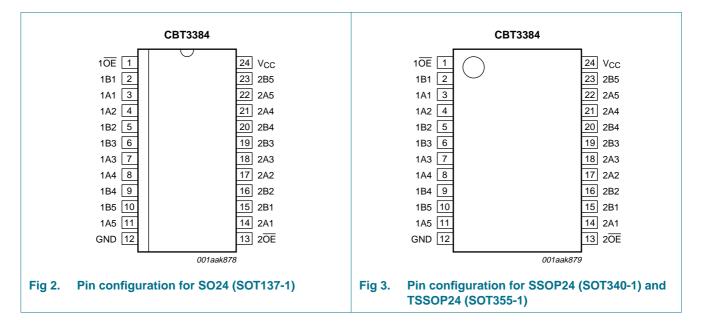
- 5 Ω switch connection between two ports
- TTL-compatible control input levels
- Multiple package options
- See CBTD3384 for CBT3384 with level shifting diodes
- Latch-up protection exceeds 100 mA per JESD78
- **ESD** protection:
 - HBM JESD22-A114E exceeds 2000 V
 - CDM JESD22-C101C exceeds 1000 V

Ordering information 3.


Table 1. Ordering information								
Туре	Package							
number	Temperature range	Name	Description	Version				
CBT3384D	–40 °C to +85 °C	SO24	plastic small outline package; 24 leads; body width 7.5 mm	SOT137-1				
CBT3384DB	–40 °C to +85 °C	SSOP24	plastic shrink small outline package; 24 leads; body width 5.3 mm	SOT340-1				
CBT3384DK	–40 °C to +85 °C	SSOP24[1]	plastic shrink small outline package; 24 leads; body width 3.9 mm; lead pitch 0.635 mm	SOT556-1				
CBT3384PW	–40 °C to +85 °C	TSSOP24	plastic thin shrink small outline package; 24 leads; body width 4.4 mm	SOT355-1				

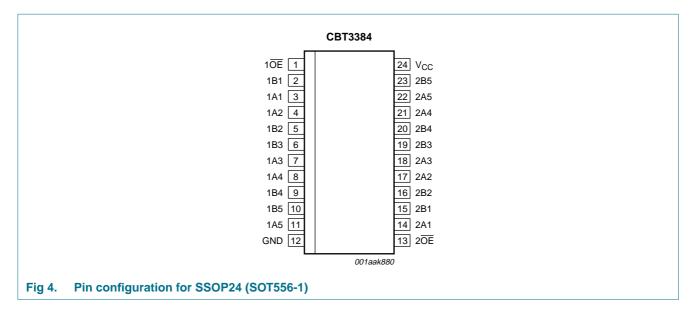
[1] Also known as QSOP24 package

nexperia


10-bit bus switch with 5-bit output enables

4. Functional diagram

5. Pinning information


5.1 Pinning

Nexperia

CBT3384

10-bit bus switch with 5-bit output enables

5.2 Pin description

Table 2.	Pin description	
Symbol	Pin	Description
$1\overline{OE}, 2\overline{OE}$	1, 13	output enable input (active LOW)
1A1 to 1A5	3, 4, 7, 8, 11	data input/output (A port)
2A1 to 2A5	14, 17, 18, 21, 22	data input/output (A port)
1B1 to 1B5	2, 5, 6, 9, 10	data input/output (B port)
2B1 to 2B5	15, 16, 19, 20, 23	data input/output (B port)
GND	12	ground (0 V)
V _{CC}	24	positive supply voltage

6. Functional description

Table 3. Function selection ^[1]						
		Input/output				
10E	2 <mark>0E</mark>	1An, 1Bn	2An, 2Bn			
L	L	1An = 1Bn	2An = 2Bn			
L	Н	1An = 1Bn	Z			
Н	L	Z	2An = 2Bn			
Н	Н	Z	Z			

[1] H = HIGH voltage level; L = LOW voltage level; Z = high-impedance OFF-state.

7. Limiting values

Table 4.Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).^[1] $T_{amb} = -40 \degree C$ to +85 $\degree C$, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+7.0	V
VI	input voltage		[2] -0.5	+7.0	V
I _O	output current	V _O < 0 V	-	±128	mA
I _{IK}	input clamping current	$V_{I/O} = 0 V$	-50	-	mA
T _{stg}	storage temperature		-65	+150	°C

[1] Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under <u>Section 8</u>, is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

[2] The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

8. Recommended operating conditions

Table 5.Operating conditions

All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC}	supply voltage		4.5	-	5.5	V
V _{IH}	HIGH-state input voltage		2.0	-	-	V
V _{IL}	LOW-state input voltage		-	-	0.8	V
T _{amb}	ambient temperature	operating in free air	-40	-	+85	°C

9. Static characteristics

Table 6. Static characteristics

Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	T _{amb} =	Unit		
			Min	Typ <mark>[1]</mark>	Max	
V _{IK}	input clamping voltage	$V_{CC} = 4.5 \text{ V}; \text{ I}_{I} = -18 \text{ mA}$	-	-	-1.2	V
l _l	input leakage current	V_{CC} = 5.5 V; V_{I} = GND or 5.5 V	-	-	±1	μA
I _{CC}	supply current	V_{CC} = 5.5 V; I _O = 0 mA; V _I = V _{CC} or GND	-	-	3	μΑ
ΔI_{CC}	additional supply current	per input pin; V_{CC} = 5.5 V; one input at [2] 3.4 V, other inputs at V_{CC} or GND	-	-	2.5	mA
V _{pass}	pass voltage	output HIGH; $V_I = V_{CC} = 5.0 \text{ V};$ $I_O = -100 \ \mu\text{A}$	3.6	3.9	4.2	V
CI	input capacitance	control pins; $V_I = 3 V \text{ or } 0 V$	-	4.0	-	pF
C _{io(off)}	off-state input/output capacitance	port off; $V_I = 3 V \text{ or } 0 V$; $n\overline{OE} = V_{CC}$	-	10.0	-	pF

10-bit bus switch with 5-bit output enables

Voltages a	are referenced to GND	(ground = 0 V).					
Symbol	Parameter	Conditions	onditions		T _{amb} = −40 °C to +85 °C		
				Min	Typ[1]	Max	
R _{ON} ON resistance		$V_{CC} = 4.5 \text{ V}; \text{ V}_{I} = 0 \text{ V}; \text{ I}_{I} = 64 \text{ mA}$	[3]	-	5	7	Ω
		V_{CC} = 4.5 V; V_{I} = 0 V; I_{I} = 30 mA	[3]	-	5	7	Ω
		V_{CC} = 4.5 V; V_{I} = 2.4 V; I_{I} = –15 mA	[3]	-	10	15	Ω

 Table 6.
 Static characteristics ... continued

 Voltages are referenced to CND (ground = 0.1/)

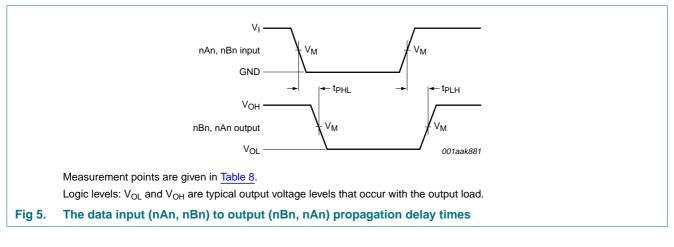
[1] All typical values are at $V_{CC} = 5 \text{ V}$, $T_{amb} = 25 \text{ °C}$.

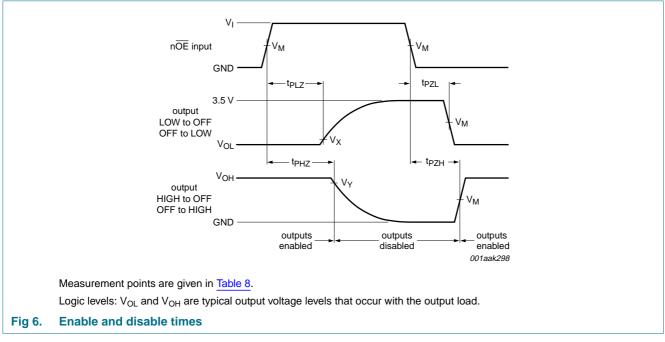
[2] This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

[3] Measured by the voltage drop between the nAn and the nBn terminals at the indicated current through the switch. ON resistance is determined by the lowest voltage of the two (nAn or nBn) terminals.

10. Dynamic characteristics

Table 7. Dynamic characteristics


Voltages are referenced to GND (ground = 0 V). For test circuit see Figure 7.


-									
Symbol	Parameter	Conditions	T	T _{amb} = 25 °C			T_{amb} = -40 °C to +85 °C		
			Min	Тур	Max	Min	Max		
t _{pd}	propagation delay	nAn, nBn to nBn, nAn; [1][2] see <u>Figure 5</u>							
		$V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$	-	-	0.25	-	0.25	ns	
t _{PZH} OFF-state to HIGH propagation delay		nOE to nAn or nBn; see <u>Figure 6</u>							
		$V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$	1.2	2.3	5.7	1.2	5.6	ns	
t _{PZL} OFF-state to LOW propagation delay		nOE to nAn or nBn; see <u>Figure 6</u>							
		$V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$	1.2	2.3	5.7	1.2	6.0	ns	
t _{PHZ} HIGH to OFF-state propagation delay		nOE to nAn or nBn; see <u>Figure 6</u>							
		$V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$	1.7	3.6	5.2	1.7	5.5	ns	
t _{PLZ}	LOW to OFF-state propagation delay	nOE to nAn or nBn; see <u>Figure 6</u>							
		$V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$	1.7	2.7	5.2	1.7	6.6	ns	

[1] The propagation delay is the calculated RC time constant of the typical ON resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).

[2] t_{pd} is the same as t_{PLH} and t_{PHL} .

11. Waveforms

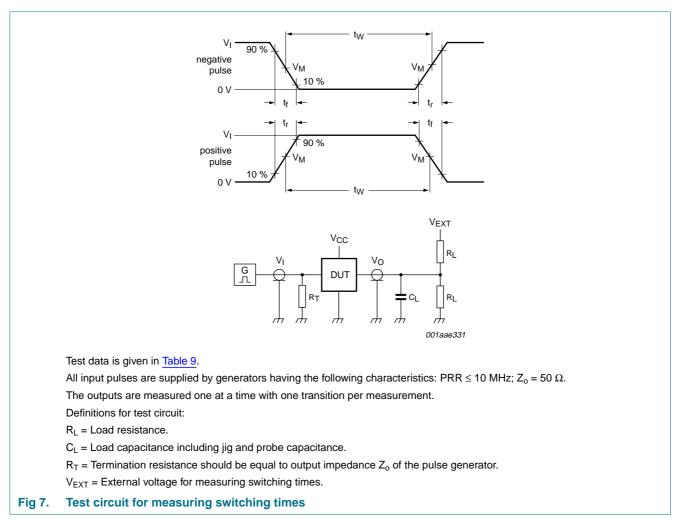


Table 8. Measurement points

Supply voltage Input			Output			
V _{CC}	VI	V _M	V _M	V _X	V _Y	
$V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$	GND to 3.0 V	1.5 V	1.5 V	V _{OL} + 0.3 V	V _{OH} – 0.3 V	

10-bit bus switch with 5-bit output enables

12. Test information

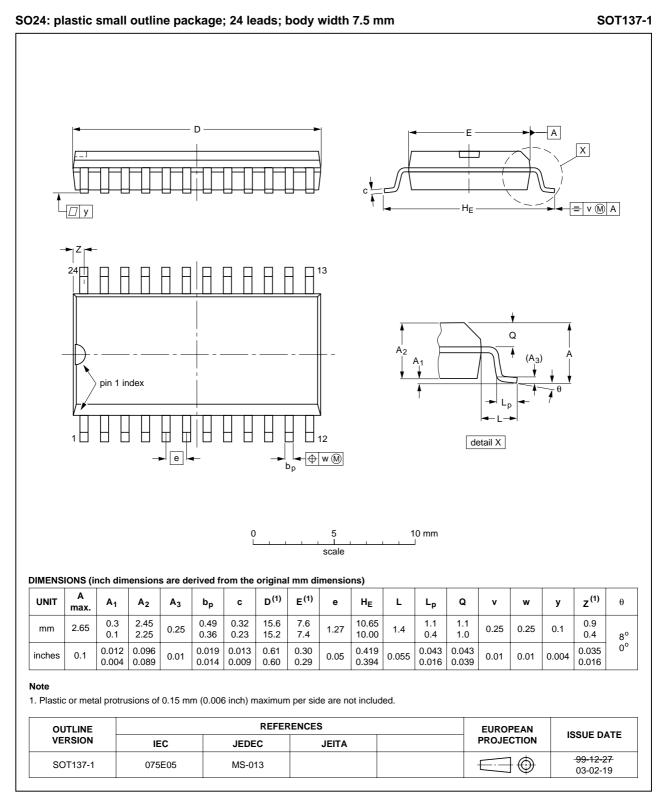
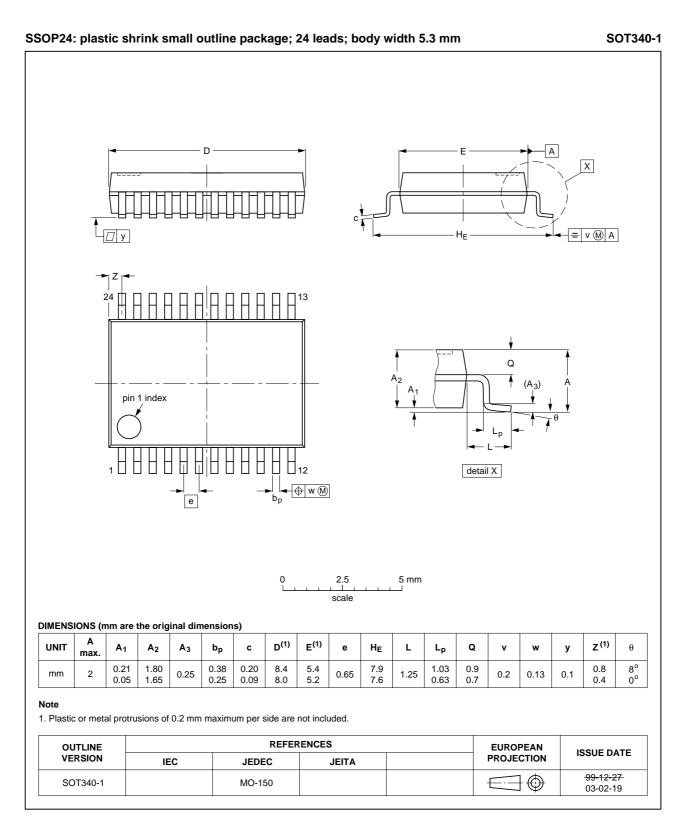
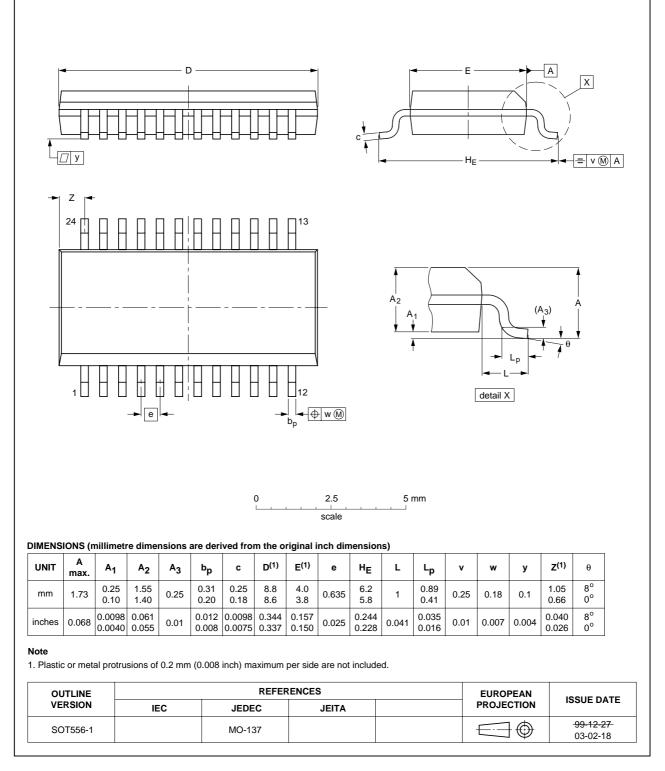


Table 9. Test data

Supply voltage	Input		Load		V _{EXT}		
	VI	t _r , t _f	CL	RL	t _{PLH} , t _{PHL}	t _{PLZ} , t _{PZL}	t _{PHZ} , t _{PZH}
$V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$	GND to 3.0 V	\leq 2.5 ns	50 pF	500 Ω	open	7.0 V	open


10-bit bus switch with 5-bit output enables

13. Package outline


Fig 8. Package outline SOT137-1 (SO24)

10-bit bus switch with 5-bit output enables

Fig 9. Package outline SOT340-1 (SSOP24)

10-bit bus switch with 5-bit output enables

SSOP24: plastic shrink small outline package; 24 leads; body width 3.9 mm; lead pitch 0.635 mm SOT556-1

Fig 10. Package outline SOT556-1 (SSOP24)

10-bit bus switch with 5-bit output enables

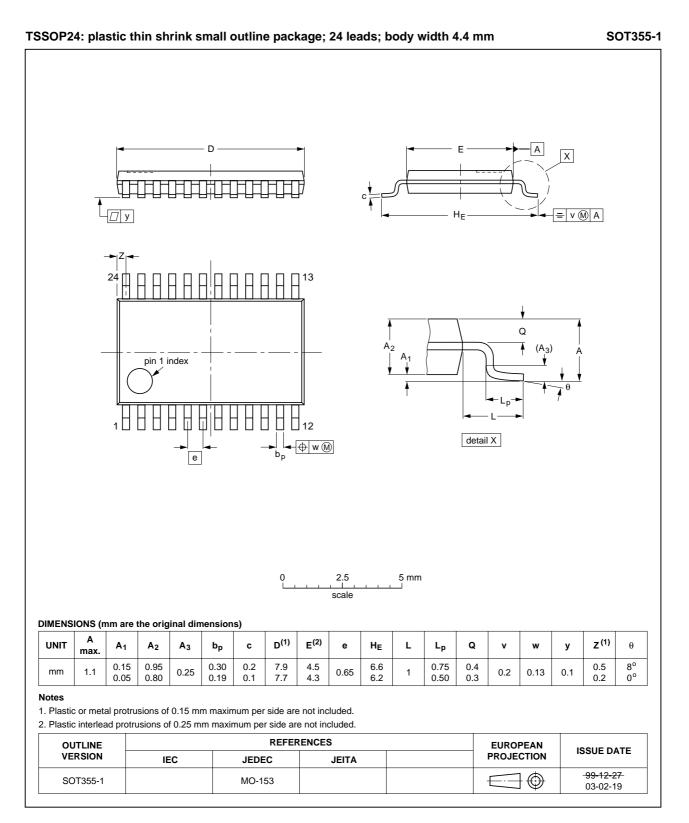


Fig 11. Package outline SOT355-1 (TSSOP24)

14. Abbreviations

Table 10.	Abbreviations
Acronym	Description
CDM	Charged Device Model
DUT	Device Under Test
ESD	ElectroStatic Discharge
FET	Field Effect Transistor
HBM	Human Body Model
PRR	Pulse Rate Repetition
TTL	Transistor-Transistor Logic

15. Revision history

Table 11. Revision history **Document ID Release date** Data sheet status **Change notice** Supersedes CBT3384_6 20091102 Product data sheet CBT3384_5 • The format of this data sheet has been redesigned to comply with the new identity guidelines of Modifications: NXP Semiconductors. • Legal texts have been adapted to the new company name where appropriate. • Changed: Table 6 "Static characteristics" a. Pass voltage values have changed. b. Undershoot static current protection removed. • Changed: Table 7 "Dynamic characteristics" a. Enable and disable times values have changed. CBT3384_5 20011220 Product specification -CBT3384_4 CBT3384 4 20010319 Product specification CBT3384 3 -CBT3384_3 Product specification 20001113 CBT3384_2 -CBT3384_2 20000128 Product specification --

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

16.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental

damage. Nexperia accepts no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk. Applications — Applications that are described herein for any of these

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at <u>http://www.nexperia.com/profile/terms</u>, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by Nexperia. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

10-bit bus switch with 5-bit output enables

18. Contents

1	General description 1
2	Features 1
3	Ordering information 1
4	Functional diagram 2
5	Pinning information 2
5.1	Pinning 2
5.2	Pin description 3
6	Functional description 3
7	Limiting values 4
8	Recommended operating conditions 4
9	Static characteristics 4
10	Dynamic characteristics 5
11	Waveforms 6
12	Test information 7
13	Package outline 8
14	Abbreviations 12
15	Revision history 12
16	Legal information 13
16.1	Data sheet status 13
16.2	Definitions
16.3	Disclaimers
16.4	Trademarks 13
17	Contact information 13
18	Contents 14

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Encoders, Decoders, Multiplexers & Demultiplexers category:

Click to view products by NXP manufacturer:

Other Similar products are found below :

M38510/01406BEA MC74HC163ADTG 74HC253N HMC854LC5TR NLV74VHC1G01DFT1G NLVHC4851ADTR2G NLVHCT4851ADTR2G PI3B33X257BE M74HCT4052ADTR2G M74VHC1GT04DFT3G TC74AC138P(F) MC74LVX4051MNTWG HMC855LC5TR NLV14028BDR2G NLV14051BDR2G NLV74HC238ADTR2G 715428X COMX-CAR-210 5962-8607001EA 5962-8756601EA MAX3783UCM+D PI5C3253QEX 8CA3052APGGI8 TC74HC4051AF(EL,F) TC74VHC138F(EL,K,F PI3B3251LE PI5C3309UEX PI5C3251QEX PI3B3251QE 74VHC4052AFT(BJ) PI3PCIE3415AZHEX NLV74HC4851AMNTWG MC74LVX257DG M74HC151YRM13TR M74HC151YTTR PI5USB31213XEAEX M74HCT4851ADWR2G XD74LS154 AP4373AW5-7-01 QS3VH251QG8 QS4A201QG HCS301T-ISN HCS500-I/SM MC74HC151ADTG TC4066BP(N,F) 74ACT11139PWR HMC728LC3CTR 74VHC238FT(BJ) 74VHC4066AFT(BJ) 74VHCT138AFT(BJ)