# **HEF40193B**

# 4-bit up/down binary counter Rev. 8 — 18 November 2011

**Product data sheet** 

#### 1. **General description**

The HEF40193B is a 4-bit synchronous up/down binary counter. The counter has a count-up clock input (CPU), a count-down clock input (CPD), an asynchronous parallel load input (PL), four parallel data inputs (D0 to D3), an asynchronous master reset input (MR), four counter outputs (Q0 to Q3), an active LOW terminal count-up (carry) output (TCU), and an active LOW terminal count-down (borrow) output (TCD).

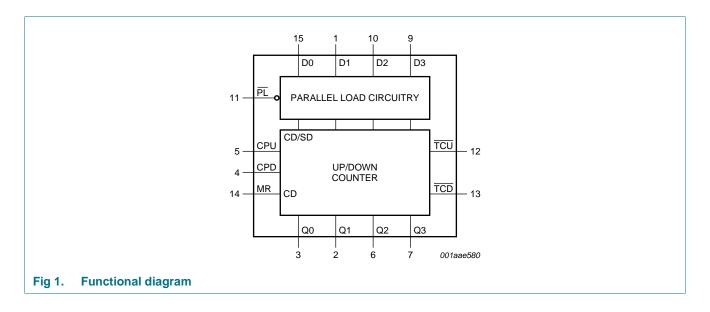
The counter outputs change state on the LOW-to-HIGH transition of either clock input. However, for correct counting, both clock inputs cannot be LOW simultaneously. The outputs TCU and TCD are normally HIGH. When the circuit has reached the maximum count state of '15', the next HIGH-to-LOW transition of CPU will cause TCU to go LOW. TCU will stay LOW until CPU goes HIGH again. Likewise, output TCD will go LOW when the circuit is in the zero state and CPD goes LOW. When PL is LOW, the information on D0 to D3 is asynchronously loaded into the counter. A HIGH on MR resets the counter independent of all other input conditions. The counter stages are of a static toggle type flip-flop.

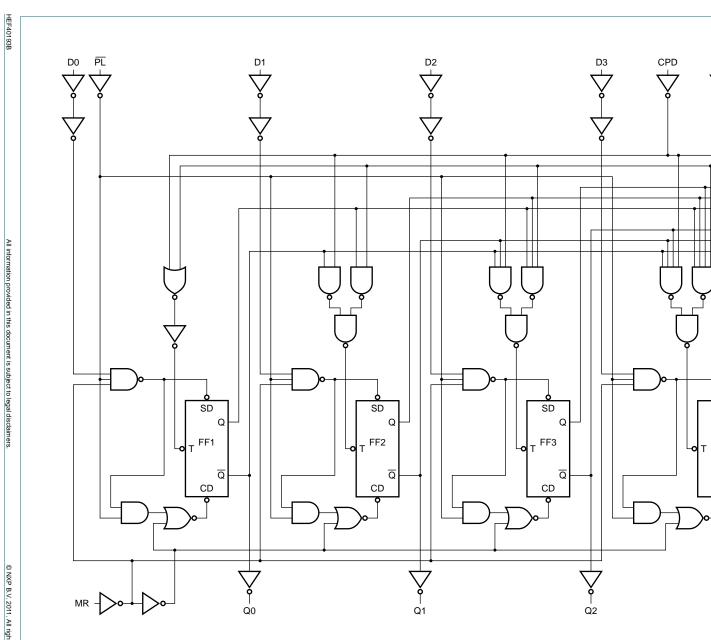
It operates over a recommended V<sub>DD</sub> power supply range of 3 V to 15 V referenced to V<sub>SS</sub> (usually ground). Unused inputs must be connected to V<sub>DD</sub>, V<sub>SS</sub>, or another input.

#### 2. Features and benefits

- Fully static operation
- 5 V, 10 V, and 15 V parametric ratings
- Standardized symmetrical output characteristics
- Specified from -40 °C to +85 °C
- Complies with JEDEC standard JESD 13-B

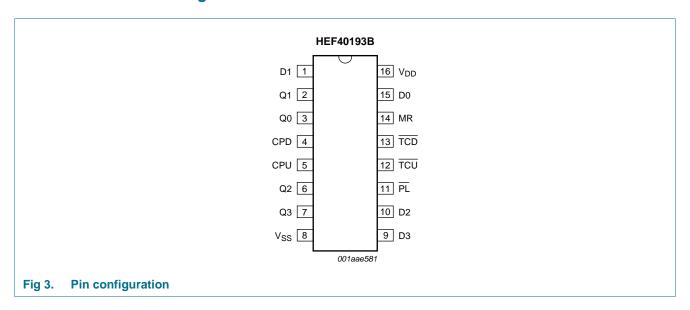
#### Ordering information 3.


#### Ordering information


All types operate from -40 °C to +85 °C.

| Type number | number Package |                                                            |          |  |  |  |
|-------------|----------------|------------------------------------------------------------|----------|--|--|--|
|             | Name           | Description                                                | Version  |  |  |  |
| HEF40193BP  | DIP16          | plastic dual in-line package; 16 leads (300 mil)           | SOT38-4  |  |  |  |
| HEF40193BT  | SO16           | plastic small outline package; 16 leads; body width 3.9 mm | SOT109-1 |  |  |  |




# 4. Functional diagram





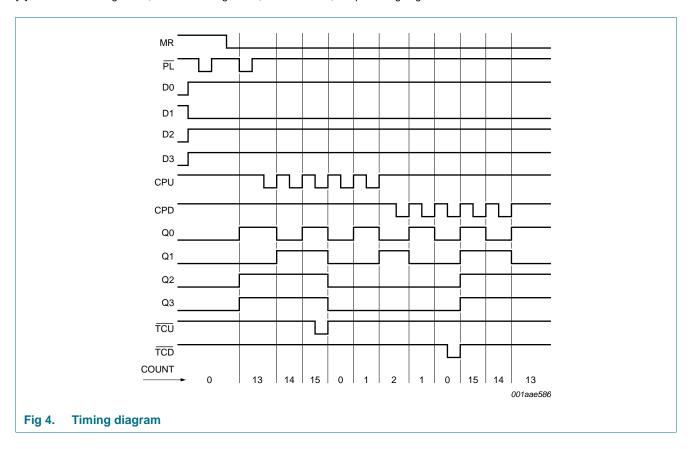
# 5. Pinning information

### 5.1 Pinning



### 5.2 Pin description

Table 2. Pin description


| Symbol          | Pin          | Description                                                |
|-----------------|--------------|------------------------------------------------------------|
| D0 to D3        | 15, 1, 10, 9 | parallel data input                                        |
| CPU             | 5            | count-up clock pulse input (LOW-to-HIGH, edge-triggered)   |
| CPD             | 4            | count-down clock pulse input (LOW-to-HIGH, edge-triggered) |
| PL              | 11           | parallel load input (active LOW)                           |
| MR              | 14           | master reset input (asynchronous)                          |
| Q0 to Q3        | 3, 2, 6, 7   | buffered counter output                                    |
| TCU             | 12           | buffered terminal count-up (carry) output (active LOW)     |
| TCD             | 13           | buffered terminal count-down (borrow) output (active LOW)  |
| $V_{DD}$        | 16           | supply voltage                                             |
| V <sub>SS</sub> | 8            | ground supply voltage                                      |

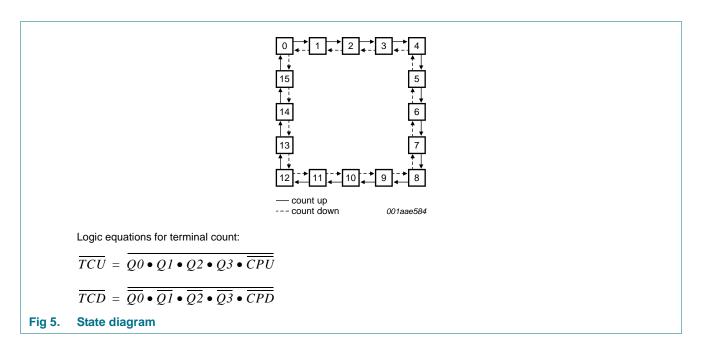

### 6. Functional description

Table 3. Function table [1]

| MR | PL | CPU      | CPD      | Mode                 |
|----|----|----------|----------|----------------------|
| Н  | Χ  | Χ        | Χ        | reset (asynchronous) |
| L  | L  | Χ        | Χ        | parallel load        |
| L  | Н  | <b>↑</b> | Н        | count-up             |
| L  | Н  | Н        | <b>↑</b> | count-down           |

[1] H = HIGH voltage level; L = LOW voltage level; X = don't care;  $\uparrow = positive$ -going transition.





#### **Limiting values 7**.

#### Table 4. **Limiting values**

In accordance with the Absolute Maximum Rating System (IEC 60134).

| Symbol           | Parameter               | Conditions                                              | Min          | Max            | Unit |
|------------------|-------------------------|---------------------------------------------------------|--------------|----------------|------|
| $V_{DD}$         | supply voltage          |                                                         | -0.5         | +18            | V    |
| I <sub>IK</sub>  | input clamping current  | $V_I < -0.5 \text{ V or } V_I > V_{DD} + 0.5 \text{ V}$ | -            | ±10            | mA   |
| VI               | input voltage           |                                                         | -0.5         | $V_{DD} + 0.5$ | V    |
| I <sub>OK</sub>  | output clamping current | $V_O < -0.5 \text{ V or } V_O > V_{DD} + 0.5 \text{ V}$ | -            | ±10            | mA   |
| I <sub>I/O</sub> | input/output current    |                                                         | -            | ±10            | mA   |
| I <sub>DD</sub>  | supply current          |                                                         | -            | 50             | mA   |
| T <sub>stg</sub> | storage temperature     |                                                         | -65          | +150           | °C   |
| T <sub>amb</sub> | ambient temperature     |                                                         | -40          | +85            | °C   |
| P <sub>tot</sub> | total power dissipation | DIP16 package                                           | <u>[1]</u> - | 750            | mW   |
|                  |                         | SO16 package                                            | [2] -        | 500            | mW   |
| Р                | power dissipation       | per output                                              | -            | 100            | mW   |

For DIP16 package:  $P_{tot}$  derates linearly with 12 mW/K above 70 °C.

#### **Recommended operating conditions** 8.

**Recommended operating conditions** Table 5.

| Symbol           | Parameter           | Conditions  | Min | Тур | Max      | Unit |
|------------------|---------------------|-------------|-----|-----|----------|------|
| $V_{DD}$         | supply voltage      |             | 3   | -   | 15       | V    |
| $V_{I}$          | input voltage       |             | 0   | -   | $V_{DD}$ | V    |
| T <sub>amb</sub> | ambient temperature | in free air | -40 | -   | +85      | °C   |

HEF40193B All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

For SO16 package: Ptot derates linearly with 8 mW/K above 70 °C.

 Table 5.
 Recommended operating conditions ...continued

| Symbol              | Parameter                           | Conditions             | Min | Тур | Max  | Unit |
|---------------------|-------------------------------------|------------------------|-----|-----|------|------|
| $\Delta t/\Delta V$ | input transition rise and fall rate | $V_{DD} = 5 V$         | -   | -   | 3.75 | μs/V |
|                     |                                     | V <sub>DD</sub> = 10 V | -   | -   | 0.5  | μs/V |
|                     |                                     | V <sub>DD</sub> = 15 V | -   | -   | 0.08 | μs/V |

### 9. Static characteristics

Table 6. Static characteristics

 $V_{SS} = 0 \ V$ ;  $V_I = V_{SS}$  or  $V_{DD}$  unless otherwise specified.

| Symbol                                    | Parameter                 | Conditions              | $V_{DD}$ | T <sub>amb</sub> = | –40 °C | T <sub>amb</sub> = | : 25 °C | T <sub>amb</sub> = | 85 °C | Unit |
|-------------------------------------------|---------------------------|-------------------------|----------|--------------------|--------|--------------------|---------|--------------------|-------|------|
|                                           |                           |                         |          | Min                | Max    | Min                | Max     | Min                | Max   |      |
| $V_{IH}$                                  | HIGH-level input voltage  | I <sub>O</sub>   < 1 μA | 5 V      | 3.5                | -      | 3.5                | -       | 3.5                | -     | V    |
|                                           |                           |                         | 10 V     | 7.0                | -      | 7.0                | -       | 7.0                | -     | V    |
|                                           |                           |                         | 15 V     | 11.0               | -      | 11.0               | -       | 11.0               | -     | V    |
| $V_{IL}$                                  | LOW-level input voltage   | $ I_{O}  < 1 \mu A$     | 5 V      | -                  | 1.5    | -                  | 1.5     | -                  | 1.5   | V    |
|                                           |                           |                         | 10 V     | -                  | 3.0    | -                  | 3.0     | -                  | 3.0   | V    |
|                                           |                           |                         | 15 V     | -                  | 4.0    | -                  | 4.0     | -                  | 4.0   | V    |
| V <sub>OH</sub> HIGH-level output voltage | $ I_{O}  < 1 \mu A$       | 5 V                     | 4.95     | -                  | 4.95   | -                  | 4.95    | -                  | V     |      |
|                                           |                           |                         | 10 V     | 9.95               | -      | 9.95               | -       | 9.95               | -     | V    |
|                                           |                           |                         | 15 V     | 14.95              | -      | 14.95              | -       | 14.95              | -     | V    |
| V <sub>OL</sub> LOW-le                    | LOW-level output voltage  | $ I_{O}  < 1 \mu A$     | 5 V      | -                  | 0.05   | -                  | 0.05    | -                  | 0.05  | V    |
|                                           |                           |                         | 10 V     | -                  | 0.05   | -                  | 0.05    | -                  | 0.05  | V    |
|                                           |                           |                         | 15 V     | -                  | 0.05   | -                  | 0.05    | -                  | 0.05  | V    |
| I <sub>OH</sub>                           | HIGH-level output current | $V_0 = 2.5 \text{ V}$   | 5 V      | -                  | -1.7   | -                  | -1.4    | -                  | -1.1  | mA   |
|                                           |                           | V <sub>O</sub> = 4.6 V  | 5 V      | -                  | -0.52  | -                  | -0.44   | -                  | -0.36 | mA   |
|                                           |                           | V <sub>O</sub> = 9.5 V  | 10 V     | -                  | -1.3   | -                  | -1.1    | -                  | -0.9  | mA   |
|                                           |                           | V <sub>O</sub> = 13.5 V | 15 V     | -                  | -3.6   | -                  | -3.0    | -                  | -2.4  | mA   |
| I <sub>OL</sub>                           | LOW-level output current  | $V_0 = 0.4 \ V$         | 5 V      | 0.52               | -      | 0.44               | -       | 0.36               | -     | mA   |
|                                           |                           | $V_0 = 0.5 \text{ V}$   | 10 V     | 1.3                | -      | 1.1                | -       | 0.9                | -     | mA   |
|                                           |                           | V <sub>O</sub> = 1.5 V  | 15 V     | 3.6                | -      | 3.0                | -       | 2.4                | -     | mA   |
| I <sub>I</sub>                            | input leakage current     |                         | 15 V     | -                  | ±0.3   | -                  | ±0.3    | -                  | ±1.0  | μΑ   |
| I <sub>DD</sub>                           | supply current            | I <sub>O</sub> = 0 A    | 5 V      | -                  | 20     | -                  | 20      | -                  | 150   | μΑ   |
|                                           |                           |                         | 10 V     | -                  | 40     | -                  | 40      | -                  | 300   | μΑ   |
|                                           |                           |                         | 15 V     | -                  | 80     | -                  | 80      | -                  | 600   | μΑ   |
| Cı                                        | input capacitance         |                         | -        | -                  | -      | -                  | 7.5     | -                  | -     | pF   |

# 10. Dynamic characteristics

Table 7. Dynamic characteristics

 $V_{SS} = 0 \text{ V; } T_{amb} = 25 \text{ °C; for test circuit see }$ <u>Figure 7; unless otherwise specified.</u>

| Parameter         | Conditions                  | $V_{DD}$                                                                                                                           | Extrapolation formula[1]            | Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Тур                                                   | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HIGH to LOW       | CPU to Qn;                  | 5 V                                                                                                                                | 183 ns + (0.55 ns/pF)C <sub>L</sub> | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 210                                                   | 415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| propagation delay | see <u>Figure 6</u>         | 10 V                                                                                                                               | 74 ns + (0.23 ns/pF)C <sub>L</sub>  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 85                                                    | 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                             | 15 V                                                                                                                               | 52 ns + (0.16 ns/pF)C <sub>L</sub>  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60                                                    | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   | CPD to Qn;                  | 5 V                                                                                                                                | 183 ns + (0.55 ns/pF)C <sub>L</sub> | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 210                                                   | 425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   | see <u>Figure 6</u>         | 10 V                                                                                                                               | 74 ns + (0.23 ns/pF)C <sub>L</sub>  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 85                                                    | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                             | 15 V                                                                                                                               | 57 ns + (0.16 ns/pF)C <sub>L</sub>  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60                                                    | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   | CPU to TCU;                 | 5 V                                                                                                                                | 98 ns + (0.55 ns/pF)C <sub>L</sub>  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 125                                                   | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   | see <u>Figure 6</u>         | 10 V                                                                                                                               | 39 ns + (0.23 ns/pF)C <sub>L</sub>  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50                                                    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                             | 15 V                                                                                                                               | 27 ns + (0.16 ns/pF)C <sub>L</sub>  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35                                                    | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   | CPD to TCD;<br>see Figure 6 | 5 V                                                                                                                                | 113 ns + (0.55 ns/pF)C <sub>L</sub> | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 140                                                   | 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                             | 10 V                                                                                                                               | 44 ns + (0.23 ns/pF)C <sub>L</sub>  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55                                                    | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                             | 15 V                                                                                                                               | 32 ns + (0.16 ns/pF)C <sub>L</sub>  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40                                                    | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   | MR to Qn;                   | 5 V                                                                                                                                | 168 ns + (0.55 ns/pF)C <sub>L</sub> | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 195                                                   | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   | see <u>Figure 6</u>         | 10 V                                                                                                                               | 69 ns + (0.23 ns/pF)C <sub>L</sub>  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 80                                                    | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                             | 15 V                                                                                                                               | 52 ns + (0.16 ns/pF)C <sub>L</sub>  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60                                                    | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   | MR to TCD                   | 5 V                                                                                                                                | 338 ns + (0.55 ns/pF)C <sub>L</sub> | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 365                                                   | 730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                             | 10 V                                                                                                                               | 119 ns + (0.23 ns/pF)C <sub>L</sub> | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 130                                                   | 265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                             | 15 V                                                                                                                               | 92 ns + (0.16 ns/pF)C <sub>L</sub>  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100                                                   | 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   | $\overline{PL} 	o Qn$       | 5 V                                                                                                                                | 158 ns + (0.55 ns/pF)C <sub>L</sub> | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 185                                                   | 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                             | 10 V                                                                                                                               | 64 ns + (0.23 ns/pF)C <sub>L</sub>  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 75                                                    | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                             | 15 V                                                                                                                               | 47 ns + (0.16 ns/pF)C <sub>L</sub>  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55                                                    | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                             | HIGH to LOW propagation delay  CPU to Qn; see Figure 6  CPU to TCU; see Figure 6  CPD to TCD; see Figure 6  MR to Qn; see Figure 6 | HIGH to LOW propagation delay       | $\begin{array}{c} \mbox{HIGH to LOW} \\ \mbox{propagation delay} \end{array} \begin{tabular}{ll} \mbox{CPU to Qn;} \\ \mbox{see Figure 6} \\ \mbox{Figure 6} \\ \mbox{ID V} \\ \mbox{T4 ns + } (0.23 \ ns/pF)C_L \\ \mbox{15 V} \\ \mbox{52 ns + } (0.16 \ ns/pF)C_L \\ \mbox{15 V} \\ \mbox{52 ns + } (0.16 \ ns/pF)C_L \\ \mbox{15 V} \\ \mbox{57 ns + } (0.23 \ ns/pF)C_L \\ \mbox{15 V} \\ \mbox{57 ns + } (0.16 \ ns/pF)C_L \\ \mbox{15 V} \\ \mbox{39 ns + } (0.23 \ ns/pF)C_L \\ \mbox{15 V} \\ \mbox{27 ns + } (0.16 \ ns/pF)C_L \\ \mbox{15 V} \\ \mbox{27 ns + } (0.16 \ ns/pF)C_L \\ \mbox{15 V} \\ \mbox{32 ns + } (0.16 \ ns/pF)C_L \\ \mbox{15 V} \\ \mbox{32 ns + } (0.16 \ ns/pF)C_L \\ \mbox{15 V} \\ \mbox{32 ns + } (0.16 \ ns/pF)C_L \\ \mbox{15 V} \\ \mbox{32 ns + } (0.16 \ ns/pF)C_L \\ \mbox{15 V} \\ \mbox{32 ns + } (0.16 \ ns/pF)C_L \\ \mbox{15 V} \\ \mbox{32 ns + } (0.16 \ ns/pF)C_L \\ \mbox{15 V} \\ \mbox{32 ns + } (0.16 \ ns/pF)C_L \\ \mbox{15 V} \\ \mbox{338 ns + } (0.55 \ ns/pF)C_L \\ \mbox{15 V} \\ \mbox{32 ns + } (0.16 \ ns/pF)C_L \\ \mbox{15 V} \\ \mbox{32 ns + } (0.16 \ ns/pF)C_L \\ \mbox{15 V} \\ \mbox{32 ns + } (0.16 \ ns/pF)C_L \\ \mbox{15 V} \\ \mbox{32 ns + } (0.55 \ ns/pF)C_L \\ \mbox{15 V} \\ \mbox{32 ns + } (0.55 \ ns/pF)C_L \\ \mbox{15 V} \\ \mbox{32 ns + } (0.23 \ ns/pF)C_L \\ \mbox{15 V} \\ \mbox{32 ns + } (0.23 \ ns/pF)C_L \\ \mbox{15 V} \\ \mbox{32 ns + } (0.23 \ ns/pF)C_L \\ \mbox{15 V} \\ \mbox{32 ns + } (0.23 \ ns/pF)C_L \\ \mbox{15 V} \\ \mbox{32 ns + } (0.23 \ ns/pF)C_L \\ \mbox{15 V} \\ \mbox{32 ns + } (0.55 \ ns/pF)C_L \\ \mbox{15 V} \\ \mbox{32 ns + } (0.55 \ ns/pF)C_L \\ \mbox{15 N} \\ $ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | HIGH to LOW propagation delay   See Figure 6   $5 \text{ V}$   $183 \text{ ns} + (0.55 \text{ ns/pF})\text{C}_\text{L}$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$   $-$ | HIGH to LOW propagation delay   See Figure 6   $5 \lor 183 \text{ ns} + (0.55 \text{ ns/pF})\text{C}_{\text{L}} - 210  415  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165  165 $ |

 Table 7.
 Dynamic characteristics ...continued

 $V_{SS} = 0 \text{ V; } T_{amb} = 25 \text{ °C; for test circuit see } Figure 7; unless otherwise specified.}$ 

| Symbol           | Parameter         | Conditions          | $V_{DD}$                           | Extrapolation formula[1]                    | Min | Тур | Max | Unit |
|------------------|-------------------|---------------------|------------------------------------|---------------------------------------------|-----|-----|-----|------|
| t <sub>PLH</sub> | LOW to HIGH       | CPU to Qn;          | 5 V                                | 143 ns + (0.55 ns/pF)C <sub>L</sub>         | -   | 170 | 340 | ns   |
|                  | propagation delay | see <u>Figure 6</u> | 10 V                               | 59 ns + (0.23 ns/pF)C <sub>L</sub>          | -   | 70  | 140 | ns   |
|                  |                   |                     | 15 V                               | 42 ns + (0.16 ns/pF)C <sub>L</sub>          | -   | 50  | 100 | ns   |
|                  |                   | CPD to Qn;          | 5 V                                | 143 ns + $(0.55 \text{ ns/pF})C_L$          | -   | 170 | 340 | ns   |
|                  |                   | see Figure 6        | 10 V                               | 59 ns + $(0.23 \text{ ns/pF})C_L$           | -   | 70  | 140 | ns   |
|                  |                   |                     | 15 V                               | 42 ns + $(0.16 \text{ ns/pF})C_L$           | -   | 50  | 100 | ns   |
|                  |                   | CPU to TCU;         | 5 V                                | 68 ns + $(0.55 \text{ ns/pF})C_L$           | -   | 95  | 185 | ns   |
|                  |                   | see Figure 6        | 10 V                               | 29 ns + $(0.23 \text{ ns/pF})C_L$           | -   | 40  | 80  | ns   |
|                  |                   |                     | 15 V                               | 22 ns + $(0.16 \text{ ns/pF})C_L$           | -   | 30  | 60  | ns   |
|                  |                   | CPD to TCD;         | 5 V                                | 73 ns + $(0.55 \text{ ns/pF})C_L$           | -   | 100 | 195 | ns   |
|                  |                   | see Figure 6        | 10 V                               | 29 ns + $(0.23 \text{ ns/pF})C_L$           | -   | 40  | 85  | ns   |
|                  |                   |                     | 15 V                               | 22 ns + $(0.16 \text{ ns/pF})C_L$           | -   | 30  | 65  | ns   |
|                  |                   | MR to TCU           | 5 V                                | 118 ns + (0.55 ns/pF)C <sub>L</sub>         | -   | 145 | 285 | ns   |
|                  |                   |                     | 10 V                               | 49 ns + (0.23 ns/pF)C <sub>L</sub>          | -   | 60  | 115 | ns   |
|                  |                   |                     | 15 V                               | $37 \text{ ns} + (0.16 \text{ ns/pF})C_{L}$ | -   | 45  | 90  | ns   |
|                  | PL to Qn          | 5 V                 | 118 ns + $(0.55 \text{ ns/pF})C_L$ | -                                           | 145 | 290 | ns  |      |
|                  |                   |                     | 10 V                               | 49 ns + $(0.23 \text{ ns/pF})C_L$           | -   | 60  | 120 | ns   |
|                  |                   |                     | 15 V                               | $37 \text{ ns} + (0.16 \text{ ns/pF})C_{L}$ | -   | 45  | 90  | ns   |
| t <sub>t</sub>   | transition time   | see Figure 6        | 5 V                                | 10 ns + (1.00 ns/pF)C <sub>L</sub>          | -   | 60  | 120 | ns   |
|                  |                   |                     | 10 V                               | 9 ns + (0.42 ns/pF)C <sub>L</sub>           | -   | 30  | 60  | ns   |
|                  |                   |                     | 15 V                               | 6 ns + (0.28 ns/pF)C <sub>L</sub>           | -   | 20  | 40  | ns   |
| f <sub>max</sub> | maximum frequency | see Figure 6        | 5 V                                |                                             | 2.5 | 5   | -   | MHz  |
|                  |                   |                     | 10 V                               |                                             | 7   | 14  | -   | MHz  |
|                  |                   |                     | 15 V                               |                                             | 9   | 18  | -   | MHz  |
| t <sub>W</sub>   | pulse width       | CPU or CPD LOW;     | 5 V                                |                                             | 150 | 75  | -   | ns   |
|                  |                   | minimum width;      | 10 V                               |                                             | 50  | 25  | -   | ns   |
|                  |                   | see <u>Figure 6</u> | 15 V                               |                                             | 35  | 20  | -   | ns   |
|                  |                   | MR input HIGH;      | 5 V                                |                                             | 180 | 90  | -   | ns   |
|                  |                   | minimum width;      | 10 V                               |                                             | 70  | 35  | -   | ns   |
|                  |                   | see Figure 6        | 15 V                               |                                             | 60  | 30  | -   | ns   |
|                  |                   | PL input LOW;       | 5 V                                |                                             | 120 | 60  | -   | ns   |
|                  |                   | minimum width;      | 10 V                               |                                             | 45  | 20  | -   | ns   |
|                  |                   | see Figure 6        | 15 V                               |                                             | 30  | 15  | -   | ns   |
| t <sub>rec</sub> | recovery time     | MR input;           | 5 V                                |                                             | 125 | 65  | -   | ns   |
|                  |                   | see Figure 6        | 10 V                               |                                             | 70  | 35  | -   | ns   |
|                  |                   |                     | 15 V                               |                                             | 50  | 25  | -   | ns   |
|                  |                   | PL input            | 5 V                                |                                             | 90  | 45  | -   | ns   |
|                  |                   | see Figure 6        | 10 V                               |                                             | 35  | 15  | -   | ns   |
|                  |                   |                     | 15 V                               |                                             | 25  | 10  | -   | ns   |

 Table 7.
 Dynamic characteristics ...continued

 $V_{SS} = 0 \text{ V; } T_{amb} = 25 \text{ °C; for test circuit see } \frac{\text{Figure 7; unless otherwise specified.}}{\text{Figure 7}}$ 

| Symbol                      | Parameter    | Conditions                | $V_{DD}$ | Extrapolation formula[1] | Min | Тур | Max | Unit |
|-----------------------------|--------------|---------------------------|----------|--------------------------|-----|-----|-----|------|
| t <sub>su</sub> set-up time | set-up time  | Dn to PL;                 | 5 V      |                          | 160 | 80  | -   | ns   |
|                             | see Figure 6 | 10 V                      |          | 60                       | 30  | -   | ns  |      |
|                             |              |                           | 15 V     |                          | 50  | 25  | -   | ns   |
| t <sub>h</sub>              | hold time    | Dn to PL;<br>see Figure 6 | 5 V      |                          | +10 | -70 | -   | ns   |
|                             |              |                           | 10 V     |                          | +5  | -25 | -   | ns   |
|                             |              |                           | 15 V     |                          | +5  | -20 | -   | ns   |

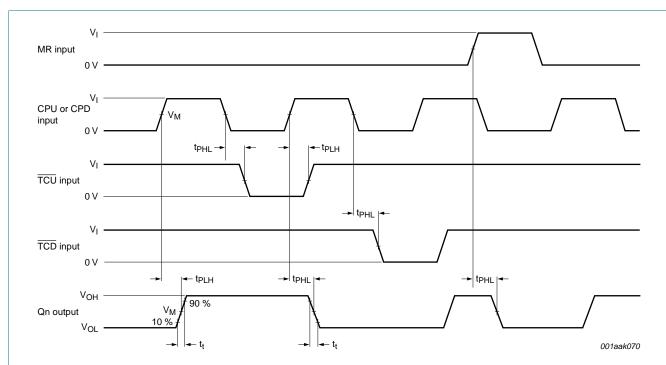
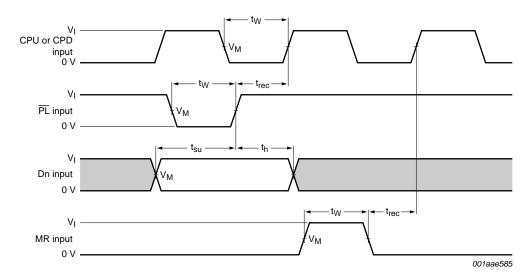

<sup>[1]</sup> The typical values of the propagation delay and transition times are calculated from the extrapolation formulas shown (C<sub>L</sub> in pF).

Table 8. Dynamic power dissipation P<sub>D</sub>


 $P_D$  can be calculated from the formulas shown.  $V_{SS} = 0$  V;  $t_r = t_f \le 20$  ns;  $T_{amb} = 25$  °C.

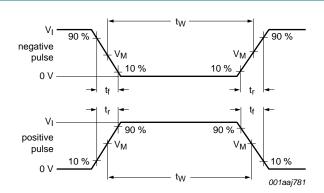
| Symbol | Parameter                 | $V_{DD}$ | Typical formula for $P_D$ ( $\mu$ W)                              | where:                                         |
|--------|---------------------------|----------|-------------------------------------------------------------------|------------------------------------------------|
| $P_D$  | dynamic power dissipation | 5 V      | $P_D = 600 \times f_i + \Sigma (f_o \times C_L) \times V_{DD}^2$  | $f_i$ = input frequency in MHz,                |
|        |                           | 10 V     | $P_D = 2700 \times f_i + \Sigma (f_o \times C_L) \times V_{DD}^2$ | fo = output frequency in MHz,                  |
|        |                           | 15 V     | $P_D = 7500 \times f_i + \Sigma (f_o \times C_L) \times V_{DD}^2$ | $C_L$ = output load capacitance in pF,         |
|        |                           |          |                                                                   | $V_{DD}$ = supply voltage in V,                |
|        |                           |          |                                                                   | $\Sigma(f_0 \times C_L)$ = sum of the outputs. |

### 11. Waveforms

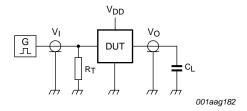


a. Propagation delays and output transition times




b.  $\overline{PL}$  and MR recovery times, CPU, CPD,  $\overline{PL}$  and MR minimum pulse widths, and Dn to  $\overline{PL}$  set-up and hold times  $V_{OH}$  and  $V_{OL}$  are typical output voltage levels that occur with the output load.

Set-up and hold times are shown as positive values but may be specified as negative values.


The shaded area is where the data can change for predictable performance.

Measurement points are given in Table 9.

Fig 6. Waveforms showing switching times



### a. Input waveforms



#### b. Test circuit

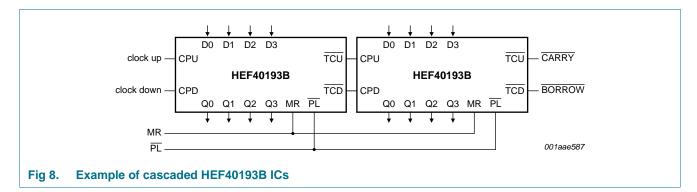
Test data is given in Table 9.

Definitions for test circuit:

 $C_L$  = Load capacitance including jig and probe capacitance;

 $R_T$  = Termination resistance should be equal to output impedance  $Z_0$  of the pulse generator.

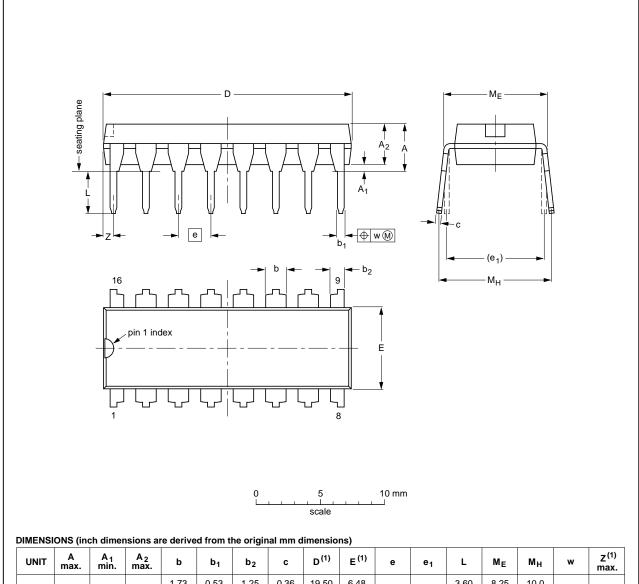
Fig 7. Test circuit for switching times


Table 9. Measurement points and test data

| Supply voltage | Input          | Load              |                                 |       |
|----------------|----------------|-------------------|---------------------------------|-------|
|                | V <sub>I</sub> | V <sub>M</sub>    | t <sub>r</sub> , t <sub>f</sub> | CL    |
| 5 V to 15 V    | $V_{DD}$       | 0.5V <sub>I</sub> | ≤ 20 ns                         | 50 pF |

### 12. Application information

Some examples of applications for the HEF40193B are:


- Up/down difference counting
- Multistage ripple counting
- Multistage synchronous counting



### 13. Package outline

### DIP16: plastic dual in-line package; 16 leads (300 mil)

SOT38-4



| UNIT   | A<br>max. | A <sub>1</sub><br>min. | A <sub>2</sub><br>max. | b              | b <sub>1</sub> | b <sub>2</sub> | С              | D <sup>(1)</sup> | E <sup>(1)</sup> | е    | e <sub>1</sub> | L            | ME           | Мн           | w     | Z <sup>(1)</sup><br>max. |
|--------|-----------|------------------------|------------------------|----------------|----------------|----------------|----------------|------------------|------------------|------|----------------|--------------|--------------|--------------|-------|--------------------------|
| mm     | 4.2       | 0.51                   | 3.2                    | 1.73<br>1.30   | 0.53<br>0.38   | 1.25<br>0.85   | 0.36<br>0.23   | 19.50<br>18.55   | 6.48<br>6.20     | 2.54 | 7.62           | 3.60<br>3.05 | 8.25<br>7.80 | 10.0<br>8.3  | 0.254 | 0.76                     |
| inches | 0.17      | 0.02                   | 0.13                   | 0.068<br>0.051 | 0.021<br>0.015 | 0.049<br>0.033 | 0.014<br>0.009 | 0.77<br>0.73     | 0.26<br>0.24     | 0.1  | 0.3            | 0.14<br>0.12 | 0.32<br>0.31 | 0.39<br>0.33 | 0.01  | 0.03                     |

#### Note

1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.

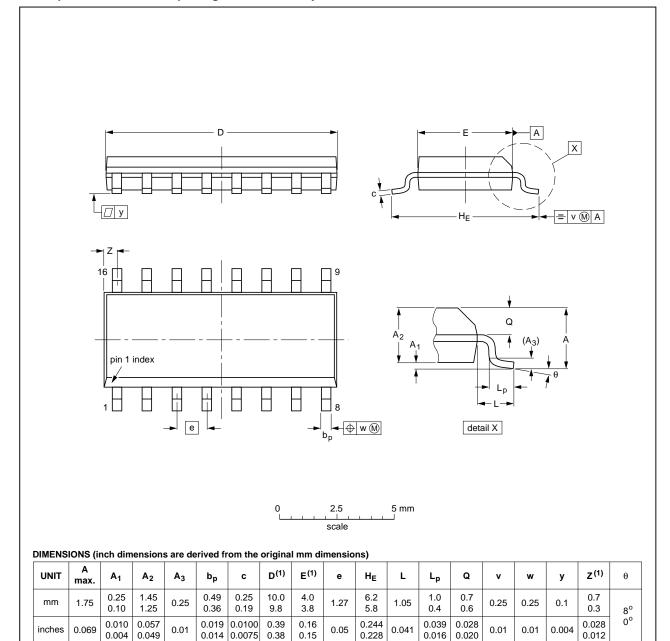

| OUTLINE |     | REFER | EUROPEAN | ISSUE DATE |            |                                 |  |
|---------|-----|-------|----------|------------|------------|---------------------------------|--|
| VERSION | IEC | JEDEC | JEITA    |            | PROJECTION | ISSUE DATE                      |  |
| SOT38-4 |     |       |          |            |            | <del>95-01-14</del><br>03-02-13 |  |

Fig 9. Package outline SOT38-4 (DIP16)

HEF40193B

### SO16: plastic small outline package; 16 leads; body width 3.9 mm

SOT109-1



#### Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

| OUTLINE  |        | REFER  | EUROPEAN | ICCUE DATE |            |                                 |  |
|----------|--------|--------|----------|------------|------------|---------------------------------|--|
| VERSION  | IEC    | JEDEC  | JEITA    |            | PROJECTION | ISSUE DATE                      |  |
| SOT109-1 | 076E07 | MS-012 |          |            |            | <del>99-12-27</del><br>03-02-19 |  |

Fig 10. Package outline SOT109-1 (SO16)

HEF40193B

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2011. All rights reserved.

# 14. Revision history

### Table 10. Revision history

|                   | -                               |                             |                         |                   |
|-------------------|---------------------------------|-----------------------------|-------------------------|-------------------|
| Document ID       | Release date                    | Data sheet status           | Change notice           | Supersedes        |
| HEF40193B v.8     | 20111118                        | Product data sheet          | -                       | HEF40193B v.7     |
| Modifications:    | <ul> <li>Legal pages</li> </ul> | s updated.                  |                         |                   |
|                   | <ul> <li>Changes in</li> </ul>  | "General description" and " | Features and benefits". |                   |
|                   | <ul> <li>Section "Ap</li> </ul> | plications" removed.        |                         |                   |
| HEF40193B v.7     | 20110914                        | Product data sheet          | -                       | HEF40193B v.6     |
| HEF40193B v.6     | 20091222                        | Product data sheet          | -                       | HEF40193B v.5     |
| HEF40193B v.5     | 20090615                        | Product data sheet          | -                       | HEF40193B v.4     |
| HEF40193B v.4     | 20090505                        | Product data sheet          | -                       | HEF40193B_CNV v.3 |
| HEF40193B_CNV v.3 | 19950101                        | Product specification       | -                       | HEF40193B_CNV v.2 |
| HEF40193B_CNV v.2 | 19950101                        | Product specification       | -                       | -                 |
|                   |                                 |                             |                         |                   |

### 15. Legal information

#### 15.1 Data sheet status

| Document status[1][2]          | Product status[3] | Definition                                                                            |  |  |  |  |
|--------------------------------|-------------------|---------------------------------------------------------------------------------------|--|--|--|--|
| Objective [short] data sheet   | Development       | This document contains data from the objective specification for product development. |  |  |  |  |
| Preliminary [short] data sheet | Qualification     | This document contains data from the preliminary specification.                       |  |  |  |  |
| Product [short] data sheet     | Production        | This document contains the product specification.                                     |  |  |  |  |

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

#### 15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

**Product specification** — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

#### 15.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

**Suitability for use** — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

**Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at <a href="http://www.nxp.com/profile/terms">http://www.nxp.com/profile/terms</a>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

**Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

HEF40193B

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

#### 15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

### 16. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

# HEF40193B

### 4-bit up/down binary counter

### 17. Contents

| General description                |
|------------------------------------|
| Features and benefits              |
| Ordering information 1             |
| Functional diagram 2               |
| Pinning information 4              |
| Pinning                            |
| Pin description 4                  |
| Functional description 5           |
| Limiting values 6                  |
| Recommended operating conditions 6 |
| Static characteristics 7           |
| Dynamic characteristics 8          |
| Waveforms                          |
| Application information            |
| Package outline                    |
| Revision history                   |
| Legal information                  |
| Data sheet status                  |
| Definitions                        |
| Disclaimers                        |
| Trademarks18                       |
| Contact information 18             |
| Contents                           |
|                                    |

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

### **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Counter Shift Registers category:

Click to view products by NXP manufacturer:

Other Similar products are found below:

5962-8956101EA MC10E446FNG 74HC195N 74HC4516N 74HCT182N HEF4021BD HEF4534BP MC144111P NLV74HC165ADTR2G
5962-9172201M2A MC74HC597ADG MC100EP142MNG MC100EP016AMNG 5962-9172201MFA MC74HC164BDR2G
TC74HC165AP(F) 74AHC164T14-13 MC74LV594ADR2G NLV14094BDTR2G NLV74HC595ADTG MC74HC165AMNTWG
TPIC6C595PWG4 74VHC164MTCX CD74HC195M96 CD4073BM96 CD4053BM96 MM74HC595MTCX 74HCT164T14-13
74HCT164S14-13 74HC4094D-Q100J NLV14014BFELG NLV74HC165ADR2G NLV74HC589ADTR2G NPIC6C595D-Q100,11
NPIC6C595PW,118 NPIC6C596ADJ NPIC6C596APW-Q100J NPIC6C596D-Q100,11 BU4094BCF-E2 BU4094BCFV-E2 74HC164D14
74HC164T14-13 TPIC6C596PWRG4 STPIC6D595MTR STP08CP05MTR CD74HC123E 74HC164D.653 74HC165D.653
74HCT165D.652 74HCT164D.652