# **HEF4541B**

# Programmable timer Rev. 5 — 15 December 2015

**Product data sheet** 

#### **General description** 1.

The HEF4541B is a programmable timer which consists of a 16-stage binary counter, an integrated oscillator to be used with external timing components, an automatic power-on reset and output control logic. The frequency of the oscillator is determined by the external components R<sub>TC</sub> and C<sub>TC</sub> within the frequency range 1 Hz to 100 kHz. This oscillator may be replaced by an external clock signal at input RS, the timer advances on the positive-going transition of RS. A LOW on the auto reset input (AR) and a LOW on the master reset input (MR) enables the internal power-on reset. A HIGH level at input MR resets the counter independent on all other inputs. Resetting disables the oscillator to provide no active power dissipation.

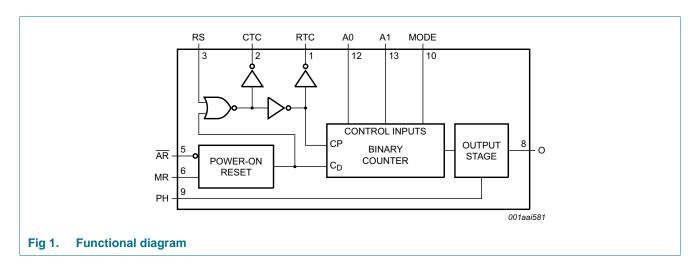
A HIGH at input AR turns off the power-on reset to provide a low quiescent power dissipation of the timer. The 16-stage counter divides the oscillator frequency by 28, 210, 2<sup>13</sup> or 2<sup>16</sup> depending on the state of the address inputs (A0, A1). The divided oscillator frequency is available at output O. The phase input (PH) features a complementary output signal. When the mode select input (MODE) is LOW the timer is a single transition timer and when HIGH the timer is a 2<sup>n</sup> frequency divider.

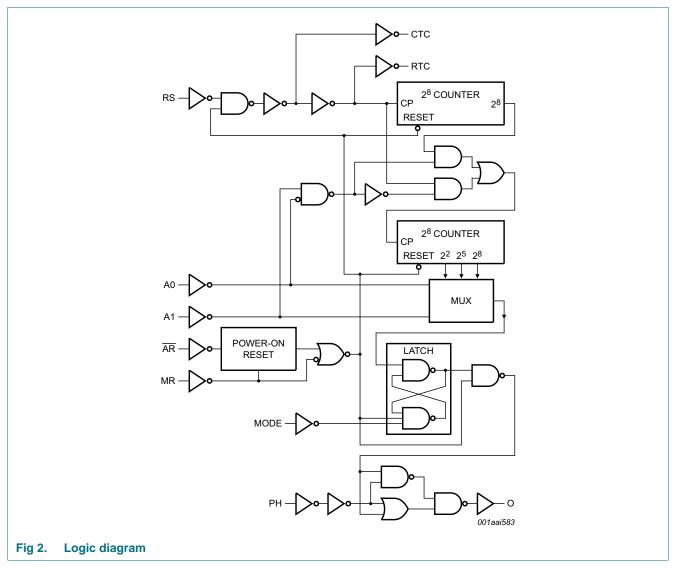
It operates over a recommended V<sub>DD</sub> power supply range of 3 V to 15 V referenced to V<sub>SS</sub> (usually ground). Unused inputs must be connected to V<sub>DD</sub>, V<sub>SS</sub>, or another input.

#### **Features and benefits** 2.

- Fully static operation
- 5 V, 10 V, and 15 V parametric ratings
- Standardized symmetrical output characteristics
- Operates across the automotive temperature range –40 °C to +85 °C
- Complies with JEDEC standard JESD 13-B

#### Ordering information 3.


#### Table 1. **Ordering information**


All types operate from  $-40 \,^{\circ}\text{C}$  to  $+85 \,^{\circ}\text{C}$ .

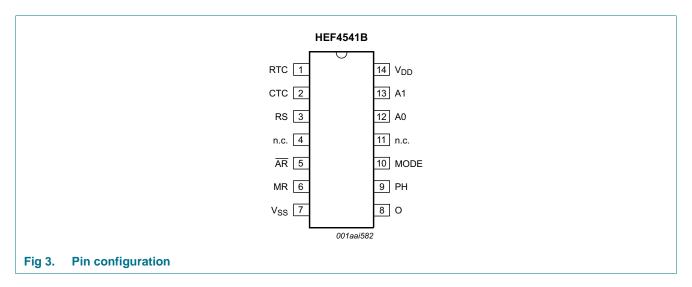
| Type number | er Package |                                                            |          |  |  |  |
|-------------|------------|------------------------------------------------------------|----------|--|--|--|
|             | Name       | Description                                                | Version  |  |  |  |
| HEF4541BT   | SO14       | plastic small outline package; 14 leads; body width 3.9 mm | SOT108-1 |  |  |  |



### 4. Functional diagram






HEF4541B

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors N.V. 2015. All rights reserved.

# 5. Pinning information

### 5.1 Pinning



### 5.2 Pin description

Table 2. Pin description

| Symbol   | Pin    | Description                                               |
|----------|--------|-----------------------------------------------------------|
| RTC      | 1      | external resistor connection                              |
| CTC      | 2      | external capacitor connection                             |
| RS       | 3      | external resistor connection (RS) or external clock input |
| nc       | 4, 11  | not connected                                             |
| ĀR       | 5      | auto reset input (active low)                             |
| MR       | 6      | master reset input                                        |
| $V_{SS}$ | 7      | ground (0 V)                                              |
| 0        | 8      | timer output                                              |
| PH       | 9      | phase input                                               |
| MODE     | 10     | mode select input                                         |
| A0, A1   | 12, 13 | address inputs                                            |
| $V_{DD}$ | 14     | supply voltage                                            |

### 6. Functional description

Table 3. Function table[1]

| Input |    |    | MODE |                                              |
|-------|----|----|------|----------------------------------------------|
| AR    | MR | PH | MODE |                                              |
| Н     | L  | X  | X    | auto reset disabled                          |
| L     | L  | Х  | X    | auto reset enabled[2]                        |
| Х     | Н  | X  | X    | master reset active                          |
| Х     | L  | X  | Н    | normal operation selected division to output |
| Χ     | L  | Х  | L    | single-cycle mode <sup>[3]</sup>             |
| Х     | L  | L  | X    | output initially LOW after reset             |
| Χ     | L  | Н  | X    | output initially HIGH, after reset           |

- [1] H = HIGH voltage level; L = LOW voltage level; X = don't care.
- [2] For correct power-on reset, the supply voltage should be above 8.5 V. For V<sub>DD</sub> < 8.5 V, disable the autoreset and connect AR to V<sub>DD</sub>.
- [3] The timer is initialized on a reset pulse and the output changes state after 2<sup>n-1</sup> counts and remains in that state (latched). Reset of this latch is obtained by master reset or by a LOW to HIGH transition on the MODE input.

Table 4. Frequency selection table

| A0 | A1 | Number of counter stages n | $\frac{f_{OSC}}{f_O} = 2^n$ |
|----|----|----------------------------|-----------------------------|
| L  | L  | 13                         | 8192                        |
| L  | Н  | 10                         | 1024                        |
| Н  | L  | 8                          | 256                         |
| Н  | Н  | 16                         | 65536                       |

### 7. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

| Symbol           | Parameter               | Conditions                                                          | Min  | Max                   | Unit |
|------------------|-------------------------|---------------------------------------------------------------------|------|-----------------------|------|
| $V_{DD}$         | supply voltage          |                                                                     | -0.5 | +18                   | V    |
| I <sub>IK</sub>  | input clamping current  | $V_{I} < -0.5 \text{ V or } V_{I} > V_{DD} + 0.5 \text{ V}$         | -    | ±10                   | mA   |
| VI               | input voltage           |                                                                     | -0.5 | V <sub>DD</sub> + 0.5 | V    |
| I <sub>OK</sub>  | output clamping current | $V_{O} < -0.5 \text{ V or } V_{O} > V_{DD} + 0.5 \text{ V}$         | -    | ±10                   | mA   |
| I <sub>I/O</sub> | input/output current    | O output                                                            | -    | ±10                   | mA   |
| T <sub>stg</sub> | storage temperature     |                                                                     | -65  | +150                  | °C   |
| T <sub>amb</sub> | ambient temperature     |                                                                     | -40  | +85                   | °C   |
| P <sub>tot</sub> | total power dissipation | $T_{amb} = -40  ^{\circ}\text{C} \text{ to } +85  ^{\circ}\text{C}$ |      |                       |      |
|                  |                         | SO14 package                                                        | -    | 500                   | mW   |
| Р                | power dissipation       |                                                                     | -    | 100                   | mW   |

<sup>[1]</sup> For SO14 package:  $P_{tot}$  derates linearly with 8 mW/K above 70 °C.

### 8. Recommended operating conditions

Table 6. Recommended operating conditions

| Symbol           | Parameter                           | Conditions             | Min | Max      | Unit |
|------------------|-------------------------------------|------------------------|-----|----------|------|
| $V_{DD}$         | supply voltage                      |                        | 3   | 15       | V    |
| VI               | input voltage                       |                        | 0   | $V_{DD}$ | V    |
| T <sub>amb</sub> | ambient temperature                 | in free air            | -40 | +85      | °C   |
| Δt/ΔV            | input transition rise and fall rate | $V_{DD} = 5 V$         | -   | 3.75     | μs/V |
|                  |                                     | V <sub>DD</sub> = 10 V | -   | 0.5      | μs/V |
|                  |                                     | V <sub>DD</sub> = 15 V | -   | 0.08     | μs/V |

### 9. Static characteristics

Table 7. Static characteristics

 $V_{SS} = 0$  V;  $V_I = V_{SS}$  or  $V_{DD}$ ; unless otherwise specified.

| Symbol          | Parameter                  | Conditions              | $V_{DD}$ | T <sub>amb</sub> = | -40 °C | T <sub>amb</sub> = | 25 °C | T <sub>amb</sub> = | = 85 °C | Unit |
|-----------------|----------------------------|-------------------------|----------|--------------------|--------|--------------------|-------|--------------------|---------|------|
|                 |                            |                         |          | Min                | Max    | Min                | Max   | Min                | Max     |      |
| V <sub>IH</sub> | V <sub>IH</sub> HIGH-level | I <sub>O</sub>   < 1 μA | 5 V      | 3.5                | -      | 3.5                | -     | 3.5                | -       | V    |
|                 | input voltage              |                         | 10 V     | 7.0                | -      | 7.0                | -     | 7.0                | -       | V    |
|                 |                            |                         | 15 V     | 11.0               | -      | 11.0               | -     | 11.0               | -       | V    |
| V <sub>IL</sub> | LOW-level                  | I <sub>O</sub>   < 1 μA | 5 V      | -                  | 1.5    | -                  | 1.5   | -                  | 1.5     | V    |
|                 | input voltage              |                         | 10 V     | -                  | 3.0    | -                  | 3.0   | -                  | 3.0     | V    |
|                 |                            |                         | 15 V     | -                  | 4.0    | -                  | 4.0   | -                  | 4.0     | V    |
| V <sub>OH</sub> | HIGH-level                 | I <sub>O</sub>   < 1 μA | 5 V      | 4.95               | -      | 4.95               | -     | 4.95               | -       | V    |
|                 | output voltage             |                         | 10 V     | 9.95               | -      | 9.95               | -     | 9.95               | -       | V    |
|                 |                            |                         | 15 V     | 14.95              | -      | 14.95              | -     | 14.95              | -       | V    |
| $V_{OL}$        | LOW-level                  | I <sub>O</sub>   < 1 μA | 5 V      | -                  | 0.05   | -                  | 0.05  | -                  | 0.05    | V    |
|                 | output voltage             |                         | 10 V     | -                  | 0.05   | -                  | 0.05  | -                  | 0.05    | V    |
|                 |                            |                         | 15 V     | -                  | 0.05   | -                  | 0.05  | -                  | 0.05    | V    |
| I <sub>OH</sub> | HIGH-level                 | CTC, RTC;               |          |                    |        |                    |       |                    |         |      |
|                 | output current             | V <sub>O</sub> = 2.5 V  | 5 V      | -                  | -1.4   | -                  | -1.2  | -                  | -0.95   | mA   |
|                 |                            | V <sub>O</sub> = 4.6 V  | 5 V      | -                  | -0.5   | -                  | -0.4  | -                  | -0.3    | mA   |
|                 |                            | V <sub>O</sub> = 9.5 V  | 10 V     | -                  | -1.4   | -                  | -1.2  | -                  | -0.95   | mA   |
|                 |                            | V <sub>O</sub> = 13.5 V | 15 V     | -                  | -4.8   | -                  | -4.0  | -                  | -3.2    | mA   |
|                 |                            | О;                      |          |                    |        |                    |       |                    |         |      |
|                 |                            | V <sub>O</sub> = 2.5 V  | 5 V      | -                  | -1.7   | -                  | -1.4  | -                  | -1.1    | mA   |
|                 |                            | V <sub>O</sub> = 4.6 V  | 5 V      | -                  | -0.64  | -                  | -0.5  | -                  | -0.36   | mA   |
|                 |                            | V <sub>O</sub> = 9.5 V  | 10 V     | -                  | -1.6   | -                  | -1.3  | -                  | -0.9    | mA   |
|                 |                            | V <sub>O</sub> = 13.5 V | 15 V     | -                  | -4.2   | -                  | -3.4  | -                  | -2.4    | mA   |

 Table 7.
 Static characteristics ...continued

 $V_{SS} = 0$  V;  $V_{I} = V_{SS}$  or  $V_{DD}$ ; unless otherwise specified.

| Symbol          | Parameter             | Conditions             | $V_{DD}$ | T <sub>amb</sub> = | –40 °C | T <sub>amb</sub> = | 25 °C | T <sub>amb</sub> = | - n - n - n - n - n - n | Unit |
|-----------------|-----------------------|------------------------|----------|--------------------|--------|--------------------|-------|--------------------|-------------------------|------|
|                 |                       |                        |          | Min                | Max    | Min                | Max   | Min                | Max                     |      |
| I <sub>OL</sub> | LOW-level             | CTC, RTC;              |          |                    |        |                    |       |                    |                         |      |
|                 | output current        | V <sub>O</sub> = 0.4 V | 5 V      | 0.33               | -      | 0.27               | -     | 0.20               | -                       | mA   |
|                 |                       | V <sub>O</sub> = 0.5 V | 10 V     | 1.0                | -      | 0.85               | -     | 0.68               | -                       | mA   |
|                 |                       | V <sub>O</sub> = 1.5 V | 15 V     | 3.2                | -      | 2.7                | -     | 2.3                | -                       | mA   |
|                 |                       | О;                     |          |                    |        |                    |       |                    |                         |      |
|                 |                       | V <sub>O</sub> = 0.4 V | 5 V      | 0.64               | -      | 0.5                | -     | 0.36               | -                       | mA   |
|                 |                       | V <sub>O</sub> = 0.5 V | 10 V     | 1.6                | -      | 1.3                | -     | 0.9                | -                       | mA   |
|                 |                       | V <sub>O</sub> = 1.5 V | 15 V     | 4.2                | -      | 3.2                | -     | 2.4                | -                       | mA   |
| l <sub>l</sub>  | input leakage current |                        | 15 V     | -                  | ±0.1   | -                  | ±0.1  | -                  | ±1.0                    | μΑ   |
| I <sub>DD</sub> | supply current        | I <sub>O</sub> = 0 A   | 5 V      | -                  | 5      | -                  | 5     | -                  | 150                     | μА   |
|                 |                       |                        | 10 V     | -                  | 10     | -                  | 10    | -                  | 300                     | μА   |
|                 |                       |                        | 15 V     | -                  | 20     | -                  | 20    | -                  | 600                     | μΑ   |
| Cı              | input capacitance     | )                      | -        | -                  | -      | -                  | 7.5   | -                  | -                       | pF   |

#### Table 8. Reset characteristics

 $V_{SS} = 0 \ V$ ;  $V_I = V_{SS}$  or  $V_{DD}$ ; see <u>Table 12</u> for test conditions; unless otherwise specified.

| Symbol          | Parameter      | Conditions                                                                                                           | $V_{DD}$ | T <sub>amb</sub> = | –40 °C | Tam | <sub>nb</sub> = +25 | °C  | T <sub>amb</sub> = | +85 °C | Unit |
|-----------------|----------------|----------------------------------------------------------------------------------------------------------------------|----------|--------------------|--------|-----|---------------------|-----|--------------------|--------|------|
|                 |                |                                                                                                                      |          | Min                | Max    | Min | Тур                 | Max | Min                | Max    |      |
| $I_{DD}$        | supply current | supply current for                                                                                                   | 5 V      | -                  | 80     | -   | 20                  | 80  | -                  | 230    | μΑ   |
|                 |                | power-on reset enable:                                                                                               | 10 V     | -                  | 750    | -   | 250                 | 600 | -                  | 700    | μΑ   |
|                 |                | AR = MR = 0 V; Other inputs at 0 V or V <sub>DD</sub>                                                                | 15 V     | -                  | 1.6    | -   | 0.5                 | 1.3 | -                  | 1.5    | mA   |
| V <sub>DD</sub> | supply voltage | supply voltage for<br>automatic reset<br>initialization;<br>AR = MR = 0 V; Other<br>inputs at 0 V or V <sub>DD</sub> | -        | -                  | -      | 8.5 | 5                   | -   | -                  | -      | V    |

### 10. Dynamic characteristics

Table 9. Dynamic characteristics

 $V_{SS} = 0 \text{ V}$ ;  $T_{amb} = 25 \text{ °C}$  unless otherwise specified. For test circuit, see <u>Figure 5</u>.

| Symbol                | Parameter            | Conditions                                            | $V_{DD}$ | Extrapolation formula               | Min | Typ[1] | Max  | Unit |
|-----------------------|----------------------|-------------------------------------------------------|----------|-------------------------------------|-----|--------|------|------|
| t <sub>pd</sub>       | propagation delay    | RS to O;                                              | 5 V [2]  | 348 ns + (0.55 ns/pF)C <sub>L</sub> | -   | 375    | 750  | ns   |
|                       |                      | 28 selected;<br>see Figure 4                          |          | 139 ns + (0.23 ns/pF)C <sub>L</sub> | -   | 150    | 300  | ns   |
|                       |                      | See <u>rigure +</u>                                   | 15 V     | 102 ns + (0.16 ns/pF)C <sub>L</sub> | -   | 110    | 220  | ns   |
|                       |                      | RS to O;                                              | 5 V      | 398 ns + (0.55 ns/pF)C <sub>L</sub> | -   | 425    | 850  | ns   |
|                       |                      | 2 <sup>10</sup> selected;<br>see Figure 4             | 10 V     | 154 ns + (0.23 ns/pF)C <sub>L</sub> | -   | 165    | 330  | ns   |
|                       |                      | 300 <u>riguro +</u>                                   | 15 V     | 112 ns + (0.16 ns/pF)C <sub>L</sub> | -   | 120    | 240  | ns   |
|                       |                      | RS to O;                                              | 5 V      | 483 ns + (0.55 ns/pF)C <sub>L</sub> | -   | 510    | 1020 | ns   |
|                       |                      | 2 <sup>13</sup> selected;<br>see <u>Figure 4</u>      | 10 V     | 179 ns + (0.23 ns/pF)C <sub>L</sub> | -   | 190    | 380  | ns   |
|                       |                      |                                                       | 15 V     | 127 ns + (0.16 ns/pF)C <sub>L</sub> | -   | 135    | 270  | ns   |
|                       |                      | RS to O;                                              | 5 V      | 548 ns + (0.55 ns/pF)C <sub>L</sub> | -   | 575    | 1150 | ns   |
|                       |                      | 2 <sup>16</sup> selected;<br>see Figure 4             | 10 V     | 199 ns + (0.23 ns/pF)C <sub>L</sub> | -   | 210    | 420  | ns   |
|                       |                      | See <u>rigure 4</u>                                   | 15 V     | 142 ns + (0.16 ns/pF)C <sub>L</sub> | -   | 150    | 300  | ns   |
| t <sub>W</sub>        | pulse width          | RS LOW;                                               | 5 V [3]  |                                     | 60  | 30     | -    | ns   |
|                       |                      | MR HIGH;<br>see Figure 4                              | 10 V     |                                     | 30  | 15     | -    | ns   |
|                       |                      | See <u>rigure 4</u>                                   | 15 V     |                                     | 24  | 12     | -    | ns   |
| f <sub>clk(max)</sub> | maximum clock        | RS; see Figure 4                                      | 5 V      |                                     | 8   | 16     | -    | MHz  |
|                       | frequency            |                                                       | 10 V     |                                     | 15  | 30     | -    | MHz  |
|                       |                      |                                                       | 15 V     |                                     | 18  | 36     | -    | MHz  |
| f <sub>osc</sub>      | oscillator frequency | $R_t = 5 k\Omega;$                                    | 5 V      |                                     | -   | 90     | -    | kHz  |
|                       |                      | $C_t = 1 \text{ nF};$<br>$R_S = 10 \text{ k}\Omega;$  | 10 V     |                                     | -   | 90     | -    | kHz  |
|                       |                      | see Figure 6                                          | 15 V     |                                     | -   | 90     | -    | kHz  |
|                       |                      | $R_t = 56 \text{ k}\Omega;$                           | 5 V      |                                     | -   | 8      | -    | kHz  |
|                       |                      | $C_t = 1 \text{ nF};$<br>$R_S = 120 \text{ k}\Omega;$ | 10 V     |                                     | -   | 8      | -    | kHz  |
|                       |                      | see <u>Figure 6</u>                                   | 15 V     |                                     | -   | 8      | -    | kHz  |

<sup>[1]</sup> The typical values of the propagation delay and transition times are calculated from the extrapolation formulas shown (C<sub>L</sub> in pF).

<sup>[2]</sup>  $t_{pd}$  is the same as  $t_{PHL}$  and  $t_{PLH}$ .

<sup>[3]</sup>  $t_W$  is the same as  $t_{WL(min)}$  and  $t_{WH(min)}$ .

Table 10. Dynamic power dissipation

 $P_D$  can be calculated from the formulas shown.  $V_{SS} = 0 \text{ V}$ ;  $t_r = t_f \le 20 \text{ ns}$ ;  $T_{amb} = 25 \text{ }^{\circ}\text{C}$ .

| Symbol              | Parameter                       | $V_{DD}$ | Typical formula                                                                               |
|---------------------|---------------------------------|----------|-----------------------------------------------------------------------------------------------|
| Per packag          | е                               |          |                                                                                               |
| P <sub>D</sub>      | dynamic power dissipation       | 5 V      | $P_D = 1300 \times f_i + (f_o \times C_L \times V_{DD}^2) \mu W$                              |
|                     |                                 | 10 V     | $P_D = 5300 \times f_i + (f_o \times C_L \times V_{DD}^2) \mu W$                              |
|                     |                                 | 15 V     | $P_D = 12000 \times f_i + (f_o \times C_L \times V_{DD}^2) \mu W$                             |
| Using the c         | n-chip oscillator               | •        |                                                                                               |
| P <sub>D(Tot)</sub> | Total dynamic power dissipation | 5 V      | $P_D = 1300 \times f_{osc} + f_o C_L V_{DD}^2 + 2C_{TC} V_{DD}^2 f_{osc} + 10 V_{DD} \mu W$   |
|                     |                                 | 10 V     | $P_D = 5300 \times f_{osc} + f_o C_L V_{DD}^2 + 2C_{TC} V_{DD}^2 f_{osc} + 100 V_{DD} \mu W$  |
|                     |                                 | 15 V     | $P_D = 12000 \times f_{osc} + f_o C_L V_{DD}^2 + 2C_{TC} V_{DD}^2 f_{osc} + 400 V_{DD} \mu W$ |

<sup>[1]</sup>  $f_i$  = input frequency in MHz;  $f_o$  = output frequency in MHz;  $C_L$  = output load capacitance in pF;  $V_{DD}$  = supply voltage in V;  $f_{osc}$  = oscillator frequency in MHz;  $C_{TC}$  = timing capacitance in pF.

### 11. Waveforms

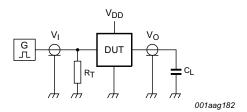




Table 11. Measurement points

| Supply voltage | Input              | Output             |
|----------------|--------------------|--------------------|
| $V_{DD}$       | V <sub>M</sub>     | V <sub>M</sub>     |
| 5 V to 15 V    | 0.5V <sub>DD</sub> | 0.5V <sub>DD</sub> |



Test data is given in Table 12.

Definitions for test circuit:

DUT - Device Under Test.

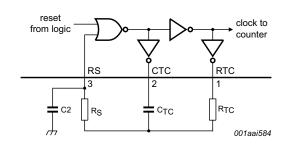
R<sub>L</sub> = Load resistance.

C<sub>L</sub> = load capacitance.

 $R_T$  = Termination resistance should be equal to output impedance of  $Z_0$  of the pulse generator.

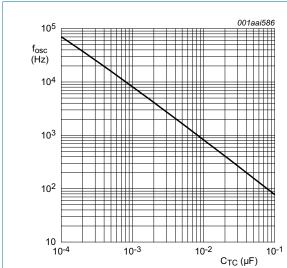
Fig 5. Test circuit for measuring switching times

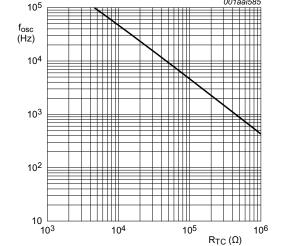
#### Table 12. Test data


| Supply      | Input                              |                                 | Load  |
|-------------|------------------------------------|---------------------------------|-------|
| $V_{DD}$    | VI                                 | t <sub>r</sub> , t <sub>f</sub> | CL    |
| 5 V to 15 V | V <sub>SS</sub> or V <sub>DD</sub> | ≤ 20 ns                         | 50 pF |

# 12. Application information

#### **RC** oscillator timing component limitations


The oscillator frequency is mainly determined by  $R_{TC}C_{TC}$ , provided  $R_{TC} << R_S$  and  $R_SC_2 << R_{TC}C_{TC}$ . The function of  $R_S$  is to minimize the influence of the forward voltage across the input protection diodes on the frequency. The stray capacitance  $C_2$  should be kept as small as possible. In consideration of accuracy,  $C_{TC}$  must be larger than the inherent stray capacitance.  $R_{TC}$  must be larger than the LOCMOS 'ON' resistance in series with it, which typically is 500  $\Omega$  at  $V_{DD}$  = 5 V, 300  $\Omega$  at  $V_{DD}$  = 10 V and 200  $\Omega$  at  $V_{DD}$  = 15 V.

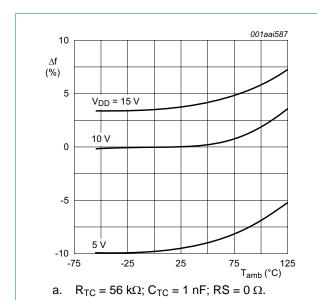

The recommended values for these components to maintain agreement with the typical oscillation formula are:  $C_{TC} \ge 100$  pF, up to any typical value,  $10 \text{ k}\Omega \le R_{TC} \le 1 \text{ M}\Omega$ .

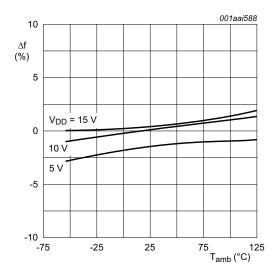


Typical formula for oscillator frequency:  $f_{\text{osc}} = \frac{I}{2.3 \times R_{TC} \times C_{TC}}$ 

Fig 6. External component connection for RC oscillator; R<sub>S</sub> ≈ R<sub>TC</sub>







a.  $C_{TC}$  curve at  $R_{TC} = 56 \text{ k}\Omega$ ;  $RS = 120 \text{ k}\Omega$ .

b.  $R_{TC}$  curve at  $C_{TC} = 1$  nF; RS = 2  $R_{TC}$ .

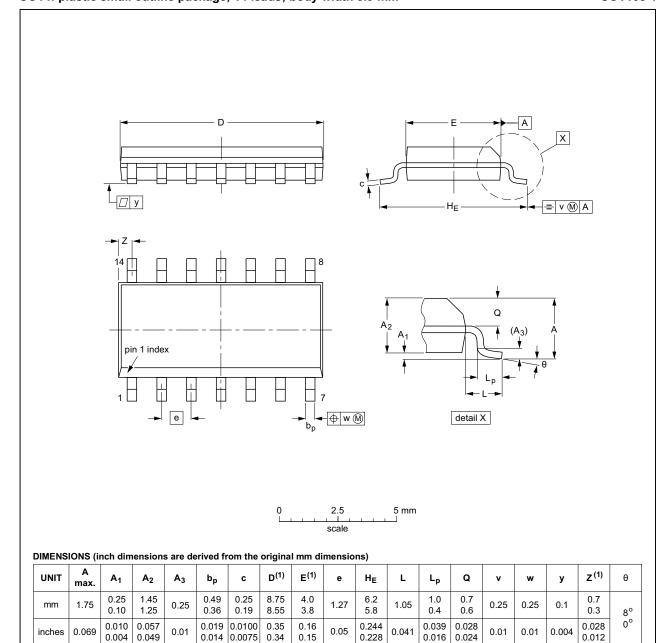
Fig 7. RC oscillator frequency as a function of  $R_{TC}$  and  $C_{TC}$  at  $V_{DD}$  = 5 to 15 V;  $T_{amb}$  = 25 °C

001aai585





b.  $R_{TC}$  = 56  $k\Omega$ ;  $C_{TC}$  = 1 nF; RS = 120  $k\Omega$ .


Fig 8. Frequency deviation ( $\Delta f$ ) as a function of ambient temperature

**Product data sheet** 

### 13. Package outline

SO14: plastic small outline package; 14 leads; body width 3.9 mm

SOT108-1



### Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

| OUTLINE  | REFERENCES |        |       | EUROPEAN | ISSUE DATE |                                 |
|----------|------------|--------|-------|----------|------------|---------------------------------|
| VERSION  | IEC        | JEDEC  | JEITA |          | PROJECTION | ISSUE DATE                      |
| SOT108-1 | 076E06     | MS-012 |       |          |            | <del>99-12-27</del><br>03-02-19 |

Fig 9. Package outline SOT108-1 (SO14)

HEF4541B

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors N.V. 2015. All rights reserved.

### 14. Abbreviations

#### Table 13. Abbreviations

| Acronym | Description                             |  |
|---------|-----------------------------------------|--|
| CMOS    | Complementary Metal Oxide Semiconductor |  |
| DUT     | Device Under Test                       |  |
| ESD     | ElectroStatic Discharge                 |  |
| НВМ     | Human Body Model                        |  |
| MM      | Machine Model                           |  |
| TTL     | Transistor-Transistor Logic             |  |

# 15. Revision history

### Table 14. Revision history

| Document ID      | Release date                                                                                                                                | Data sheet status     | Change notice | Supersedes       |  |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------|------------------|--|
| HEF4541B v.5     | 20151215                                                                                                                                    | Product data sheet    | -             | HEF4541B v.4     |  |
| Modifications:   | Type number HEF4541BP (SOT27-1) removed.                                                                                                    |                       |               |                  |  |
| HEF4541B v.4     | 20120625                                                                                                                                    | Product data sheet    | -             | HEF4541B_CNV v.3 |  |
| Modifications:   | <ul> <li>The format of this data sheet has been redesigned to comply with the new identity guidelines<br/>of NXP Semiconductors.</li> </ul> |                       |               |                  |  |
|                  | <ul> <li>Legal texts have been adapted to the new company name where appropriate.</li> </ul>                                                |                       |               | appropriate.     |  |
|                  | Section 2 "Features and benefits" added.                                                                                                    |                       |               |                  |  |
| HEF4541B_CNV v.3 | 19950101                                                                                                                                    | Product specification | -             | HEF4541B_CNV v.2 |  |
| HEF4541B_CNV v.2 | 19950101                                                                                                                                    | Product specification | -             | -                |  |

### 16. Legal information

#### 16.1 Data sheet status

| Document status[1][2]          | Product status[3] | Definition                                                                            |
|--------------------------------|-------------------|---------------------------------------------------------------------------------------|
| Objective [short] data sheet   | Development       | This document contains data from the objective specification for product development. |
| Preliminary [short] data sheet | Qualification     | This document contains data from the preliminary specification.                       |
| Product [short] data sheet     | Production        | This document contains the product specification.                                     |

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <a href="http://www.nxp.com">http://www.nxp.com</a>.

#### 16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

**Product specification** — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

#### 16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

**Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at <a href="http://www.nxp.com/profile/terms">http://www.nxp.com/profile/terms</a>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

**No offer to sell or license** — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

HEF4541B

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors N.V. 2015. All rights reserved.

**Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

**Translations** — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

#### 16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

### 17. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com



### 18. Contents

| 1    | General description                          |
|------|----------------------------------------------|
| 2    | Features and benefits                        |
| 3    | Ordering information 1                       |
| 4    | Functional diagram 2                         |
| 5    | Pinning information 3                        |
| 5.1  | Pinning                                      |
| 5.2  | Pin description                              |
| 6    | Functional description 4                     |
| 7    | Limiting values 4                            |
| 8    | Recommended operating conditions 5           |
| 9    | Static characteristics 5                     |
| 10   | Dynamic characteristics                      |
| 11   | Waveforms                                    |
| 12   | Application information 10                   |
|      | RC oscillator timing component limitations10 |
| 13   | Package outline                              |
| 14   | Abbreviations                                |
| 15   | Revision history                             |
| 16   | Legal information                            |
| 16.1 | Data sheet status                            |
| 16.2 | Definitions14                                |
| 16.3 | Disclaimers                                  |
| 16.4 | Trademarks15                                 |
| 17   | Contact information 15                       |
| 18   | Contents                                     |

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

### **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Timers & Support Products category:

Click to view products by NXP manufacturer:

Other Similar products are found below:

NLV14541BDR2G MIC1557YD5-TR Z84C3010AEG MIC1555YMU-TR NLV14541BDG MAX7375AXR365+T MIC1555YD5-TR

PT8A2515TAEX PT8A2514APE S-35710M01I-E8T3U LTC6992CDCB-2#TRMPBF SY87700ALZG LM555CM LMC555CM

FT8010UMX FTL11639UCX MAX809TEUR+ MAX7375AXR185+T MAX7375AXR105+T MAX3634ETM+ FTL75939UCX NA555S
13 NB7N017MMNG NJM555D 82P33731ABAG MAX7375AXR405+T Z84C3006PEG SA555S-13 MAX7375AXR805T SY87701ALHG

MCP130-475HI/TO S-1410G28-K8T2U4 VSC8115XYA-05-T VSC8115XYA-06-T LTC6992CS6-3#TRMPBF NLV14541BDTR2G

636058D S-1410H30-K8T2U4 S-35710C01I-K8T2U S-35770E01I-K8T2U S-35720C01I-K8T2U S-35720C02I-K8T2U S-35730C01I-K8T2U ALD1502SAL ALD2502SBL ALD4501PEL ALD4501SEL ALD555PAL ALD555SAL