HEF4794B
 8-stage shift-and-store register LED driver

Rev. 7 - 16 November 2011
Product data sheet

1. General description

The HEF4794B is an 8-stage serial shift register. It has a storage latch associated with each stage for strobing data from the serial input (D) to the parallel LED driver outputs (QP0 to QP7). Data is shifted on the positive-going clock (CP) transitions. The data in each shift register stage is transferred to the storage register when the strobe input (STR) is HIGH. Data in the storage register appears at the outputs whenever the output enable input (OE) signal is HIGH.

Two serial outputs (QS1 and QS2) are available for cascading a number of HEF4794B devices. Serial data is available at QS1 on positive-going clock edges to allow high-speed operation in cascaded systems with a fast clock rise time. The same serial data is available at QS2 on the next negative going clock edge. This is used for cascading HEF4794B devices when the clock has a slow rise time.

It operates over a recommended V_{DD} power supply range of 3 V to 15 V referenced to V_{SS} (usually ground). Unused inputs must be connected to $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}$, or another input.

2. Features and benefits

- Fully static operation
- $5 \mathrm{~V}, 10 \mathrm{~V}$, and 15 V parametric ratings
- Standardized symmetrical output characteristics
- Specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Complies with JEDEC standard JESD 13-B

3. Ordering information

Table 1. Ordering information All types operate from $-40{ }^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$.

Type number	Package		
	Name	Description	Version
HEF4794BP	DIP16	plastic dual in-line package; 16 leads $(300$ mil $)$	SOT38-4
HEF4794BT	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1

4. Functional diagram

Fig 1. Logic symbol

Fig 2. Functional diagram

Fig 3. Logic diagram

5. Pinning information

5.1 Pinning

Fig 4. Pin configuration

5.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
D	2	serial input
QP0 to QP7	$4,5,6,7,14,13,12,11$	parallel output
QS1	9	serial output
QS2	10	serial output
CP	3	clock input
STR	1	strobe input
OE	15	output enable input
$V_{\text {DD }}$	16	supply voltage
$V_{S S}$	8	ground $(0 \mathrm{~V})$

6. Functional description

Table 3. Function table[1]

Input								
CP	OE	STR	D	Parallel output		Serial output		
\uparrow	L	X	XP0	QPn	QS1[2]	QS2[3]		
\downarrow	L	X	X	Z	Z	n.c.	Q7S	
\uparrow	H	L	X	no change	no change	Q6S	no change	
\uparrow	H	H	L	Z	QPn -1	Q6S	no change	
\uparrow	H	H	H	L	QPn -1	Q6S	no change	
\downarrow	H	H	H	no change	no change	no change	Q7S	

[1] $\mathrm{H}=\mathrm{HIGH}$ voltage level; $L=$ LOW voltage level; $\mathrm{X}=$ don't care; $\mathrm{Z}=$ high-impedance OFF-state; $\uparrow=$ LOW-to-HIGH clock transition; $\downarrow=$ HIGH-to-LOW clock transition.
[2] Q6S = the data in register stage 6 before the LOW to HIGH clock transition.
[3] Q7S = the data in register stage 7 before the HIGH to LOW clock transition.

Fig 5. Timing diagram

7. Limiting values

Table 4. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
$V_{\text {DD }}$	supply voltage		-0.5	+18	V
$\mathrm{I}_{\text {IK }}$	input clamping current	$\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{1}>\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$	-	± 10	mA
V_{1}	input voltage		-0.5	$V_{D D}+0.5$	V
$\mathrm{l}_{\text {OK }}$	output clamping current	QSn outputs; $\mathrm{V}_{\mathrm{O}}<-0.5 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$	-	± 10	mA
		QPn outputs; $\mathrm{V}_{\mathrm{O}}<-0.5 \mathrm{~V}$	-	40	mA
1	input leakage current		-	± 10	mA
Io	output current	QSn outputs	-	± 10	mA
		QPn outputs	-	40	mA
$\mathrm{T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	ambient temperature		-40	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			
		DIP16 package	[1] -	750	mW
		SO16 package	[2] -	500	mW
P	power dissipation	per output	-	100	mW

[1] For DIP16 package: $P_{\text {tot }}$ derates linearly with $12 \mathrm{~mW} / \mathrm{K}$ above $70^{\circ} \mathrm{C}$.
[2] For SO16 package: $\mathrm{P}_{\text {tot }}$ derates linearly with $8 \mathrm{~mW} / \mathrm{K}$ above $70^{\circ} \mathrm{C}$.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions		Min	Max
V_{DD}	supply voltage		3	15	Vnit
V_{I}	input voltage		0	$\mathrm{~V}_{\mathrm{DD}}$	V
$\mathrm{T}_{\text {amb }}$	ambient temperature	in free air	-40	+125	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	input transition rise and fall rate	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	-	3.75	$\mu \mathrm{~s} / \mathrm{V}$
		$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$	-	0.5	$\mu \mathrm{~s} / \mathrm{V}$
		$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$	-	0.08	$\mu \mathrm{~s} / \mathrm{V}$

9. Static characteristics

Table 6. Static characteristics
$V_{S S}=0 V ; V_{I}=V_{S S}$ or $V_{D D}$; unless otherwise specified.

Symbol	Parameter	Conditions	V_{DD}	$\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{amb}}=85^{\circ} \mathrm{C}$		$\mathrm{T}_{\text {amb }}=125^{\circ} \mathrm{C}$		Unit
				Min	Max	Min	Max	Min	Max	Min	Max	
V_{IH}	HIGH-level input voltage	$\left\|\mathrm{l}_{\mathrm{O}}\right\|<1 \mu \mathrm{~A}$	5 V	3.5	-	3.5	-	3.5	-	3.5	-	V
			10 V	7.0	-	7.0	-	7.0	-	7.0	-	V
			15 V	11.0	-	11.0	-	11.0	-	11.0	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\left\|\mathrm{l}_{\mathrm{O}}\right\|<1 \mu \mathrm{~A}$	5 V	-	1.5	-	1.5	-	1.5	-	1.5	V
			10 V	-	3.0	-	3.0	-	3.0	-	3.0	V
			15 V	-	4.0	-	4.0	-	4.0	-	4.0	V
V_{OH}	HIGH-level output voltage	QSn outputs;$\left\|\mathrm{I}_{\mathrm{O}}\right\|<1 \mu \mathrm{~A}$	5 V	4.95	-	4.95	-	4.95	-	4.95	-	V
			10 V	9.95	-	9.95	-	9.95	-	9.95	-	V
			15 V	14.95	-	14.95	-	14.95	-	14.95	-	V
V_{OL}	LOW-level output voltage	QSn outputs;$\left\|l_{\mathrm{O}}\right\|<1 \mu \mathrm{~A}$	5 V	-	0.05	-	0.05	-	0.05	-	0.05	V
			10 V	-	0.05	-	0.05	-	0.05	-	0.05	V
			15 V	-	0.05	-	0.05	-	0.05	-	0.05	V
		QPn outputs;$\|\mathrm{I} \mathrm{O}\|<20 \mathrm{~mA}$	5 V	-	0.75	-	0.75	-	1.5	-	1.5	V
			10 V	-	0.75	-	0.75	-	1.5	-	1.5	V
			15 V	-	0.75	-	0.75	-	1.5	-	1.5	V
IOH	HIGH-level output current	QSn outputs										
		$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	5 V	-	-1.7	-	-1.4	-	-1.1	-	-1.1	mA
		$\mathrm{V}_{\mathrm{O}}=4.6 \mathrm{~V}$	5 V	-	-0.64	-	-0.5	-	-0.36	-	-0.36	mA
		$\mathrm{V}_{\mathrm{O}}=9.5 \mathrm{~V}$	10 V	-	-1.6	-	-1.3	-	-0.9	-	-0.9	mA
		$\mathrm{V}_{\mathrm{O}}=13.5 \mathrm{~V}$	15 V	-	-4.2	-	-3.4	-	-2.4	-	-2.4	mA
l_{OL}	LOW-level output current	QSn outputs										
		$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$	5 V	0.64	-	0.5	-	0.36	-	0.36	-	mA
		$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$	10 V	1.6	-	1.3	-	0.9	-	0.9	-	mA
		$\mathrm{V}_{\mathrm{O}}=1.5 \mathrm{~V}$	15 V	4.2	-	3.4	-	2.4	-	2.4	-	mA
1	input leakage current		15 V	-	± 0.1	-	± 0.1	-	± 1.0	-	± 1.0	$\mu \mathrm{A}$
loz	OFF-state output current	QPn output is HIGH;$V_{O}=15 \mathrm{~V}$	5 V	-	2	-	2	-	15	-	15	$\mu \mathrm{A}$
			10 V	-	2	-	2	-	15	-	15	$\mu \mathrm{A}$
			15 V	-	2	-	2	-	15	-	15	$\mu \mathrm{A}$
$I_{\text {DD }}$	supply current	$\mathrm{I}_{0}=0 \mathrm{~A}$	5 V	-	5	-	5	-	150	-	150	$\mu \mathrm{A}$
			10 V	-	10	-	10	-	300	-	300	$\mu \mathrm{A}$
			15 V	-	20	-	20	-	600	-	600	$\mu \mathrm{A}$
C_{1}	input capacitance		-	-	-	-	-	7.5	-	-	-	pF

10. Dynamic characteristics

Table 7. Dynamic characteristics
$V_{S S}=0 \mathrm{~V} ; T_{\text {amb }}=25^{\circ} \mathrm{C}$ unless otherwise specified. For test circuit, see Figure 10.

Symbol	Parameter	Conditions	VD		Extrapolation formula	Min	Typ	Max	Unit
$\mathrm{t}_{\text {PHL }}$	HIGH to LOW propagation delay	CP to QS1; see Figure 6	5 V	[1]	$132 \mathrm{~ns}+(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	160	320	ns
			10 V		$53 \mathrm{~ns}+(0.23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	65	130	ns
			15 V		$37 \mathrm{~ns}+(0.16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	45	90	ns
		CP to QS2; see Figure 6	5 V		$92 \mathrm{~ns}+(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	120	240	ns
			10 V		$39 \mathrm{~ns}+(0.23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	50	100	ns
			15 V		$32 \mathrm{~ns}+(0.16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	40	80	ns
$t_{\text {PLH }}$	LOW to HIGH propagation delay	CP to QS1; see Figure 6	5 V	[1]	$102 \mathrm{~ns}+(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	130	260	ns
			10 V		$44 \mathrm{~ns}+(0.23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	55	110	ns
			15 V		$32 \mathrm{~ns}+(0.16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	40	80	ns
		CP to QS2; see Figure 6	5 V		$102 \mathrm{~ns}+(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	130	260	ns
			10 V		$49 \mathrm{~ns}+(0.23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	60	120	ns
			15 V		$37 \mathrm{~ns}+(0.16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	45	90	ns
$t_{\text {PzL }}$	OFF-state to LOW propagation delay	CP to QPn; see Figure 6	5 V			-	240	480	ns
			10 V			-	80	160	ns
			15 V			-	55	110	ns
		STR to QPn; see Figure 7	5 V			-	140	280	ns
			10 V			-	70	140	ns
			15 V			-	55	110	ns
$t_{\text {PLZ }}$	LOW to OFF-state propagation delay	CP to QPn; see Figure 6	5 V			-	170	340	ns
			10 V			-	75	150	ns
			15 V			-	60	120	ns
		STR to QPn; see Figure 7	5 V			-	100	200	ns
			10 V			-	40	100	ns
			15 V			-	35	70	ns
$\mathrm{t}_{\text {en }}$	enable time	OE to QPn; see Figure 8	5 V	[2]		-	100	200	ns
			10 V			-	55	110	ns
			15 V			-	50	100	ns
$\mathrm{t}_{\text {dis }}$	disable time	OE to QPn; see Figure 8	5 V	[2]		-	80	160	ns
			10 V			-	40	80	ns
			15 V			-	30	60	ns
t_{t}	transition time	$\begin{aligned} & \text { QS1, QS2; } \\ & \text { see Figure } 6 \end{aligned}$	5 V	[1]	$35 \mathrm{~ns}+(1.00 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	85	170	ns
			10 V	[3]	$19 \mathrm{~ns}+(0.42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	40	80	ns
			15 V		$16 \mathrm{~ns}+(0.28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	30	60	ns

Table 7. Dynamic characteristics ...continued
$V_{S S}=0 \mathrm{~V} ; T_{\text {amb }}=25^{\circ} \mathrm{C}$ unless otherwise specified. For test circuit, see Figure 10.

Symbol	Parameter	Conditions	VD	Extrapolation formula	Min	Typ	Max	Unit
tw	pulse width	CP; LOW and HIGH; see Figure 6	5 V		60	30	-	ns
			10 V		30	15	-	ns
			15 V		24	12	-	ns
		STR; HIGH; see Figure 7	5 V		80	40	-	ns
			10 V		60	30	-	ns
			15 V		24	12	-	ns
$\mathrm{t}_{\text {su }}$	set-up time	D to CP; see Figure 9	5 V		60	30	-	ns
			10 V		20	10	-	ns
			15 V		15	5	-	ns
$t_{\text {h }}$	hold time	D to CP; see Figure 9	5 V		+5	-15	-	ns
			10 V		20	5	-	ns
			15 V		20	5	-	ns
$\mathrm{f}_{\text {clk (max) }}$	maximum clock frequency	CP; see Figure 6	5 V		5	10	-	MHz
			10 V		11	22	-	MHz
			15 V		14	28	-	MHz

[1] The typical values of the propagation delay and transition times are calculated from the extrapolation formulas shown (C_{L} in pF).
[2] $t_{e n}$ is the same as $t_{P Z L}$ and $t_{d i s}$ is the same as $t_{P L Z}$
[3] t_{t} is the same as $t_{T L H}$ and $t_{T H L}$

Table 8. Dynamic power dissipation
P_{D} can be calculated from the formulas shown. $V_{S S}=0 \mathrm{~V} ; t_{r}=t_{f} \leq 20 \mathrm{~ns} ; T_{\text {amb }}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	V_{DD}	Typical formula	Where
P_{D}	dynamic power dissipation	5 V	$\mathrm{P}_{\mathrm{D}}=1200 \times \mathrm{f}_{\mathrm{i}}+\Sigma\left(\mathrm{f}_{0} \times \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\text {DD }}{ }^{2} \mu \mathrm{~W}$	$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
		10 V	$\mathrm{P}_{\mathrm{D}}=5550 \times \mathrm{f}_{\mathrm{i}}+\Sigma\left(\mathrm{f}_{\mathrm{o}} \times \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\text {DD }}{ }^{2} \mu \mathrm{~W}$	$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
		15 V	$P_{D}=15000 \times f_{i}+\Sigma\left(f_{0} \times C_{L}\right) \times V_{D D^{2}} \mu \mathrm{~W}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=\text { output load capacitance in } \mathrm{pF} ; \\ & \Sigma\left(\mathrm{f}_{\mathrm{o}} \times \mathrm{C}_{\mathrm{L}}\right)=\text { sum of the outputs; } \\ & \mathrm{V}_{\mathrm{DD}}=\text { supply voltage in } \mathrm{V} \text {. } \end{aligned}$

11. Waveforms

Parallel output measurement points are given in Table 9.
V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.
Fig 6. Propagation delay clock (CP) to output (QPn, QS1, QS2), clock pulse width and maximum clock frequency

Table 9. Measurement points

Supply	Input	Output		
$\mathbf{V}_{\mathbf{D D}}$	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{X}}$	$\mathbf{V}_{\mathbf{Y}}$
5 V to 15 V	$0.5 \mathrm{~V}_{\mathrm{DD}}$	$0.5 \mathrm{~V}_{\mathrm{DD}}$	$0.1 \mathrm{~V}_{\mathrm{O}}$	$0.9 \mathrm{~V}_{\mathrm{O}}$

Measurement points are given in Table 9.
$V_{O L}$ is the typical output voltage level that occurs with the output load.
Fig 7. Strobe (STR) to output (QPn) propagation delays and the strobe pulse width

Measurement points are given in Table 9.
V_{OL} is the typical output voltage level that occurs with the output load.
Fig 8. Enable and disable times for input OE

Measurement points are given in Table 9
The shaded areas indicate when the input is permitted to change for predictable output performance.
V_{OL} is the typical output voltage level that occurs with the output load.
Fig 9. Set-up and hold times for the data input (D)

Test data is given in Table 10.
Definitions for test circuit:
DUT - Device Under Test.
$\mathrm{R}_{\mathrm{L}}=$ Load resistance.
$C_{L}=$ load capacitance
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to output impedance of Z_{o} of the pulse generator. $\mathrm{V}_{\mathrm{EXT}}=$ External voltage for measuring switching times.

Fig 10. Test circuit for measuring switching times

Table 10. Test data

Supply	Input		$\mathrm{V}_{\text {EXT }}$		Load	
$V_{\text {DD }}$	V	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	$\mathrm{t}_{\text {PLZ }}, \mathrm{t}_{\text {PZL }}$	$\mathbf{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	C_{L}	\mathbf{R}_{L}
5 V to 15 V	$V_{\text {DD }}$	$\leq 20 \mathrm{~ns}$	$V_{\text {DD }}$	open	50 pF	$1 \mathrm{k} \Omega$

12. Application information

Application example: serial-to-parallel data converting LED drivers.

Fig 11. Serial-to-parallel converting LED drivers

13. Package outline

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	\mathbf{A} $\mathbf{m a x}$.	$\mathbf{A}_{\mathbf{1}}$ $\mathbf{m i n}$.	$\mathbf{A}_{\mathbf{2}}$ $\mathbf{m a x}$.	\mathbf{b}	$\mathbf{b}_{\mathbf{1}}$	$\mathbf{b}_{\mathbf{2}}$	\mathbf{c}	$\mathbf{D}^{(\mathbf{1})}$	$\mathbf{E}^{\mathbf{1})}$	\mathbf{e}	$\mathbf{e}_{\mathbf{1}}$	\mathbf{L}	$\mathbf{M}_{\mathbf{E}}$	$\mathbf{M}_{\mathbf{H}}$	\mathbf{w}	$\mathbf{Z}^{(\mathbf{1})}$ $\mathbf{m a x}$.
mm	4.2	0.51	3.2	1.73	0.53	1.25	0.36	19.50	6.48	2.54	7.62	3.60	8.25	10.0	0.254	0.76
			1.30	0.38	0.85	0.23	18.55	6.20								
inches	0.17	0.02	0.13	0.068	0.021	0.049	0.014	0.77	0.26	0.8	0.3	0.14	0.32	0.39	0.3	
			0.051	0.015	0.033	0.009	0.73	0.24	0.1	0.3	0.12	0.31	0.33	0.03		

Note

1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			$-95-01-14$
SOT38-4					-	

Fig 12. Package outline SOT38-4 (DIP16)

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	1.75	$\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.8 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$	1.27	$\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$	1.05	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.7 \\ & 0.3 \end{aligned}$	8°
inches	0.069	$\begin{aligned} & 0.010 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.057 \\ & 0.049 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{array}{l\|} \hline 0.0100 \\ 0.0075 \end{array}$	$\begin{aligned} & 0.39 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$	0.05	$\begin{array}{\|l\|} \hline 0.244 \\ 0.228 \\ \hline \end{array}$	0.041	$\begin{array}{\|l\|} \hline 0.039 \\ 0.016 \end{array}$	$\begin{aligned} & 0.028 \\ & 0.020 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & \hline 0.028 \\ & 0.012 \end{aligned}$	0°

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT109-1	076E07	MS-012		\square	$\begin{aligned} & 99-12-27 \\ & 03-02-19 \end{aligned}$

Fig 13. Package outline SOT109-1 (SO16)

14. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
HEF4794B v. 7	20111116	Product data sheet	-	HEF4794B v. 6
Modifications:	- Section Applications removed - Table 6: - I_{OH} minimum values changed to maximum - added the unit pF for C_{1}			
HEF4794B v. 6	20100901	Product data sheet	-	HEF4794B v. 5
HEF4794B v. 5	20100402	Product data sheet	-	HEF4794B v. 4
HEF4794B v. 4	20091222	Product data sheet	-	HEF4794B v. 3
HEF4794B v. 3	20080812	Product data sheet	-	HEF4794B v. 2
HEF4794B v. 2	19990630	Product specification	-	HEF4794B v. 1
HEF4794B v. 1	19940701	Product specification	-	-

15. Legal information

15.1 Data sheet status

Document status $[1][2]$	Product status $[3]$	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.
2] The term 'short data sheet' is explained in section "Definitions"
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

15.2 Definitions

Draft - The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet - A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.
Product specification - The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.
In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.
Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications - Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values - Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control - This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products - Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.
In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

17. Contents

1 General description 1
2 Features and benefits 1
3 Ordering information 1
4 Functional diagram 2
5 Pinning information 3
Pinning 3
5.1
Pin description 3
6 Functional description 4
7 Limiting values 5
8 Recommended operating conditions. 5
9 Static characteristics. 6
10 Dynamic characteristics 7
11 Waveforms 9
12 Application information. 12
13 Package outline 13
14 Revision history. 15
15 Legal information. 16
15.1 Data sheet status 16
15.2 Definitions 16
15.3 Disclaimers 16
15.4 Trademarks. 17
16 Contact information 17
17 Contents 18

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Counter ICs category:

Click to view products by NXP manufacturer:

Other Similar products are found below :
HEF4516BT 069748E 569054R 634844F 74HC40102N 74HCT4024N NLV14040BDR2G TC74HC4040AF(EL,F) TC74VHC4040F(E,K,F 74VHC163FT XD4059 CD4015BF3A 74HC193PW,118 74VHC163FT(BJ) SN54HC4024J 74HC4017D.652 74HC4020D.652 74HC393D.652 74HC4040D.652 74HC4040D.653 74HC4060D.653 74HCT393D.652 74HCT4040D.653 74HC191D.652 74HC4060D.652 74HCT4040D. 652 HEF4040BT. 652 HEF4060BT. 653 HEF4521BT. 652 HEF4518BT. 652 HEF4520BT. 652 HEF4017BT. 652 74VHC4020FT(BJ) 74HCT4040PW,118 74HCT193PW,118 74HC393BQ-Q100X SN74AS161NSR 74HC390DB,112 74HC4060DQ100,118 74HC160D,652 74HC390DB,118 TC74HC7292AP(F) SN74ALS169BDR HEF4060BT-Q100J 74HC4017BQ-Q100X 74HC163PW. 112 74HC191PW. 112 74HC390PW. 112 74HC393DB. 118 74HC4024D.652

