
K32 L2A Microcontroller with 512 KB Flash and 128 KB SRAM

72 MHz Cortex-M0+ based Microcontroller

Supports ultra-low-power Arm based microcontroller with crystalless USB feature, large flash and RAM, evolutionary low-power peripherals and security features. This is an ideal solution for Sensor Hub applications, Smart Energy, Internet of Things, and Edge and Concentrator. This device offers:

- 128 KB SRAM for data processing and connectivity stack
- Ultra low dynamic and static power consumption with smart peripherals for low power applications
- · Advanced LPI2C and LPSPI supporting asynchronous DMA master data transition
- FlexIO for flexible and high performance interfaces
- Crypto acceleration with AES/DES/3DES/MD5/SHA and TRNG
- USB FS 2.0 device operation without need of external crystal
- USB FS OTG controller, capable of USB host or device operation

K32L2A41VLL1A K32L2A31VLL1A K32L2A41VLH1A K32L2A31VLH1A

Core

 Arm[®] Cortex[®]-M0+ cores up to 72 MHz in Normal mode and 96 MHz in High Speed mode

Memories

- Up to 512 KB program flash memory
- 128 KB SRAM
- 32 KB ROM with built-in bootloader

System peripherals

- · 8-channel DMA controller
- Independent clocked Watchdog
- · Low-leakage wakeup unit
- · SWD debug interface and Micro Trace Buffer
- Bit Manipulation Engine
- Memory Mapped Divide and Square Root module (MMDVSQ)
- · Cyclic Redundancy Check (CRC) module
- Nested Vector Interrupt Controller (NVIC) supports 32 interrupt vectors
- · Additional peripheral interrupt support via Interrupt Multiplexer (INTMUX)

Clocks

Communication interfaces

- Three 16-bit Low Power Serial Peripheral Interface (LPSPI) modules
- One EMVSIM module supporting EMV version 4.3, ISO7816
- Three LPUART modules
- Three LPI2C modules supporting up to 5 Mbit/s
- One FlexIO module emulating UART, SPI, camera interface, and Motorola 68K/Intel 8080 bus
- · USB FS 2.0 device operation without need of external crystal
- · USB FS OTG controller, capable of USB host or device operation

Analog Modules

- 16-bit, 24-channel SAR ADC with internal voltage reference
- Two High-speed analog comparators each containing a 6-bit DAC and programmable reference input
- One 12-bit DAC
- 1.2 V and 2.1 V voltage references (Vref)

Timers

One 6-channel Timer/PWM module

- System Clock Generator module that includes the following clock sources:
 - 48 to 60 MHz high accuracy fast internal reference clock (FIRC)
 - 32-40 kHz, or 3-32 MHz crystal oscillator
 - 1 kHz LPO clock
 - 2/8 MHz slow internal reference clock (SIRC)
 - Peripheral Clock Control (PCC) module that supports asynchronous clocking and clock divide options for peripherals

Human-machine interface

- General-purpose input/output up to 97
- Low-power hardware touch sensor interface (TSI)

- Two 2-channel Timer/PWM modules
- Two low-power timers
- Two periodic interrupt timers
- Secure Real time clock
- 56-bit software time stamp timer at 1 MHz

Security and integrity modules

- 80-bit unique identification number per chip
- CAU supports acceleration of the DES, 3DES, AES, MD5, SHA-1, and SHA-256 algorithms
- True Random Number Generator (TRNG)

Operating Characteristics

Voltage range: 1.71 to 3.6 V
Temperature range: -40 to 105 °C

Related Resources

Туре	Description	Resource
Selector Guide	The NXP Solution Advisor is a web-based tool that features interactive application wizards and a dynamic product selector.	Solution Advisor
Reference Manual	The Reference Manual contains a comprehensive description of the structure and function (operation) of a device.	K32L2AxRM ¹
Data Sheet	The Data Sheet includes electrical characteristics and signal connections.	This document ¹
Chip Errata	The chip mask set Errata provides additional or corrective information for a particular device mask set.	K32L2A41VLL1A_1N52N ¹
Package drawing	Package dimensions are provided in package drawings.	• 64-LQFP: 98ASS23234W ¹ • 100-LQFP: 98ASS23308W ¹

1. To find the associated resource, go to http://www.nxp.com and perform a search using this term.

Table of Contents

1	Orde	ering info	rmation	5		6.4	Voltage	e and current operating ratings	35
2	Ove	rview		5	7	Gen	eral		. 35
	2.1	System	features	6		7.1	AC ele	ctrical characteristics	35
		2.1.1	Arm Cortex-M0+ core	6		7.2	Nonsw	ritching electrical specifications	36
		2.1.2	NVIC	7			7.2.1	Voltage and current operating	
		2.1.3	AWIC	7				requirements	36
		2.1.4	Memory	8			7.2.2	LVD, HVD, and POR operating	
		2.1.5	Reset and boot	8				requirements	37
		2.1.6	Clock options	11			7.2.3	Voltage and current operating behaviors	38
		2.1.7	Security	13			7.2.4	Power mode transition operating behaviors	s 39
		2.1.8	Power management	14			7.2.5	Power consumption operating behaviors	40
		2.1.9	LLWU	16			7.2.6	EMC radiated emissions operating	
		2.1.10	Debug controller	18				behaviors	48
	2.2	Periphe	ral features	18			7.2.7	Designing with radiated emissions in mind	49
		2.2.1	16-bit SAR ADC	18			7.2.8	Capacitance attributes	49
		2.2.2	Crossbar Switch Lite (AXBS-Lite)	18		7.3	Switch	ing specifications	49
		2.2.3	Bit Manipulation Engine2 (BME2)	19			7.3.1	Device clock specifications	49
		2.2.4	Cryptographic Acceleration Unit (CAU) 19			7.3.2	General switching specifications	50
		2.2.5	Comparator (CMP)	19		7.4	Therm	al specifications	52
		2.2.6	12-bit DAC	20			7.4.1	Thermal operating requirements	52
		2.2.7	Direct Memory Access Multiplexer				7.4.2	Thermal attributes	52
			(DMAMUX)	20	8	Perip	oheral o _l	perating requirements and behaviors	53
		2.2.8	EMVSIM	20		8.1	Core n	nodules	53
		2.2.9	Flexible I/O (FlexIO)	20			8.1.1	SWD electricals	53
		2.2.10	General-Purpose Input/Output (GPIO)	21		8.2	Systen	n modules	54
		2.2.11	Low Power Inter-Integrated Circuit (LF	PI2C).21		8.3	Clock	modules	54
		2.2.12	The Low Power Periodic Interrupt Tim	er			8.3.1	System Clock Generation (SCG)	
			(LPIT)	21				specifications	54
		2.2.13	Low Power Serial Peripheral Interface				8.3.2	Oscillator electrical specifications	57
			(LPSPI)	22		8.4	Memoi	ries and memory interfaces	59
		2.2.14	Low-Power Timer (LPTMR)	22			8.4.1	Flash electrical specifications	59
		2.2.15	Low Power Universal Asynchronous			8.5	Securi	ty and integrity modules	61
			Receiver/Transmitter (LPUART)	22		8.6	Analog	J	61
		2.2.16	Peripheral Clock Control (PCC)	23			8.6.1	ADC electrical specifications	61
		2.2.17	Real Time Clock (RTC)	23			8.6.2	Voltage reference electrical specifications.	66
		2.2.18	Timer/PWM Module (TPM)	23			8.6.3	CMP and 6-bit DAC electrical	
		2.2.19	Touch Sensing Input (TSI)	23				specifications	67
		2.2.20	Universal Serial Bus (USB) FS	24			8.6.4	12-bit DAC electrical characteristics	69
		2.2.21	Voltage Reference (VREF)	24		8.7	Timers	S	72
		2.2.22	Watchdog (WDOG)			8.8	Comm	unication interfaces	72
3	Men	nory Map		25			8.8.1	EMV SIM specifications	72
4	Pino	uts and F	Packaging	27			8.8.2	USB electrical specifications	77
	4.1		Multiplexing and Pin Assignments				8.8.3	USB VREG electrical specifications	78
	4.2		A Pinouts				8.8.4	LPSPI switching specifications	78
5	Dime	ensions		33			8.8.5	LPI2C	83
	5.1	Obtaini	ng package dimensions	33			8.8.6	LPUART	
6	Ratir					8.9	Humar	n-machine interfaces (HMI)	
	6.1		Il handling ratings				8.9.1	TSI electrical specifications	
	6.2		e handling ratings		9	Desi	•	iderations	
	6.3	ESD ha	Indling ratings	34		9.1	Hardw	are design considerations	84

	9.1.1	Printed circuit board recommendations84	10 Part identification	92
		Power delivery system85		
	9.1.3	Analog design85	10.2 Format	93
	9.1.4	Digital design86	10.3 Fields	93
	9.1.5	Crystal oscillator90	10.4 Example	93
9.2	Softwa	re considerations92	11 Revision History	94

1 Ordering information

Table 1. Ordering information

Part number	Memory (Flash/ SRAM)	Core	CPU frequency (MHz)	Crypto	Serial interfaces	Packages
K32L2A41VLL1A	512 KB Flash/128 KB SRAM	Single Cortex- M0+	Up to 72 (normal), 96 (HSRUN)	Yes	3xLPI2C, 3xLPUART, 3xLPSPI, EVMSIM, FlexIO, FS USB	LQFP100
K32L2A31VLL1A	256 KB Flash/128 KB SRAM	Single Cortex- M0+	Up to 72 (normal), 96 (HSRUN)	Yes	3xLPI2C, 3xLPUART, 3xLPSPI, EVMSIM, FlexIO, FS USB	LQFP100
K32L2A41VLH1A	512 KB Flash/128 KB SRAM	Single Cortex- M0+	Up to 72 (normal), 96 (HSRUN)	Yes	3xLPI2C, 3xLPUART, 3xLPSPI, EVMSIM, FlexIO, FS USB	LQFP64
K32L2A31VLH1A	256 KB Flash/128 KB SRAM	Single Cortex- M0+	Up to 72 (normal), 96 (HSRUN)	Yes	3xLPI2C, 3xLPUART, 3xLPSPI, EVMSIM, FlexIO, FS USB	LQFP64

2 Overview

The following figure shows the block diagram of this device.

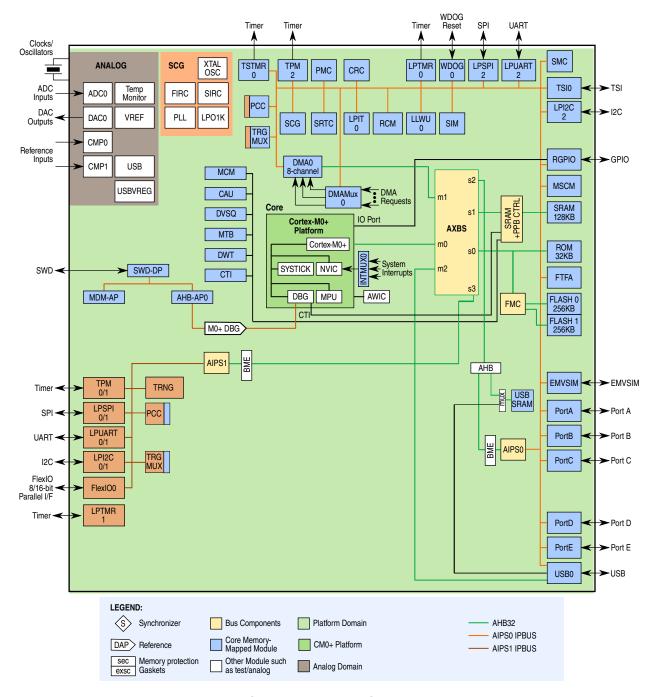


Figure 1. Block diagram

2.1 System features

2.1.1 Arm Cortex-M0+ core

The enhanced Arm Cortex M0+ is the member of the Cortex-M series of processors targeting microcontroller cores focused on very cost sensitive, low power applications. It has a single 32-bit AMBA AHB-Lite interface and includes an NVIC component. It also has hardware debug functionality including support for simple program trace capability. The processor supports the Armv6-M instruction set (Thumb) architecture including all but three 16-bit Thumb opcodes (52 total) plus seven 32-bit instructions. It is upward compatible with other Cortex-M profile processors.

2.1.2 **NVIC**

The Nested Vectored Interrupt Controller supports nested interrupts and 4 priority levels for interrupts. In the NVIC, each source in the IPR registers contains two bits. It also differs in number of interrupt sources and supports 32 interrupt vectors.

The Cortex-M family uses a number of methods to improve interrupt latency to up to 15 clock cycles for Cortex-M0+. It also can be used to wake the MCU core from Wait and VLPW modes.

2.1.3 AWIC

The asynchronous wake-up interrupt controller (AWIC) is used to detect asynchronous wake-up events in Stop mode and signal to clock control logic to resume system clocking. After clock restarts, the NVIC observes the pending interrupt and performs the normal interrupt or event processing. The AWIC can be used to wake MCU core from Stop and VLPS modes.

Wake-up sources are listed as below:

Table 2. AWIC stop wake-up sources

Wake-up source	Description
Available system resets	RESET pin when LPO is its clock source
Low-voltage detect	Power management controller—functional in Stop mode
Low-voltage warning	Power management controller—functional in Stop mode
Pin interrupts	Port control module—any enabled pin interrupt is capable of waking the system
ADC	The ADC is functional when using internal clock source
CMP	Interrupt in normal or trigger mode

Table 2. AWIC stop wake-up sources (continued)

Wake-up source	Description
LPI ² C	Any enabled interrupt can be a source as long as the module remains clocked
LPUART	Any enabled interrupt can be a source as long as the module remains clocked
RTC	Alarm or seconds interrupt
TSI	Any enabled interrupt can be a source as long as the module remains clocked
NMI	NMI_b pin
TPM	Any enabled interrupt can be a source as long as the module remains clocked
LPTMR	Any enabled interrupt can be a source as long as the module remains clocked
LPSPI	Any enabled interrupt can be a source as long as the module remains clocked
LPIT	Any enabled interrupt can be a source as long as the module remains clocked
FlexIO	Any enabled interrupt can be a source as long as the module remains clocked
USB	Wake-up

2.1.4 Memory

This device has the following features:

- 128 KB SRAM that can be accessed by bus masters through the cross-bar switch.
- Peripherals (LPUART, LPI2C, LPSPI, USB) supported by the ROM Bootloader.

The program flash memory contains a 16-byte flash configuration field that stores default protection settings and security information. The page size of program flash is 1 KB.

The protection setting can protect 32 regions of the program flash memory from unintended erase or program operations.

The security circuitry prevents unauthorized access to RAM or flash contents from debug port.

• System register file

This device contains a 32-byte register file that is powered in all power modes.

Also, it retains contents during low-voltage detect (LVD) events and is only reset during a power-on reset.

2.1.5 Reset and boot

The following table lists all the reset sources supported by this device.

Table 3. Reset sources

Reset sources	Description
POR reset	Power-on reset (POR)
External global system resets	 External pin reset (PIN) Low-voltage detect (LVD) Low leakage wakeup (LLWU) reset Clock monitor reset sources Stop mode acknowledge error (SACKERR)
Internal Core-generated resets	Watchdog timer reset Software reset (SW) Lockup reset (LOCKUP) MDM DAP system reset request
Debug reset	Debug resets

The CM0+ core adds support for a programmable Vector Table Offset Register (VTOR) to relocate the exception vector table after reset. This device supports booting from internal flash and RAM.

The Flash Option (FOPT) register in the Flash Memory module (FTFA_FOPT) allows the user to customize the operation of the MCU at boot time. The register contains read-only bits that are loaded from the NVM's option byte in the flash configuration field. Below is boot flow chart for this device.

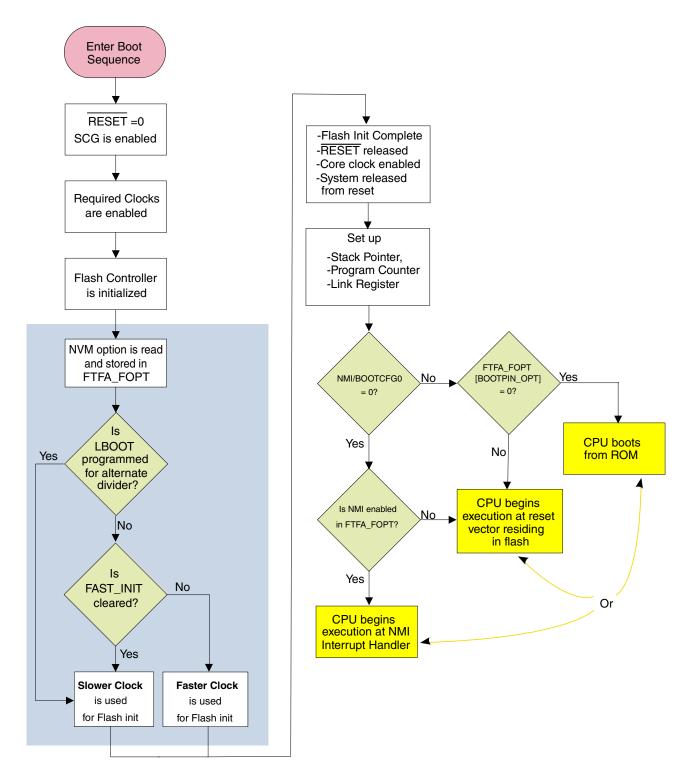


Figure 2. Boot flow chart

The blank chip is default to boot from ROM and remaps the vector table to ROM base address, otherwise, it remaps to flash address.

2.1.6 Clock options

The SCG provides four clock sources that are then distributed and optionally divided to the CPU, memory and various peripherals.

The four clock sources available to the SCG are:

- SOSC output of the external oscillator (a crystal or externally applied clock input)
- SIRC output of the slow (2/8 Mhz) internal RC oscillator
- FIRC output of the fast (48-60 MHZ) internal RC oscillator
- SPLL output of the PLL, which is multiple of the SOSC or FIRC clock source.

The following diagram shows the clock sources and clock trees.

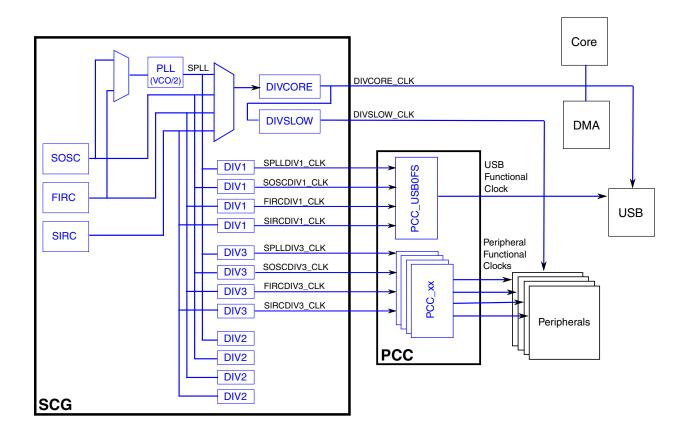


Figure 3. Clock distribution

The SCG module supplies peripheral interface and functional clocks to the PCC, depending on the peripheral. The peripheral interface clock can be either the DIVCORE_CLK or the DIVSLOW_CLK, depending on the peripheral. The peripheral functional clocks and the peripheral interface clocks for each module/peripheral are detailed in table below.

Table 4. Peripheral Clocks

Source Module	Module Reset	Bus Interface Clock	Bus Interface Clock Gating Control	Peripheral Functional Clock	PCCn Functional Clock Divider
System	•	•	•	•	
Coretex M0+ Core controller	Chip Reset	DIVCORE_CLK			
DMA controller	Chip Reset	DIVCORE_CLK	Yes		
DMA channel multiplexer (DMAMUX)	Chip Reset	DIVSLOW_CLK	Yes		
AXBS	Chip Reset	DIVCORE_CLK			
AIPS	Chip Reset	DIVCORE_CLK			
INTMUX	Chip Reset	DIVSLOW_CLK			
LLWU	Chip Reset not VLLS	DIVSLOW_CLK		LPO	
SCG	Chip Reset	DIVSLOW_CLK			
PCC	Chip Reset	DIVSLOW_CLK			
PORT multiplex control	Chip Reset	DIVSLOW_CLK	Yes		
SIM	Chip Reset	DIVSLOW_CLK			
Power Management Controller (PMC)	POR	DIVSLOW_CLK			
System Mode Controller (SMC)	Chip Reset not VLLS	DIVSLOW_CLK			
Reset Control Module (RCM)	POR/LVD/VLLS	DIVSLOW_CLK		LPO	
Security/Integrity		1			
WDOG ¹	Chip Reset	DIVSLOW_CLK		LPO, ERCLK, SIRC	
TRNG	Chip Reset	DIVSLOW_CLK	Yes		
CAU	Chip Reset	DIVCORE_CLK			
CRC	Chip Reset	DIVSLOW_CLK	Yes		
Memory	•	•	•	•	
Flash Memory Unit	Early Reset	DIVSLOW_CLK	Yes		
Flash Memory Controller	Chip Reset	DIVCORE_CLK			

Table 4. Peripheral Clocks (continued)

Source Module	Module Reset	Bus Interface Clock	Bus Interface Clock Gating Control	Peripheral Functional Clock	PCCn Functional Clock Divider
SRAM	Chip Reset	DIVCORE_CLK			
System Register File	POR	DIVSLOW_CLK			
Analog					
TSI	Chip Reset not VLLS	DIVSLOW_CLK	Yes		
ADC	Chip Reset	DIVSLOW_CLK	Yes	SCG DIV3	
VREF	Chip Reset	DIVSLOW_CLK	Yes		
DAC	Chip Reset	DIVSLOW_CLK	Yes		
CMP	Chip Reset	DIVSLOW_CLK	Yes		
Timers					
TPM	Chip Reset	DIVSLOW_CLK	Yes	SCG DIV3	
LPIT	Chip Reset	DIVSLOW_CLK	Yes	SCG DIV3	
Low-Power Timer (LPTMR) ³	POR/LVD	DIVSLOW_CLK	Yes	LPO, ERCLK ² , SIRC, OSC32KCLK	
Real-time Clock (RTC) ⁴	POR	DIVSLOW_CLK	Yes	OSC32KCLK, LPO	
TSTMR	Chip Reset	DIVSLOW_CLK		SIRCLK @ 1 MHz	
Communications					
USB	Chip Reset	DIVCORE_CLK ⁵	Yes	SCG DIV1, USB_CLKIN ⁶	3-bit Divide, 1-bit Fraction ⁷
LPSPI	Chip Reset	DIVSLOW_CLK	Yes	SCG DIV3	
LPI2C	Chip Reset	DIVSLOW_CLK	Yes	SCG DIV3	
LPUART	Chip Reset	DIVSLOW_CLK	Yes	SCG DIV3	
EMVSIM	Chip Reset	DIVSLOW_CLK	Yes	SCG DIV3	
FlexIO	Chip Reset	DIVSLOW_CLK	Yes	SCG DIV3	
GPIO controller	Chip Reset	DIVCORE_CLK			

- 1. Watchdog clock sources are selected by WDOGx_CS[CLK]
- 2. ERCLK is either from an external pin or from the SCG Internal OSC (SOSC) and configured with the SCG_SOSCCFG[EREFS] bit.
- 3. LPTMR clock sources are selected by LPTMR_PSR[PCS]
- 4. RTC clock sources are selected by RTC_CR[LPOS]
- 5. For the USB FS OTG controller to operate, the minimum required DIVCORE_CLK is 24 MHz (half of USB functional clock)
- 6. An additional external clock USB_CLKIN, can also selected via PCCUSB0FS, and device's PORTx MUX field
- 7. Additional 3bit Divide field and 1-bit Fractional field reside in PCCUSB0FS register

2.1.7 Security

This device implements security based on the mode selected from the flash module.

The device security provides:

- Security of the flash and MCU via SEC bit
- Backdoor Key and NXP Backdoor key access support
- Disable access to the debugger via the SWD interface-bit unique identification number, which is programmed in factory and loaded to SIM register after power-on reset.

2.1.8 Power management

The System Mode Controller (SMC) provides multiple power options to allow the user to optimize power consumption for the level of functionality needed.

Depending on the stop requirements of the user application, a variety of stop modes are available that provide state retention, partial power-down or full power-down of certain logic and/or memory. I/O states are held in all modes of operation. The following table compares the various power modes available.

For each run mode, there is a corresponding Wait and Stop mode. Wait modes are similar to Arm Sleep modes. Stop modes (VLPS, STOP) are similar to Arm Sleep Deep mode. The Very Low Power Run (VLPR) operating mode can drastically reduce runtime power when the maximum bus frequency is not required to handle the application needs.

The three primary modes of operation are Run, Wait, and Stop. The WFI instruction invokes both Wait and Stop modes for the chip. The primary modes are augmented in a number of ways to provide lower power based on application needs.

Description Chip mode Core mode Normal recovery method **RUN** (Normal · Default mode out of reset Run Run) · On-chip voltage regulator is on. HRUN (High High Speed Run Allows maximum performance of chip. Speed Run) · On-chip voltage regulator is on. Allows peripherals to function while the core is in Sleep mode, WAIT (Normal Sleep Interrupt Wait) - via WFI reducing power. · NVIC remains sensitive to interrupts · Peripherals continue to be clocked.

Table 5. Chip power modes

Table 5. Chip power modes (continued)

Chip mode	Description	Core mode	Normal recovery method
STOP (Normal Stop) - via WFI	Places chip in static state. Lowest power mode that retains all registers while maintaining LVD protection. • NVIC is disabled. • AWIC is used to wake up from interrupt. • Peripheral clocks are stopped.	Sleep Deep	Interrupt
VLPR (Very Low-Power Run)	On-chip voltage regulator is in a low-power mode that supplies only enough power to run the chip at a reduced frequency. Reduced frequency Flash access mode (1 MHz) LVD off In BLPI clock mode, only the fast internal reference oscillator is available to provide a low power nominal 4 MHz source for the core with the nominal bus and flash clock required to be <800 kHz Alternatively, BLPE clock mode can be used with an external clock or the crystal oscillator providing the clock source.	Run	_
VLPW (Very Low-Power Wait) -via WFI	Same as VLPR but with the core in Sleep mode to further reduce power. • NVIC remains sensitive to interrupts (FCLK = ON). • On-chip voltage regulator is in a low-power mode that supplies only enough power to run the chip at a reduced frequency.	Sleep	Interrupt
VLPS (Very Low-Power Stop)-via WFI	Places chip in static state with LVD operation off. Lowest power mode with ADC and pin interrupts functional. Peripheral clocks are stopped, but OSC, LPTMR,LPUART, RTC, CMP, TSI can be used. TPM and UART can optionally be enabled if their clock source is enabled. NVIC is disabled (FCLK = OFF); AWIC is used to wake up from interrupt. On-chip voltage regulator is in a low-power mode that supplies only enough power to run the chip at a reduced frequency. All SRAM is operating (content retained and I/O states held).	Sleep Deep	Interrupt
LLS3 (Low- Leakage Stop3)	State retention power mode • Most peripherals are in state retention mode (with clocks stopped), but OSC, LLWU,LPTMR, RTC, CMP, TSI can be used. • NVIC is disabled; LLWU is used to wake up. NOTE: The LLWU interrupt must not be masked by the interrupt controller to avoid a scenario where the system does not fully exit stop mode on an LLS recovery • All SRAM is operating (content retained and I/O states held).	Sleep Deep	Wake-up Interrupt ¹
LLS2 (Low- Leakage Stop2)	State retention power mode Most peripherals are in state retention mode (with clocks stopped), but OSC, LLWU,LPTMR, RTC, CMP, TSI can be used. NVIC is disabled; LLWU is used to wake up. NOTE: The LLWU interrupt must not be masked by the interrupt controller to avoid a	Sleep Deep	Wake-up Interrupt ¹

Table 5. Chip power modes (continued)

Chip mode	Description	Core mode	Normal recovery method
	scenario where the system does not fully exit stop mode on an LLS recovery • 64 KB SRAM retained, internal logic and I/O states are retained.		
VLLS3 (Very Low-Leakage Stop3)	 Most peripherals are disabled (with clocks stopped), but OSC, LLWU, LPTMR, RTC, CMP, TSI can be used. NVIC is disabled; LLWU is used to wake up. SRAM_U and SRAM_L remain powered on (content retained and I/O states held). 	Sleep Deep	Wake-up Reset ⁻¹
VLLS2 (Very Low-Leakage Stop2)	 Most peripherals are disabled (with clocks stopped), but OSC, LLWU, LPTMR, RTC, CMP, TSI can be used. NVIC is disabled; LLWU is used to wake up. 64K of SRAM_U remains powered on (content retained and I/O states held). 	Sleep Deep	Wake-up Reset ⁻¹
VLLS1 (Very Low-Leakage Stop1)	 Most peripherals are disabled (with clocks stopped), but OSC, LLWU, LPTMR, RTC, CMP, TSI can be used. NVIC is disabled; LLWU is used to wake up. All of SRAM_U and SRAM_L are powered off. The 32-byte system register file remains powered for customer-critical data The 16-byte system register file remains powered for customer-critical data 	Sleep Deep	Wake-up Reset ⁻¹
VLLS0 (Very Low-Leakage Stop 0)	 Most peripherals are disabled (with clocks stopped), but LLWU, LPTMR, RTC, TSI can be used. NVIC is disabled; LLWU is used to wake up. All of SRAM_U and SRAM_L are powered off. The 32-byte system register file remains powered for customer-critical data The 16-byte system register file remains powered for customer-critical data LPO disabled, optional POR brown-out detection 	Sleep Deep	Wake-up Reset ⁻¹

^{1.} Resumes Normal Run mode operation by executing the LLWU interrupt service routine.

2.1.9 LLWU

The device uses the following internal peripheral and external pin inputs as wakeup sources to the LLWU module. LLWU_Px are external pin inputs, and LLWU_M0IFM7IF are connections to the internal peripheral interrupt flags.

NOTE

In addition to the LLWU wakeup sources, the device also wakes from low power modes when NMI or RESET pins are enabled and the respective pin is asserted.

Table 6. LLWU Wakeup Sources

IRQ	Module source or pin name
LLWU_P0	PTE1
LLWU_P1	PTE2
LLWU_P2	PTE4
LLWU_P3	PTA4
LLWU_P4	PTA13
LLWU_P5	PTB0
LLWU_P6	PTC1
LLWU_P7	PTC3
LLWU_P8	PTC4
LLWU_P9	PTC5
LLWU_P10	PTC6
LLWU_P11	PTC11
LLWU_P12	PTD0
LLWU_P13	PTD2
LLWU_P14	PTD4
LLWU_P15	PTD6
LLWU_P16	PTE6
LLWU_P17	Reserved
LLWU_P18	Reserved
LLWU_P19	PTE17
LLWU_P20	PTE18
LLWU_P21	PTE25
LLWU_P22	PTA10
LLWU_P23	PTA11
LLWU_P24	PTD8
LLWU_P25	PTD11
LLWU_P26	VREGIN
LLWU_P27	USB0_DM
LLWU_P28	USB0_DP
LLWU_P29 - LLWU_P31	Reserved
LLWU_M0IF	LPTMR0
LLWU_M1IF	CMP0
LLWU_M2IF	CMP1
LLWU_M3IF	LPTMR1 asynchronous interrupt
LLWU_M4IF	TSI0
LLWU_M5IF	RTC Alarm
LLWU_M6IF	Reserved
LLWU_M7IF	RTC Seconds

Table 6. LLWU Wakeup Sources (continued)

IRQ	Module source or pin name
LLWU_M0DR	LPTMR0 asynchronous DMA
LLWU_M3DR	LPTMR1 asynchronous DMA
LLWU_M4DR	TSI asynchronous DMA
LLWU_M6DR	LPTMR0 trigger
LLWU_M7DR	LPTMR1 trigger

2.1.10 Debug controller

The debug system of this device is based on the Arm CoreSightTM architecture, and is configured to provide the maximum flexibility as allowed by the restrictions of the pinout and other available resources.

The MCU has a single M0+ CPU available for customer application use.

Debug provides register and memory accessibility from the external debugger interface, basic run/halt control, plus 2 breakpoints and 2 watchpoints. Additionally, it supports Arm's Micro Trace Buffer (MTB) capability to provide simple program trace. Only one debug interface is supported: Serial Wire Debug (SWD). The SWD interface provides the capability for debugger tools to interface to the CPU.

2.2 Peripheral features

2.2.1 16-bit SAR ADC

This device contains one 16-bit successive approximation ADC. The ADC supports both software and hardware triggers.

The number of ADC channels present on the device is determined by the pinout of the specific device package.

2.2.2 Crossbar Switch Lite (AXBS-Lite)

The information found here provides information on the layout, configuration, and programming of the crossbar switch.

The crossbar switch connects bus masters and bus slaves using a crossbar switch structure. This structure allows up to four bus masters to access different bus slaves simultaneously, while providing arbitration among the bus masters when they access the same slave.

2.2.3 Bit Manipulation Engine2 (BME2)

The key features of the BME2 include:

- Lightweight implementation of decorated storage for selected address spaces
- Additional access semantics encoded into the reference address
- Resides between crossbar switch slave port(s) and their associated peripheral bridge bus controller(s)
- Two-stage pipeline design matching the AHB system bus protocol
- Combinationally passes non-decorated accesses to peripheral bridge bus controllers
- Conversion of decorated loads and stores from processor core into atomic readmodify- writes
- Decorated loads support unsigned bit field extracts, load-and-{set,clear} 1-bit operations
- Decorated stores support bit field inserts, logical AND, OR, and XOR operations
- Support for byte, halfword and word-sized decorated operations
- Supports minimum signal toggling on AHB output bus to reduce power dissipation

2.2.4 Cryptographic Acceleration Unit (CAU)

The CAU provides security encrypt/decrypt acceleration to allow users to share secure data with external devices via a serial communication port (such as an LPUART module). The CAU clock source is the CPU/platform clock.

There is 1 CAU module, which is connected to the Core PPB.

2.2.5 Comparator (CMP)

The device includes two high-speed comparators each with two 8-input multiplexers for both the inverting and non-inverting inputs of the comparator. Each CMP input channel connects to both muxes. Two of the channels are connected to internal sources, leaving resources to support up to 6 input pins. See the channel assignment table for a summary of CMP input connections for this device.

The CMPs also include one 6-bit DAC with a 64-tap resistor ladder network, which provides a selectable voltage reference for applications where voltage reference is needed for an internal connection to the CMP.

The CMPs can be optionally on in all modes except VLLS0.

2.2.6 12-bit DAC

The 12-bit digital-to-analog converter (DAC) is a low-power, general-purpose DAC. The output of the DAC can be placed on an external pin or set as one of the inputs to the analog comparator, op-amps, or ADC.

This device contains one 12-bit digital-to-analog converter (DAC) with programmable reference generator output. The DAC includes a 16-word FIFO for DMA support.

2.2.7 Direct Memory Access Multiplexer (DMAMUX)

DMAMUX0 is a DMA request mux that allows up to 63 DMA request signals to be mapped to any of the 8 DMA channels of DMA0. Because of the mux, there is no hard correlation between any of the DMA request sources and a specific DMA channel. Some of the modules support asynchronous DMA operation.

2.2.8 EMVSIM

The EMVSIM (Euro/Mastercard/Visa/SIM Serial Interface Module) is a standalone ISO 7816 module that is connected to the AIPSO Peripheral Bridge. The EMVSIM module's clock source is the CPU/platform clock.

2.2.9 Flexible I/O (FlexIO)

The FlexIO is a highly configurable module providing a wide range of functionality including:

- Emulation of a variety of serial/parallel communication protocols
- Flexible 16-bit timers with support for a variety of trigger, reset, enable and disable conditions
- Programmable logic blocks allowing the implementation of digital logic functions on-chip and configurable interaction of internal and external modules
- Programmable state machine for offloading basic system control functions from CPU

2.2.10 General-Purpose Input/Output (GPIO)

The general-purpose input and output (GPIO) module is accessible via the peripheral bus and also communicates to the processor core via a zero wait state interface (IOPORT) for maximum pin performance. The GPIO registers support 8-bit, 16-bit or 32-bit accesses.

The device includes pins PTB0, PTB1, PTC3, PTC4, PTD4, PTD5, PTD6, and PTD7 with high current drive capability. These pins can be used to drive LED or power MOSFETs directly. The high drive capability applies to all functions which are multiplexed on these pins.

2.2.11 Low Power Inter-Integrated Circuit (LPI2C)

The LPI2C is a low power Inter-Integrated Circuit (I2C) module that supports an efficient interface to an I2C bus as a master and/or a slave. The LPI2C can continue operating in stop modes provided an appropriate clock is available and is designed for low CPU overhead with DMA offloading of FIFO register accesses. The LPI2C implements logic support for standard-mode, fast-mode, fast-mode plus and ultra-fast modes of operation.

This device has three LPI2C modules. The LPI2C module provides a low power IIC module that can operate in low power stop modes if required. Each of the three LPI2C modules will have a 4 word (32-bit) FIFO for transmit and receive of messages.

2.2.12 The Low Power Periodic Interrupt Timer (LPIT)

LPIT is a multi-channel timer module generating independent pre-trigger and trigger outputs. These timer channels can operate individually or can be chained together. The LPIT can operate in low power modes if configured to do so. The pre-trigger and trigger outputs can be used to trigger other modules on the device.

The LPIT generates periodic trigger events to the DMA channel mux. The LPIT to the DMAMUX trigger is configured in the TRGMUX.

2.2.13 Low Power Serial Peripheral Interface (LPSPI)

The LPSPI is a low power Serial Peripheral Interface (SPI) module that supports an efficient interface to an SPI bus as a master and/or a slave. The LPSPI can continue operating in stop modes provided an appropriate clock is available and is designed for low CPU overhead with DMA offloading of FIFO register accesses.

The LPSPI supports the following features:

- Word size = 32 bits
- Command/transmit FIFO of 4 words.
- Receive FIFO of 4 words.
- Host request input can be used to control the start time of an SPI bus transfer.

2.2.14 Low-Power Timer (LPTMR)

The low-power timer (LPTMR) can be configured to operate as a time counter with optional prescaler, or as a pulse counter with optional glitch filter, across all power modes, including the low-leakage modes. It can also continue operating through most system reset events, allowing it to be used as a time of day counter.

This device has two low-power timers: LPTMR0 and LPTMR1. Both allow operation during all power modes. LPTMR0 is accessed via AIPS0. LPTMR1 is accessed via AIPS1.

2.2.15 Low Power Universal Asynchronous Receiver/Transmitter (LPUART)

The LPUART modules support the basic UART with DMA interface function and x4 to x32 oversampling of baud-rate. This module supports LIN slave operation.

The module can remain functional in VLPS mode provided the clock it is using remains enabled.

2.2.16 Peripheral Clock Control (PCC)

The device deploys two Peripheral Clock Control modules that allow clock gating, and clock source selection to each peripheral. Each AIPS bridge has its own corresponding PCC module. In addition to this clock, there are optional peripheral clock sources that may be asynchronous to the CPU/Platform clock: SCGIRCLK, SCGFIRCLK, SCGFCLK, LPO, OSCCLK, SCGSPCLK.

2.2.17 Real Time Clock (RTC)

The RTC module features include:

- 32-bit seconds counter with roll-over protection and 32-bit alarm
- 16-bit prescaler with compensation that can correct errors between 0.12 ppm and 3906 ppm
- Option to increment prescaler using the LPO (prescaler increments by 32 every clock edge)
- Register write protection
- Lock register requires POR or software reset to enable write access
- Configurable 1, 2, 4, 8, 16, 32, 64 or 128 Hz square wave output with optional interrupt

The device has one secure RTC. The RTC module is accessed via AIPS0 peripheral bridge.

2.2.18 Timer/PWM Module (TPM)

The TPM (Timer/PWM Module) is a 2- to 8-channel timer which supports input capture, output compare, and the generation of PWM signals to control electric motor and power management applications.

This device contains 3 low-power Timer/PWM modules (TPM), which can all be functional in Stop/VLPS mode. In Stop/VLPS mode, the clock source is either external or internal.

2.2.19 Touch Sensing Input (TSI)

The TSI module provides capacitive touch sensing detection with high sensitivity and enhanced robustness.

This device includes one TSI module containing the channels as shown in the following table. In Stop, VLPS, LLS, and VLLSx modes, any one channel can be enabled to be the wake-up source. TSI hardware trigger is from the LPTMR0.

2.2.20 Universal Serial Bus (USB) FS

The USB FS subsystem includes these components:

- Dual-role USB OTG-capable (On-The-Go) controller that supports a full-speed (FS) device or FS/LS host. The module complies with the USB 2.0 specification.
- USB transceiver that includes internal 15 k Ω pulldowns on the D+ and D- lines for host mode functionality and a 1.5 k Ω pullup on the D+ line for device mode functionality.
- A 3.3 V regulator.
- Status detection and wakeup functions for USB data pins, VBUS pin, and OTG ID pin.
- IRC48 with clock recovery block to eliminate the 48MHz crystal. This is available for USB device mode only.

NOTE

USB OTG is not functional in VLPx, VLLSx, and any Stop modes.

NOTE

For the USB FS OTG controller to operate, the minimum system clock frequency is 20 MHz.

2.2.21 Voltage Reference (VREF)

The VREF can be used in applications to provide a reference voltage to external devices, or used internally in the device as a reference to analog peripherals (such as the ADC, DAC, or CMP). The Voltage Reference (VREF) can supply an accurate voltage output that can be trimmed in 0.5 mV steps (for 1.2 V output) or 1.5 mV steps (for 2.1 V output). The voltage reference has 3 operating modes that provide different levels of supply rejection and power consumption.

This device includes a voltage reference (VREF) to supply an accurate 1.2 V or 2.1 V voltage output.

2.2.22 Watchdog (WDOG)

The multiple clock inputs for the WDOG are:

- 1 kHz clock
- bus clock
- 8 MHz or 2 MHz internal reference clock
- external crystal

3 Memory Map

This device contains various memories and memory-mapped peripherals which are located in a 4 GB memory space. The following table lists the system memory and peripheral addresses.

Table 7. Memory Map

Туре	START ADDRESS	END ADDRESS	Function
Code	0x0000_0000	0x0007_FFFF	Program Flash
	0x0008_0000	0x1CFF_FFFF	Reserved
	0x1C00_0000	0x1C00_7FFF	Boot ROM
	0x1C00_8000	0x1CFF_FFFF	Reserved
	0x1D00_0000	0x1D01_FFFF	Reserved
	0x1D02_0000	0x1D03_FFFF	Reserved
	0x1D04_0000	0x1D1F_FFFF	Reserved
	0x1D20_0000	0x1D21_FFFF	Reserved
	0x1D22_0000	0x1D23_FFFF	Reserved
	0x1D24_0000	0x1FFF_7FFF	Reserved
	0x1FFF_8000	0x1FFF_9FFF	SRAM
	0x1FFF_A000	0x1FFF_FFFF	SRAM
SRAM	0x2000_0000	0x2001_1FFF	SRAM
	0x2001_2000	0x2001_7FFF	SRAM
	0x2001_8000	0x2CFF_FFFF	Reserved
	0x2D00_0000	0x2D01_FFFF	Reserved
	0x2D02_0000	0x2D03_FFFF	Reserved
	0x2D04_0000	0x2D0F_FFFF	Reserved
	0x2D10_0000	0x2D10_7FFF	Reserved

Table 7. Memory Map (continued)

Туре	START ADDRESS	END ADDRESS	Function
	0x2D10_4000	0x2D1F_FFFF	Reserved
	0x2D20_0000	0x2D21_FFFF	Reserved
	0x2D22_0000	0x2D23_FFFF	Reserved
	0x2D24_0000	0x2D2F_FFFF	Reserved
	0x2D30_0000	0x2D30_7FFF	Reserved
	0x2D30_4000	0x3FFF_FFFF	Reserved
Peripheral	0x4000_0000	0x4007_FFFF	AIPS0
	0x4008_0000	0x400F_FFFF	AIPS1
	0x4010_0000	0x4107_FFFF	USB SRAM
	0x4108_0000	0x410F_FFFF	Reserved
	0x4110_0000	0x4117_FFFF	Reserved
	0x4118_0000	0x411F_FFFF	Reserved
	0x4120_0000	0x43FF_FFFF	Reserved
	0x4400_0000	0x5FFF_FFFF	BME (AIPS0 and AIPS1) (448 MB)
External RAM	0x6000_0000	0xDFFF_FFFF	Reserved
	0xE000_0000	0xE0FF_FFFF	PPB - Arm SYS Modules
	0xE100_0000	0xE1FF_FFFF	
	0xE200_0000	0xE2FF_FFFF	
	0xE300_0000	0xE3FF_FFFF	
System	0xE400_0000	0xE4FF_FFFF	PPB - Arm DBG Modules
	0xE500_0000	0xE5FF_FFFF	
	0xE600_0000	0xE6FF_FFFF	
	0xE700_0000	0xE7FF_FFFF	
	0xE800_0000	0xE8FF_FFFF	PPB - NXP Modules
	0xE900_0000	0xE9FF_FFFF	
	0xEA00_0000	0xEAFF_FFFF	
	0xEB00_0000	0xEBFF_FFFF	
	0xEC00_0000	0xEFFF_FFFF	Reserved
	0xF000_0000	0xF00F_FFFF	PPB
	0xF010_0000	0xF0FF_FFFF	Reserved
	0xF100_0000	0xF10F_FFFF	Reserved
	0xF110_0000	0xF11F_FFFF	Reserved
	0xF120_0000	0xF7FF_FFFF	Reserved
	0xF800_0000	0xF80F_FFFF	SYS IOPORT
	0xF810_0000	0xF8FF_FFFF	Reserved
	0xF900_0000	0xF90F_FFFF	Reserved
	0xF910_0000	0xFFFF_FFFF	Reserved

4 Pinouts and Packaging

4.1 Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT function is available on each pin.

NOTE

- A pull-up resistor (typically 4.7 K Ω) must be connected to the EMVSIMO_IO pin if this pin is configured as EMV SIM function.
- PTB0/1, PTC3/4, PTD4/5/6/7 have both high drive and normal/low drive capability. PTD4, PTD5, PTD6, PTD7, PTE20, PTE21, PTE22, PTE23 are also fast pins. When a high bit rate is required on the communication interface pins, it is recommended to use fast pins. In case of high bus loading, the high drive strength of high drive pins must be enabled by setting the corresponding PORTx_PCRn[DSE] bit.
- RESET_b pin is open drain with internal pullup device and passive analog filter when configured as RESET pin (default state after POR). When this pin is configured to other shared functions, the passive analog filter is disabled.
- NMI0_b pin has pullup device enabled and passive analog filter disabled after POR.
- SWD_DIO pin has pullup device enabled after POR.
 SWD_CLK has pulldown device enabled after POR.

100 LQFP	64 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
1	1	PTE0	ADC0_SE16	ADC0_SE16	PTE0/ RTC_CLKOUT	LPSPI1_SIN	LPUART1_TX		CMP0_OUT	LPI2C1_SDA	
2	2	PTE1/ LLWU_P0	ADC0_SE17	ADC0_SE17	PTE1/ LLWU_P0	LPSPI1_ SOUT	LPUART1_RX			LPI2C1_SCL	
3	-	PTE2/ LLWU_P1	ADC0_SE18	ADC0_SE18	PTE2/ LLWU_P1	LPSPI1_SCK	LPUART1_ CTS_b			LPI2C1_SDAS	
4	_	PTE3	ADC0_SE19	ADC0_SE19	PTE3	LPSPI1_SIN	LPUART1_ RTS_b			LPI2C1_SCLS	

Pinouts and Packaging

100 LQFP	64 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
5	1	PTE4/ LLWU_P2	DISABLED		PTE4/ LLWU_P2	LPSPI1_PCS0					
6	1	PTE5	DISABLED		PTE5	LPSPI1_PCS1					
7	-	PTE6/ LLWU_P16	DISABLED		PTE6/ LLWU_P16	LPSPI1_PCS2			USB_SOF_ OUT		
8	3	VDD	VDD	VDD							
9	4	VSS	VSS	VSS							
10	5	USB0_DP	USB0_DP	USB0_DP							
11	6	USB0_DM	USB0_DM	USB0_DM							
12	7	VOUT33	VOUT33	VOUT33							
13	8	VREGIN	VREGIN	VREGIN							
14	-	PTE16	ADC0_DP1/ ADC0_SE1	ADC0_DP1/ ADC0_SE1	PTE16	LPSPI0_PCS0	LPUART2_TX	TPM0_CLKIN	LPSPI1_PCS3	FXIO0_D0	
15	ı	PTE17/ LLWU_P19	ADC0_DM1/ ADC0_SE5a	ADC0_DM1/ ADC0_SE5a	PTE17/ LLWU_P19	LPSPI0_SCK	LPUART2_RX	TPM1_CLKIN	LPTMR0_ ALT3/ LPTMR1_ ALT3	FXIO0_D1	
16	-	PTE18/ LLWU_P20	ADC0_DP2/ ADC0_SE2	ADC0_DP2/ ADC0_SE2	PTE18/ LLWU_P20	LPSPI0_ SOUT	LPUART2_ CTS_b	LPI2C0_SDA		FXIO0_D2	
17	ı	PTE19	ADC0_DM2/ ADC0_SE6a	ADC0_DM2/ ADC0_SE6a	PTE19	LPSPI0_SIN	LPUART2_ RTS_b	LPI2C0_SCL		FXIO0_D3	
18	9	PTE20	ADC0_DP0/ ADC0_SE0	ADC0_DP0/ ADC0_SE0	PTE20	LPSPI2_SCK	TPM1_CH0	LPUART0_TX		FXIO0_D4	
19	10	PTE21	ADC0_DM0/ ADC0_SE4a	ADC0_DM0/ ADC0_SE4a	PTE21	LPSPI2_ SOUT	TPM1_CH1	LPUARTO_RX		FXIO0_D5	
20	11	PTE22	ADC0_DP3/ ADC0_SE3	ADC0_DP3/ ADC0_SE3	PTE22	LPSPI2_SIN	TPM2_CH0	LPUART2_TX		FXIO0_D6	
21	12	PTE23	ADC0_DM3/ ADC0_SE7a	ADC0_DM3/ ADC0_SE7a	PTE23	LPSPI2_PCS0	TPM2_CH1	LPUART2_RX		FXIO0_D7	
22	13	VDDA	VDDA	VDDA							
23	14	VREFH/ VREF_OUT	VREFH/ VREF_OUT	VREFH/ VREF_OUT							
24	15	VREFL	VREFL	VREFL							
25	16	VSSA	VSSA	VSSA					_		
26	17	PTE29	CMP1_IN5/ CMP0_IN5/ ADC0_SE4b	CMP1_IN5/ CMP0_IN5/ ADC0_SE4b	PTE29	EMVSIMO_ CLK	TPM0_CH2	TPM0_CLKIN			
27	18	PTE30	DAC0_OUT/ CMP1_IN3/ ADC0_SE23/ CMP0_IN4	DACO_OUT/ CMP1_IN3/ ADCO_SE23/ CMP0_IN4	PTE30	EMVSIMO_ RST	TPM0_CH3	TPM1_CLKIN			
28	19	PTE31	DISABLED		PTE31	EMVSIM0_ VCCEN	TPM0_CH4	TPM2_CLKIN	LPI2C0_ HREQ		
29	-	VSS	VSS	VSS							
30	1	VDD	VDD	VDD							

100 LQFP	64 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
31	20	PTE24	ADC0_SE20	ADC0_SE20	PTE24	EMVSIM0_IO	TPM0_CH0		LPI2C0_SCL		
32	21	PTE25/ LLWU_P21	ADC0_SE21	ADC0_SE21	PTE25/ LLWU_P21	EMVSIM0_PD	TPM0_CH1		LPI2C0_SDA		
33	ı	PTE26	DISABLED		PTE26/ RTC_CLKOUT		TPM0_CH5		LPI2C0_SCLS		USB_CLKIN
34	22	PTA0	SWD_CLK	TSI0_CH1	PTA0	LPUARTO_ CTS_b	TPM0_CH5		LPI2C0_SDAS		SWD_CLK
35	23	PTA1	TSI0_CH2	TSI0_CH2	PTA1	LPUARTO_RX	TPM2_CH0				
36	24	PTA2	TSI0_CH3	TSI0_CH3	PTA2	LPUART0_TX	TPM2_CH1				
37	25	PTA3	SWD_DIO	TSI0_CH4	PTA3	LPI2C1_SCL	TPM0_CH0	LPUART0_ RTS_b			SWD_DIO
38	26	PTA4/ LLWU_P3	NMI0_b	TSI0_CH5	PTA4/ LLWU_P3	LPI2C1_SDA	TPM0_CH1				NMI0_b
39	27	PTA5	DISABLED		PTA5	USB_CLKIN	TPM0_CH2		LPI2C2_ HREQ		
40	_	PTA6	DISABLED		PTA6		TPM0_CH3				
41	_	PTA7	DISABLED		PTA7	LPSPI0_PCS3	TPM0_CH4		LPI2C2_SDAS		
42	28	PTA12	DISABLED		PTA12		TPM1_CH0		LPI2C2_SCL		
43	29	PTA13/ LLWU_P4	DISABLED		PTA13/ LLWU_P4		TPM1_CH1		LPI2C2_SDA		
44	1	PTA14	DISABLED		PTA14	LPSPI0_PCS0	LPUARTO_TX		LPI2C2_SCL		
45	_	PTA15	DISABLED		PTA15	LPSPI0_SCK	LPUARTO_RX				
46	ı	PTA16	DISABLED		PTA16	LPSPI0_ SOUT	LPUARTO_ CTS_b				
47	1	PTA17	ADC0_SE22	ADC0_SE22	PTA17	LPSPI0_SIN	LPUARTO_ RTS_b				
48	30	VDD	VDD	VDD							
49	31	VSS	VSS	VSS							
50	32	PTA18	EXTAL0	EXTAL0	PTA18		LPUART1_RX				
51	33	PTA19	XTAL0	XTAL0	PTA19		LPUART1_TX	TPM1_CLKIN		LPTMR0_ ALT1/ LPTMR1_ ALT1	
52	34	PTA20	RESET_b		PTA20	LPI2C0_SCLS		TPM2_CLKIN			RESET_b
53	35	PTB0/ LLWU_P5	ADC0_SE8/ TSI0_CH0	ADC0_SE8/ TSI0_CH0	PTB0/ LLWU_P5	LPI2C0_SCL	TPM1_CH0			FXIO0_D8	
54	36	PTB1	ADC0_SE9/ TSI0_CH6	ADC0_SE9/ TSI0_CH6	PTB1	LPI2C0_SDA	TPM1_CH1			FXIO0_D9	
55	37	PTB2	ADC0_SE12/ TSI0_CH7	ADC0_SE12/ TSI0_CH7	PTB2	LPI2C0_SCL	TPM2_CH0		LPUARTO_ RTS_b	FXIO0_D10	
56	38	PTB3	ADC0_SE13/ TSI0_CH8	ADC0_SE13/ TSI0_CH8	PTB3	LPI2C0_SDA	TPM2_CH1	LPSPI1_PCS3	LPUARTO_ CTS_b	FXIO0_D11	
57	_	PTB7	DISABLED		PTB7	LPSPI1_PCS1					
58	_	PTB8	DISABLED		PTB8	LPSPI1_PCS0				FXIO0_D12	

Pinouts and Packaging

100 LQFP	64 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
59	_	PTB9	DISABLED		PTB9	LPSPI1_SCK				FXIO0_D13	
60	_	PTB10	DISABLED		PTB10	LPSPI1_PCS0				FXIO0_D14	
61	_	PTB11	DISABLED		PTB11	LPSPI1_SCK		TPM2_CLKIN		FXIO0_D15	
62	39	PTB16	TSI0_CH9	TSI0_CH9	PTB16	LPSPI1_ SOUT	LPUART0_RX	TPM0_CLKIN	LPSPI2_PCS3	FXIO0_D16	
63	40	PTB17	TSI0_CH10	TSI0_CH10	PTB17	LPSPI1_SIN	LPUARTO_TX	TPM1_CLKIN	LPSPI2_PCS2	FXIO0_D17	
64	41	PTB18	TSI0_CH11	TSI0_CH11	PTB18		TPM2_CH0		LPI2C1_ HREQ	FXIO0_D18	
65	42	PTB19	TSI0_CH12	TSI0_CH12	PTB19		TPM2_CH1		LPSPI2_PCS1	FXIO0_D19	
66	_	PTB20	DISABLED		PTB20	LPSPI2_PCS0				CMP0_OUT	
67	_	PTB21	DISABLED		PTB21	LPSPI2_SCK				CMP1_OUT	
68	_	PTB22	DISABLED		PTB22	LPSPI2_ SOUT					
69	_	PTB23	DISABLED		PTB23	LPSPI2_SIN					
70	43	PTC0	ADC0_SE14/ TSI0_CH13	ADC0_SE14/ TSI0_CH13	PTC0	LPSPI2_PCS1		USB_SOF_ OUT	CMP0_OUT		
71	44	PTC1/ LLWU_P6	ADC0_SE15/ TSI0_CH14	ADC0_SE15/ TSI0_CH14	PTC1/ LLWU_P6	LPI2C1_SCL	LPUART1_ RTS_b	TPM0_CH0			
72	45	PTC2	ADC0_SE11/ CMP1_IN0/ TSI0_CH15	ADC0_SE11/ CMP1_IN0/ TSI0_CH15	PTC2	LPI2C1_SDA	LPUART1_ CTS_b	TPM0_CH1			
73	46	PTC3/ LLWU_P7	CMP1_IN1	CMP1_IN1	PTC3/ LLWU_P7	LPSPI0_PCS1	LPUART1_RX	TPM0_CH2	CLKOUT		
74	47	VSS	VSS	VSS							
75	48	VDD	VDD	VDD							
76	49	PTC4/ LLWU_P8	DISABLED		PTC4/ LLWU_P8	LPSPI0_PCS0	LPUART1_TX	TPM0_CH3		CMP1_OUT	
77	50	PTC5/ LLWU_P9	DISABLED		PTC5/ LLWU_P9	LPSPI0_SCK	LPTMR0_ ALT2/ LPTMR1_ ALT2			CMP0_OUT	
78	51	PTC6/ LLWU_P10	CMP0_IN0	CMP0_IN0	PTC6/ LLWU_P10	LPSPI0_ SOUT					
79	52	PTC7	CMP0_IN1	CMP0_IN1	PTC7	LPSPI0_SIN	USB_SOF_ OUT			FXIO0_D20	
80	53	PTC8	CMP0_IN2	CMP0_IN2	PTC8	LPI2C0_SCL	TPM0_CH4			FXIO0_D21	
81	54	PTC9	CMP0_IN3	CMP0_IN3	PTC9	LPI2C0_SDA	TPM0_CH5			FXIO0_D22	
82	55	PTC10	DISABLED		PTC10	LPI2C1_SCL				FXIO0_D23	
83	56	PTC11/ LLWU_P11	DISABLED		PTC11/ LLWU_P11	LPI2C1_SDA					
84	-	PTC12	DISABLED		PTC12	LPI2C1_SCLS		TPM0_CLKIN			
85	-	PTC13	DISABLED		PTC13	LPI2C1_SDAS		TPM1_CLKIN			
86	_	PTC14	DISABLED		PTC14	EMVSIM0_ CLK					

100 LQFP	64 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
87	ı	PTC15	DISABLED		PTC15	EMVSIMO_ RST					
88	_	VSS	VSS	VSS							
89	1	VDD	VDD	VDD							
90	-	PTC16	DISABLED		PTC16	EMVSIMO_ VCCEN					
91	1	PTC17	DISABLED		PTC17	EMVSIM0_IO	LPSPI0_PCS3				
92	-	PTC18	DISABLED		PTC18	EMVSIM0_PD	LPSPI0_PCS2				
93	57	PTD0/ LLWU_P12	DISABLED		PTD0/ LLWU_P12	LPSPI0_PCS0	LPUART2_ RTS_b	TPM0_CH0		FXIO0_D0	
94	58	PTD1	ADC0_SE5b	ADC0_SE5b	PTD1	LPSPI0_SCK	LPUART2_ CTS_b	TPM0_CH1		FXIO0_D1	
95	59	PTD2/ LLWU_P13	DISABLED		PTD2/ LLWU_P13	LPSPI0_ SOUT	LPUART2_RX	TPM0_CH2		FXIO0_D2	
96	60	PTD3	DISABLED		PTD3	LPSPI0_SIN	LPUART2_TX	TPM0_CH3		FXIO0_D3	
97	61	PTD4/ LLWU_P14	DISABLED		PTD4/ LLWU_P14	LPSPI1_PCS0	LPUART2_RX	TPM0_CH4	LPUARTO_ RTS_b	FXIO0_D4	
98	62	PTD5	ADC0_SE6b	ADC0_SE6b	PTD5	LPSPI1_SCK	LPUART2_TX	TPM0_CH5	LPUARTO_ CTS_b	FXIO0_D5	
99	63	PTD6/ LLWU_P15	ADC0_SE7b	ADC0_SE7b	PTD6/ LLWU_P15	LPSPI1_ SOUT	LPUART0_RX			FXIO0_D6	
100	64	PTD7	DISABLED		PTD7	LPSPI1_SIN	LPUARTO_TX			FXIO0_D7	

4.2 K32 L2A Pinouts

The below figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section.

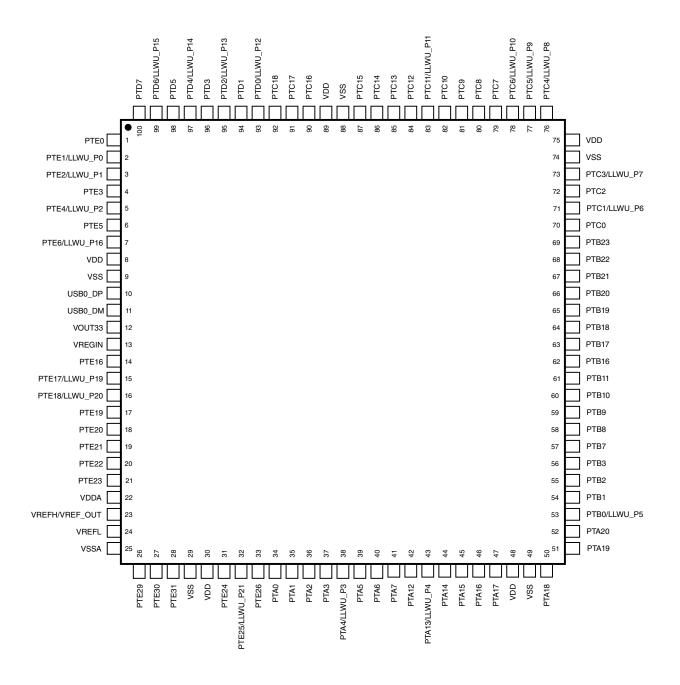


Figure 4. 100 LQFP Pinout Diagram

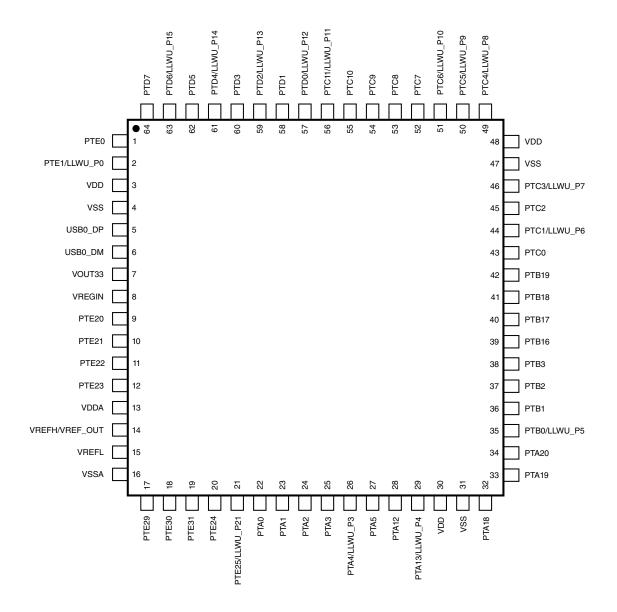


Figure 5. 64 LQFP Pinout Diagram

5 Dimensions

5.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

Ratings

To find a package drawing, go to **nxp.com** and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
64-pin LQFP	98ASS23234W
100-pin LQFP	98ASS23308W

6 Ratings

6.1 Thermal handling ratings

Table 8. Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	- 55	150	°C	1
T _{SDR}	Solder temperature, lead-free	_	260	°C	2

- 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
- 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

6.2 Moisture handling ratings

Table 9. Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level		3		1

^{1.} Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

6.3 ESD handling ratings

Table 10. ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V_{HBM}	Electrostatic discharge voltage, human body model	-2000	+2000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2

Table 10. ESD handling ratings (continued)

Symbol	Description	Min.	Max.	Unit	Notes
I _{LAT}	Latch-up current at ambient temperature of 105 °C	-100	+100	mA	3

- Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM).
- 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
- 3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.

6.4 Voltage and current operating ratings

Table 11. Voltage and current operating ratings

Symbol	Description	Min.	Max.	Unit
V_{DD}	Digital supply voltage	-0.3	3.8	V
I _{DD}	Digital supply current	_	120	mA
V _{IO}	IO pin input voltage	-0.3	V _{DD} + 0.3	V
I _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V_{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V
V _{USB_DP}	USB_DP input voltage	-0.3	3.63	V
V _{USB_DM}	USB_DM input voltage	-0.3	3.63	V
V _{REGIN}	USB regulator input	-0.3	6.0	V

7 General

7.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

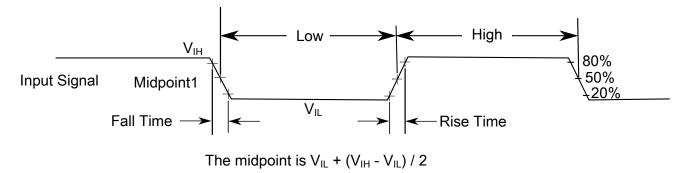


Figure 6. Input signal measurement reference

All digital I/O switching characteristics, unless otherwise specified, assume that the output pins have the following characteristics.

- $C_L = 30 pF loads$
- Slew rate disabled
- Normal drive strength

7.2 Nonswitching electrical specifications

7.2.1 Voltage and current operating requirements

Table 12. Voltage and current operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	3.6	V	
V_{DDA}	Analog supply voltage	1.71	3.6	V	
$V_{DD} - V_{DDA}$	V _{DD} -to-V _{DDA} differential voltage	-0.1	0.1	V	
V _{SS} – V _{SSA}	V _{SS} -to-V _{SSA} differential voltage	-0.1	0.1	V	
V _{IH}	Input high voltage				
	• 2.7 V ≤ V _{DD} ≤ 3.6 V	$0.7 \times V_{DD}$	_	V	
	• 1.71 V ≤ V _{DD} ≤ 2.7 V	$0.75 \times V_{DD}$	_	V	
V _{IL}	Input low voltage				
	• 2.7 V ≤ V _{DD} ≤ 3.6 V	_	$0.35 \times V_{DD}$	V	
	• 1.71 V ≤ V _{DD} ≤ 2.7 V	_	$0.3 \times V_{DD}$	V	
V _{HYS}	Input hysteresis	$0.06 \times V_{DD}$	_	V	
licio	IO pin negative DC injection current — single pin • V _{IN} < V _{SS} -0.3V	-5	_	mA	1

Table 12. Voltage and current operating requirements (continued)

Symbol	Description	Min.	Max.	Unit	Notes
I _{ICcont}	Contiguous pin DC injection current —regional limit, includes sum of negative injection currents of 16 contiguous pins • Negative current injection	-25	_	mA	
V _{ODPU}	Open drain pullup voltage level	V _{DD}	V _{DD}	V	2
V_{RAM}	V _{DD} voltage required to retain RAM	1.2	_	V	

All I/O pins are internally clamped to V_{SS} through a ESD protection diode. There is no diode connection to V_{DD}. If V_{IN} greater than V_{IO_MIN} (= V_{SS}-0.3 V) is observed, then there is no need to provide current limiting resistors at the pads. If this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R = (V_{IO_MIN} - V_{IN})/II_{ICIO}I.

7.2.2 LVD, HVD, and POR operating requirements

Table 13. V_{DD} supply LVD, HVD, and POR operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Falling V _{DD} POR detect voltage	0.8	1.1	1.5	V	_
V_{LVDH}	Falling low-voltage detect threshold — high range (LVDV = 01)	2.48	2.56	2.64	V	_
	Low-voltage warning thresholds — high range					1
V_{LVW1H}	• Level 1 falling (LVWV = 00)	2.62	2.70	2.78	V	
V_{LVW2H}	• Level 2 falling (LVWV = 01)	2.72	2.80	2.88	V	
V_{LVW3H}	• Level 3 falling (LVWV = 10)	2.82	2.90	2.98	V	
V_{LVW4H}	Level 4 falling (LVWV = 11)	2.92	3.00	3.08	V	
V _{HYSH}	Low-voltage inhibit reset/recover hysteresis — high range	_	±60	_	mV	_
V_{LVDL}	Falling low-voltage detect threshold — low range (LVDV=00)	1.54	1.60	1.66	V	_
	Low-voltage warning thresholds — low range					1
V_{LVW1L}	Level 1 falling (LVWV = 00)	1.74	1.80	1.86	v	
V_{LVW2L}	 Level 2 falling (LVWV = 01) 	1.84	1.90	1.96	V	
V_{LVW3L}	 Level 3 falling (LVWV = 10) 	1.94	2.00	2.06	V	
V_{LVW4L}	Level 4 falling (LVWV = 11)	2.04	2.10	2.16	V	
V_{HYSL}	Low-voltage inhibit reset/recover hysteresis — low range	_	±40	_	mV	_
V_{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	_
t _{LPO}	Internal low power oscillator period — factory trimmed	900	1000	1100	μs	_

^{2.} Open drain outputs must be pulled to V_{DD}.

Table 13. V_{DD} supply LVD, HVD, and POR operating requirements (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{HVDL}	High voltage detect threshold — low range (HVDV=0) — Rising	3.4	3.5	3.6	V	2
	High voltage detect threshold — low range (HVDV=0) — Falling	3.35	3.45	3.55		
V _{HVDH}	High voltage detect threshold — high range (HVDV=1) — Rising	3.65	3.75	3.85	V	2
	High voltage detect threshold — high range (HVDV=1) — Falling	3.6	3.7	3.8		
V _{HYSH}	High voltage detect hysteresis — low range (HVDV=0)	_	50	_	mV	_
	High voltage detect hysteresis — high range (HVDV=1)	_	50	_		

^{1.} Rising thresholds are falling threshold + hysteresis voltage

7.2.3 Voltage and current operating behaviors

Table 14. Voltage and current operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{OH}	Output high voltage — Normal drive pad					1
	• $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{I}_{OH} = -5 \text{ mA}$	V _{DD} – 0.5		_	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OH} = -2.5 mA	V _{DD} - 0.5		_	V	
V _{OH}	Output high voltage — High drive pad					1
	• $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{I}_{OH} = -20 \text{ mA}$	V _{DD} – 0.5		_	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OH} = -10 mA	V _{DD} - 0.5		_	V	
I _{OHT}	Output high current total for all ports	_		100	mA	
V _{OL}	Output low voltage — Normal drive pad					1
	• $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{I}_{OL} = 5 \text{ mA}$	_		0.5	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OL} = 2.5 mA	_		0.5	V	
V _{OL}	Output low voltage — High drive pad					1
	• $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{I}_{OL} = 20 \text{ mA}$	_		0.5	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OL} = 10 mA	_		0.5	V	
I _{OLT}	Output low current total for all ports	-		100	mA	
I _{IN}	Input leakage current (per pin) for full temperature range	_		1	μA	2
I _{IN}	Input leakage current (per pin) at 25 °C	-		0.025	μΑ	2

^{2.} The selection of high voltage detect trip voltage is controlled by PMC_HVDSC1[HVDV].

Table 14. Voltage and current operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{IN}	Input leakage current (total all pins) for full temperature range	_		41	μΑ	2
l _{OZ}	Hi-Z (off-state) leakage current (per pin)	_		1	μΑ	
R _{PU}	Internal pullup resistors	20		50	kΩ	3

- 1. PTB0, PTB1, PTC3, PTC4, PTD4, PTD5, PTD6 and PTD7 I/O have both high drive and normal drive capability selected by the associated PORTx_PCRn[DSE] control bit. All other GPIOs are normal drive only. PTD4, PTD5, PTD6, PTD7, PTE20, PTE21, PTE22, and PTE23 are also fast pins.
- 2. Measured at V_{DD} = 3.6 V
- 3. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{SS}

7.2.4 Power mode transition operating behaviors

All specifications in the following table assume this clock configuration in Run mode:

- CPU and system clocks = 48 MHz
- Bus and flash clock = 24 MHz
- SCG configured in FIRC mode; peripheral functional clocks from FIRCDIV3_CLK and USB clock from FIRCDIV1_CLK

Table 15. Power mode transition operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 1.8 V to execution of the first instruction across the operating temperature range of the chip.	_	_	300	μs	1
	• VLLS0 → RUN		188	193	μs	
	• VLLS1 → RUN	_	188	193	μs	
	• VLLS2 → RUN	_	125	130	μs	
	• VLLS3 → RUN	_	125	130	μs	
	• LLS3 → RUN	_	5.5	6.1	μs	
	• LLS2 → RUN	_	5.5	6.1	μs	

Table 15. Power mode transition operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	VLPS → RUN	_	5.5	6.1	μs	
	• STOP → RUN					
		_	5.5	6.1	μs	

^{1.} Normal boot (FTFA_FOPT[LPBOOT]=11).

7.2.5 Power consumption operating behaviors

NOTE

The values in the following table are based on characterization data with a few samples.

NOTE

The actual power consumption measured in the related condition, with certain peripherals running, is the sum of related low power current consumption of the device listed in Table 16 and the related low power mode peripheral adders in Table 17.

NOTE

The maximum values represent characterized results equivalent to the mean plus three times the standard deviation (mean $+ 3\sigma$).

Table 16. Power consumption operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA}	Analog supply current	_	_	See note	mA	1
I _{DD_HSRUN}	High speed run mode current at 96 MHz - all peripheral clocks disabled, code executing from flash, while(1) loop • at 1.8 V		10.0	47.4		2
	• at 3.0 V	_	12.6	17.4	mA	
		_	12.8	17.6	mA	
I _{DD_HSRUN}	High speed run mode current at 96 MHz - all peripheral clocks enabled, code executing from flash, while(1) loop					3
	• at 1.8 V					
	• at 3.0 V	_	15.5	20.4	mA	
		_	15.7	20.6	mA	

Table 16. Power consumption operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_RUN}	Run mode current at 72 MHz - all peripheral clocks disabled, code executing from flash, while(1) loop					4
	• at 1.8 V	_	9.4	13.6	mA	
	• at 3.0 V	_	9.6	13.8	mA	
I _{DD_RUN}	Run mode current at 48 Mhz - all peripheral clocks disabled, code executing from flash, while(1) loop					5
	• at 1.8 V	_	7.3	11.4	mA	
	• at 3.0 V	_	7.4	11.5	mA	
I _{DD_RUN}	Run mode current at 72 MHz - all peripheral clocks enabled, code executing from flash, while(1) loop					6
	• at 1.8 V	_	11.6	15.9	mA	
	• at 3.0 V	_	11.7	16.0	mA	
I _{DD_RUN}	Run mode current at 48 Mhz - all peripheral clocks enabled, code executing from flash, while(1) loop					7
	• at 1.8 V	_	8.9	13.1	mA	
	• at 3.0 V	_	9.1	13.3	mA	
I _{DD_WAIT}	Wait mode high frequency current at 72 MHz, at 3.0 V - all peripheral clocks disabled, while(1) loop	_	7.0	9.0	mA	4
I _{DD_WAIT}	Wait mode current at 3.0 V at 48 Mhz — all peripheral clocks disabled, while(1) loop	_	5.7	10.4	mA	5
I _{DD_VLPR}	Very-low-power run mode current at 3.0 V — all peripheral clocks enabled at 4 MHz, while(1) loop	_	483.7	1011.7	μΑ	8
I _{DD_VLPR}	Very-low-power run mode current at 3.0 V — all peripheral clocks enabled at 8 MHz, while(1) loop	_	557.6	1720.2	μΑ	9
I _{DD_VLPR}	Very-low-power run mode current at 3.0 V — all peripheral clocks disabled at 4 MHz, while(1) loop	_	400.3	926.5	μΑ	10
I _{DD_VLPR}	Very-low-power run mode current at 3.0 V — all peripheral clocks disabled at 8 MHz, while(1) loop	_	415.2	941.1	μΑ	11
I _{DD_VLPW}	Very-low-power wait mode current at 3.0 V — all peripheral clocks disabled at 4 MHz, while(1) loop	_	285.9	1145.6	μΑ	10

Table 16. Power consumption operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_VLPW}	Very-low-power wait mode current at 3.0 V — all peripheral clocks disabled at 8 MHz, while(1) loop	_	415.6	1498.7	μΑ	11
I _{DD_STOP}	Stop mode current at 3.0 V • -40 to 25 °C	_	264.5	320.5	μA	
	• at 50 °C	_	287.0	356.1		
	• at 70 °C	_	325.3	445.4		
	• at 85 °C	_	374.7	590.8		
	• at 105 °C	_	496.7	952.3		
I _{DD_VLPS}	Very-low-power stop mode current at					
	3.0 V • -40 to 25 °C	_	4.2	16.4	μΑ	
	• at 50 °C	_	11.0	35.9		
	• at 70 °C	_	24.0	84.5		
	• at 85 °C	_	44.0	156.2		
	• at 105 °C	_	93.4	300.2		
I _{DD_LLS2}	Low-leakage stop mode 2 current at 3.0					
	V • -40 to 25 °C	_	2.7	5.4	μΑ	
	• at 50 °C	_	4.7	10.6		
	• at 70 °C		8.6	22.7		
	• at 85 °C	_	14.7	49.0		
	• at 105 °C	_	30.4	88.6		
I _{DD_LLS3}	Low-leakage stop mode 3 current at 3.0 V					
	• -40 to 25 °C	_	3.0	5.9	μΑ	
	• at 50 °C	_	5.9	14.5		
	• at 70 °C	_	11.4	32.0		
	• at 85 °C	_	19.7	65.2		
	• at 105 °C	_	40.9	122.0		
I _{DD_VLLS3}	Very-low-leakage stop mode 3 current at 3.0 V					
	• -40 to 25 °C		2.2	5.1	μΑ	
	• at 50 °C	_	4.6	10.9		
	• at 70 °C	_	9.0	24.4		
	• at 85 °C	_	15.9	44.8		
	• at 105 °C	_	33.1	91.0		

Table 16. Power consumption operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_VLLS2}	Very-low-leakage stop mode 2 current					
	at 3.0 V • -40 to 25 °C	_	1.8	3.4	μA	
	• at 50 °C	_	3.3	6.8		
	• at 70 °C	_	6.1	14.5		
	• at 85 °C	_	10.4	26.4		
	• at 105 °C	_	21.6	54.4		
I _{DD_VLLS1}	Very-low-leakage stop mode 1 current at 3.0V					
	• -40 to 25 °C	_	0.65	0.88	μA	
	• at 50 °C	_	1.1	1.6		
	• at 70 °C	_	2.1	3.3		
	• at 85 °C	_	3.6	21.0		
	• at 105 °C	_	8.5	32.2		
I _{DD_VLLS0}	Very-low-leakage stop mode 0 current (SMC_STOPCTRL[PORPO] = 0) at 3.0					
	V • -40 to 25 °C	_	372.0	598	nA	
	• at 50 °C	_	768.6	1331		
	• at 70 °C	_	1734	3038		
	• at 85 °C	_	3291	20575		
	• at 105 °C	_	8025	27560		
I _{DD_VLLS0}	Very-low-leakage stop mode 0 current (SMC_STOPCTRL[PORPO] = 1) at 3.0					12
	V -40 to 25 °C	_	94.1	311	nA	
	• at 50 °C	_	480.9	1024		
	• at 70 °C	_	1416	2760		
	• at 85 °C	_	2970	19574		
	• at 105 °C	_	7642	27325		

- 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.
- 96 MHz core and system clock (DIVCORE_CLK), 24 MHz bus/slow clock(DIVSLOW_CLK), and 24 MHz flash clock. SCG configured as System PLL mode (SCG_HCCR[SCS]=0110), PLL clock source is SOSC from external 8 MHz crystal. All peripheral functional clocks disabled by clearing all xxDIV3, xxDIV2, and xxDIV1 in SCG_SOSCDIV and SCG_SPLLDIV registers. FIRC and SIRC disabled by clearing SCG_FIRCCSR[FIRCEN] and SCG_SIRCCSR[SIRCEN].
- 3. 96 MHz core and system clock (DIVCORE_CLK), 24 MHz bus/slow clock(DIVSLOW_CLK), and 24 MHz flash clock. SCG configured as System PLL mode (SCG_HCCR[SCS]=0110), PLL clock source is SOSC from external 8 MHz crystal. All peripheral functional clocks except USB = 24 MHz from SPLLDIV3_CLK. USB functional clock = 48 MHz from SPLLDIV1_CLK. FIRC and SIRC disabled by clearing SCG_FIRCCSR[FIRCEN] and SCG_SIRCCSR[SIRCEN].

- 4. 72 MHz core and system clock (DIVCORE_CLK), 24 MHz bus/slow clock(DIVSLOW_CLK), and 24 MHz flash clock. SCG configured as System PLL mode (SCG_RCCR[SCS]=0110), PLL clock source is SOSC from external 8 MHz crystal. All peripheral functional clocks disabled by clearing all xxDIV3, xxDIV2, and xxDIV1 in SCG_SOSCDIV and SCG_SPLLDIV registers. FIRC and SIRC disabled by clearing SCG_FIRCCSR[FIRCEN] and SCG_SIRCCSR[SIRCEN].
- 5. 48 MHz core and system clock (DIVCORE_CLK), 24 MHz bus/slow clock(DIVSLOW_CLK), and 24 MHz flash clock. SCG configured as FIRC 48 MHz mode (SCG_RCCR[SCS]=0011). All peripheral functional clocks disabled by clearing all xxDIV3, xxDIV2, and xxDIV1 in SCG_FIRCDIV register. PLL, SOSC, and SIRC disabled by clearing SCG_SPLLCSR[SPLLEN], SCG_SOSCCSR[SOSCEN], and SCG_SIRCCSR[SIRCEN].
- 6. 72 MHz core and system clock (DIVCORE_CLK), 24 MHz bus/slow clock(DIVSLOW_CLK), and 24 MHz flash clock. SCG configured as System PLL mode (SCG_RCCR[SCS]=0110), PLL clock source is SOSC from external 8 MHz crystal. All peripheral functional clocks except USB = 24 MHz from SPLLDIV3_CLK. USB functional clock = 48 MHz from SPLLDIV1_CLK. FIRC and SIRC disabled by clearing SCG_FIRCCSR[FIRCEN] and SCG_SIRCCSR[SIRCEN].
- 48 MHz core and system clock (DIVCORE_CLK), 24 MHz bus/slow clock(DIVSLOW_CLK), and 24 MHz flash clock. SCG configured as FIRC 48 MHz mode (SCG_RCCR[SCS]=0011). All peripheral functional clocks except USB = 24 MHz from FIRCDIV3_CLK. USB functional clock = 48 MHz from FIRCDIV1_CLK. PLL, SOSC, and SIRC disabled by clearing SCG_SPLLCSR[SPLLEN], SCG_SOSCCSR[SOSCEN], and SCG_SIRCCSR[SIRCEN].
- 8. 4 MHz core and system clock (DIVCORE_CLK), 1 MHz bus/slow clock(DIVSLOW_CLK), and 1 MHz flash clock. SCG configured as SIRC 8 MHz mode (SCG_VCCR[SCS]=0010). All peripheral functional clocks except USB = 1M Hz from SIRCDIV3_CLK. USB clock disabled. PLL, SOSC, and FIRC disabled by clearing SCG_SPLLCSR[SPLLEN], SCG_SOSCCSR[SOSCEN], and SCG_FIRCCSR[FIRCEN].
- 8 MHz core and system clock (DIVCORE_CLK), 1 MHz bus/slow clock(DIVSLOW_CLK), and 1 MHz flash clock. SCG configured as SIRC 8 MHz mode (SCG_VCCR[SCS]=0010). All peripheral functional clocks except USB = 1M Hz from SIRCDIV3_CLK. USB clock disabled. PLL, SOSC, and FIRC disabled by clearing SCG_SPLLCSR[SPLLEN], SCG_SOSCCSR[SOSCEN], and SCG_FIRCCSR[FIRCEN].
- 10. 4 MHz core and system clock (DIVCORE_CLK), 1 MHz bus/slow clock(DIVSLOW_CLK), and 1 MHz flash clock. SCG configured as SIRC 8 MHz mode (SCG_VCCR[SCS]=0010). All peripheral functional clocks disabled by clearing all xxDIV3, xxDIV2, and xxDIV1 in SCG_SIRCDIV register. PLL, SOSC, and FIRC disabled by clearing SCG_SPLLCSR[SPLLEN], SCG_SOSCCSR[SOSCEN], and SCG_FIRCCSR[FIRCEN].
- 11. 8 MHz core and system clock (DIVCORE_CLK), 1 MHz bus/slow clock(DIVSLOW_CLK), and 1 MHz flash clock. SCG configured as SIRC 8 MHz mode (SCG_VCCR[SCS]=0010). All peripheral functional clocks disabled by clearing all xxDIV3, xxDIV2, and xxDIV1 in SCG_SIRCDIV register. PLL, SOSC, and FIRC disabled by clearing SCG_SPLLCSR[SPLLEN], SCG_SOSCCSR[SOSCEN], and SCG_FIRCCSR[FIRCEN].
- 12. No brownout

Table 17. Low power mode peripheral adders — typical value

Symbol	Description		•	Tempera	ature (°C	;)		Unit
		-40	25	50	70	85	105	
lerefsten8MHz	External 8 MHz crystal clock adder with System OSC. Measured by entering VLPS mode with the crystal enabled (SCG_SOSCCFG[RANGE] = 10, SCG_SOSCCFG[HGO] = 0, SCG_SOSCCFG[EREFS] = 1, and SC2P/SC4P/SC8P = 0).	402.9	462.1	477.5	492	506.2	530.4	uA
I _{EREFSTEN32KHz}	External 32 kHz crystal clock adder with System OSC by means of SCG_SOSCCFG[RANGE] = 01, SCG_SOSCCFG[HGO] = 0, SCG_SOSCCFG[EREFS] = 1, and SC2P/SC4P/SC8P = 0. Measured by entering all the following modes with the crystal enabled: • VLLS1 • VLLS3	373.9 568.4 582.8	539.2 552.6 565.0	612.3 650.8 615.5	644.9 757.9 797.1	523.7 995.6 968.5	1000 1400 1700	nA

Table 17. Low power mode peripheral adders — typical value (continued)

Symbol	Description	Temperature (°C)					Uni	
		-40	25	50	70	85	105	
	• LLS3	472.4	635.2	776.9	425.6	1500	2800	
	• VLPS	528.0	534.1	636.6	9600	20300	40900	
	• STOP							
I _{LPTMR}	LPTMR peripheral adder measured by placing the device in VLLS1 mode with LPTMR enabled using LPO clock.	151.0	7.7	21.8	7.6	174.0	31.0	nA
I _{CMP}	CMP peripheral adder measured by placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption.	18.8	19.6	19.9	20.0	20.4	20.5	μΑ
I _{RTC}	RTC peripheral adder measured by placing the device in VLLS1 mode and the RTC ALARM set for 1 minute. Includes selected clock source power consumption. • OSC32KCLK (32KHz external crystal) • LPO (internal 1K Hz Low Power Oscillator)	116.0 35.0	1400 1400	1400 1400	1500 1600	1500 1400	120.0	nA
I _{LPUART}	LPUART peripheral adder measured by placing the device in STOP mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption. • Slow IRC clock from SCG (8 MHz internal reference clock) • OSCERCLK (8 MHz external	85.7 41.2	89.4 43.5	87.3 38.7	88.4 36.8	85.3 39.6	86.6 37.0	μΑ
I _{LPSPI}	crystal) LPSPI peripheral adder measured by placing the device in VLPS mode with selected clock source, LPSPI is configured as master mode with bit rate of 4 Mbps. Includes selected clock source power consumption. • Slow IRC clock from SCG (8 MHz internal reference clock) • OSCERCLK (8 MHz external crystal)	69.4 431.9	66.7 489.9	65.9 503.5	66.1 518.6	65.8 533.0	66.0 557.0	μΑ
I _{TPM}	TPM peripheral adder measured by placing the device in STOP mode with selected clock source configured for output compare generating 100 Hz clock signal. No load is placed on the I/O generating the clock signal. Includes selected clock source and I/O switching currents.	80.7 35.5	84.2 37.2	84.2 37.3	84.4 37.1	84.8 37.7	86.3 37.7	μΑ

Table 17. Low power mode peripheral adders — typical value (continued)

Symbol	Description		•	Tempera	ature (°C	;)		Unit
		-40	25	50	70	85	105	
	Slow IRC clock from SCG (8 MHz internal reference clock) OSCERCLK (8 MHz external crystal)							
I _{LPI2C}	LPI2C peripheral adder measured by placing the device in VLPS mode with selected clock source, LPI2C is configured as master, and bit rate is 400 Kbps. Includes selected clock source power consumption. • Slow IRC clock from SCG (8 MHz internal reference clock) • OSCERCLK (8 MHz external crystal)	69.7 582.9	66.7 597.9	66.9 610.8	67.6 623.8	68.2 637.0	68.2 660.2	μА
I _{BG}	Bandgap adder when BGEN bit is set and device is placed in VLPS mode. • Bandgap buffer disabled	96.8	95.4	96.4	98.2	98.2	98.5	μΑ
	Bandgap buffer enabled	137.5	129.6	133.0	135.5	136.9	139.6	
I _{ADC}	ADC peripheral adder combining the measured values at V _{DD} and V _{DDA} by placing the device in STOP mode. ADC is configured for low power mode using the ADC asynchronous clock (ADACK) and continuous conversions.	372.9	380.5	384.0	388.3	392.2	394.6	μА
I_{WDOG}	WDOG peripheral adder measured by placing the device in STOP mode, WDOG is configured to time out at 1 second. Includes selected clock source power consumption.	60.0	60.5	60.0	60.0	74.7	70.0	μА
	Slow IRC clock from SCG (8 MHz internal reference clock)	68.8	68.5	69.2	69.9	71.7	72.6	
	OSCERCLK (8 MHz external crystal)	11.2		10.1	10.2	10.5	10.7	
	LPO (internal 1 kHz Lower Power Oscillator)	56.0	57.1	58.6	58.5	58.6	60.0	
I _{SIRC_8MHz}	SIRC adder when SIRC is configured to 8 MHz. Measured by entering VLPS mode with 8 MHz IRC enabled, and SIRCDIV1, SIRCDIV2, SIRCDIV3 =000.	67.2	63.0	63.3	63.2	63.3	63.6	μА
ISIRC_2MHz	SIRC adder when SIRC is configured to 2 MHz. Measured by entering STOP or VLPS mode with 2 MHz IRC enabled, and SIRCDIV1, SIRCDIV2, SIRCDIV3 =000.	22.3	21.2	21.4	21.5	21.7	21.4	μA

7.2.5.1 Diagram: Typical IDD_RUN operating behavior

The following data was measured under these conditions:

- SCG is configured as SPLL mode with SOSC as the clock source for RUN mode current measurement, and as SIRC mode for VLPR mode current measurement
- USB regulator disabled
- No GPIOs toggled
- Code execution from flash with cache enabled
- For the ALLOFF curve, all peripheral clocks are disabled except FTFA
- For the ALLON curve, all peripheral clocks are enabled as specified in notes of Power consumption operating behaviors.

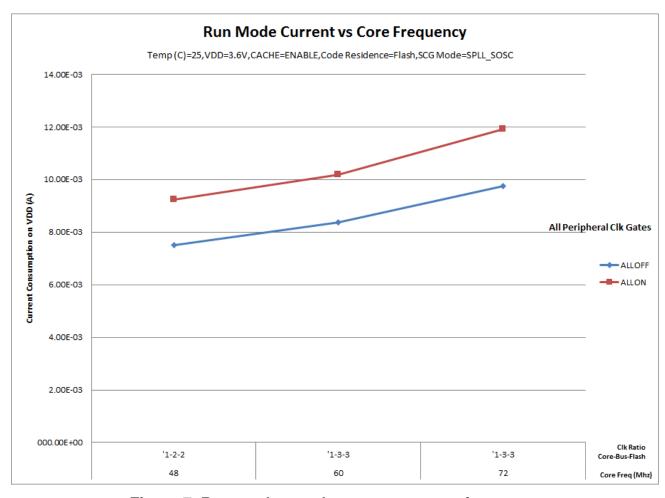


Figure 7. Run mode supply current vs. core frequency

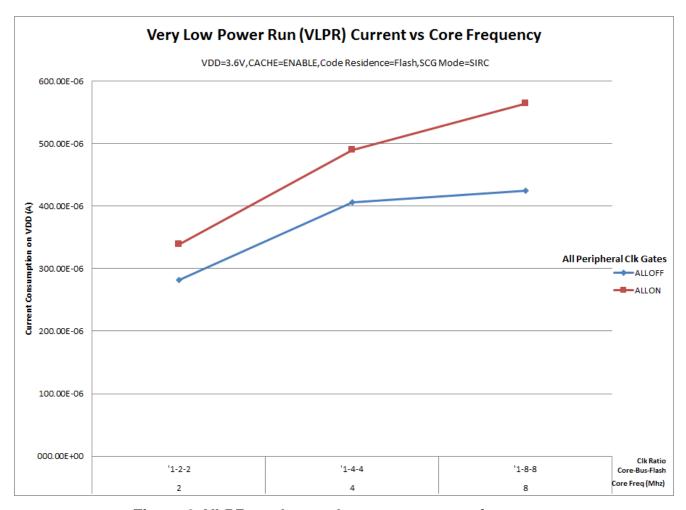


Figure 8. VLPR mode supply current vs. core frequency

7.2.6 EMC radiated emissions operating behaviors Table 18. EMC radiated emissions operating behaviors

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	18	dΒμV	1, 2
V _{RE2}	Radiated emissions voltage, band 2	50-150	21	dΒμV	
V _{RE3}	Radiated emissions voltage, band 3	150-500	21	dΒμV	
V _{RE4}	Radiated emissions voltage, band 4	500-1000	24	dΒμV	
V _{RE_IEC}	IEC level	0.15-1000	L	_	2, 3

Determined according to IEC Standard 61967-2 (and SAE J1752/3), Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.

- 2. V_{DD} = 3.3 V, V_{REGIN} = 5V, T_A = 25 °C, f_{OSC} = 8 MHz (crystal), f_{SYS_CORE} = 96 MHz, f_{BUS} = 24 MHz
- 3. IEC/SAE level maximum: L≤24dB mV

7.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.nxp.com.
- 2. Perform a keyword search for "EMC design."

7.2.8 Capacitance attributes

Table 19. Capacitance attributes

S	ymbol	Description	Min.	Max.	Unit
	C _{IN}	Input capacitance	_	7	pF

7.3 Switching specifications

7.3.1 Device clock specifications

Table 20. Device clock specifications

Symbol	Description	Min.	Max.	Unit	Run mode ¹
	Normal run mode			•	
f _{SYS}	System and core clock (DIVCORE_CLK)	_	96	MHz	High speed run mode
		_	72	MHz	Normal speed run mode
		_	8	MHz	VLPR mode
f _{BUS}	Bus clock/Slow clock (DIVSLOW_CLK)	_	24	MHz	High speed run mode and Normal speed run mode
			1	MHz	VLPR mode
f _{FLASH}	Flash clock	_	24	MHz	High speed run mode and Normal speed run mode
		_	1	MHz	VLPR mode
f _{LLWU}	LLWU clock		1	KHz	All modes
f _{RCM}	RCM clock		1	KHz	All modes

Table 20. Device clock specifications (continued)

Symbol	Description	Min.	Max.	Unit	Run mode ¹
f _{WDOG} , f _{TSI}	WDOG clock, TSI clock	_	24	MHz	High speed run mode and Normal speed run mode
		_	1	MHz	VLPR mode
f _{ADC}	ADC clock	_	24 ²	MHz	High speed run mode and Normal speed run mode
		_	8	MHz	VLPR mode
f _{RTC}	RTC clock	_	32.768	KHz	All modes
f _{TSTMR}	TSTMR clock	_	1	MHz	All modes
f_{LPTMR}	LPTMR clock	_	24	MHz	All modes
f _{TPM} , f _{LPIT} , f _{LPSPI} , f _{LPI2C} ,	TPM clock, LPIT clock, LPSPI clock, LPI2C clock, LPUART clock, EMVSIM clock, FlexIO clock	_	96	MHz	High speed run mode
f _{LPUART} , f _{EMVSIM} , f _{FLEXIO}		_	72	MHz	Normal speed run mode
IFLEXIO		_	8	MHz	VLPR mode
f _{USB}	USB clock	_	48	MHz	High speed run mode and Normal speed run mode
		_	0	MHz	VLPR mode
ferclk	External reference clock	_	48	MHz	High speed run mode and Normal speed run mode
			16	MHz	VLPR mode
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (SCG_SOSCCFG[RANGE]=11)	_	32	MHz	High speed run mode and Normal speed run mode
		_	16	MHz	VLPR mode
f _{CAU} , f _{GPIO}	CAU clock, GPIO clock	_	96	MHz	High speed run mode
		_	72	MHz	Normal speed run mode
		_	8	MHz	VLPR mode

^{1.} Normal run mode, High speed run mode, and VLPR mode.

7.3.2 General switching specifications

These general-purpose specifications apply to all signals configured for GPIO, LPI2C, and LPUART signals.

^{2.} See ADC electrical specifications

Table 21. General switching specifications

Description	Min.	Max.	Unit	Notes
GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5	_	Bus clock cycles	1
GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) — Asynchronous path	100	_	ns	
GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled) — Asynchronous path	50	_	ns	
External RESET and NMI pin interrupt pulse width — Asynchronous path	100	_	ns	2
GPIO pin interrupt pulse width — Asynchronous path	16	_	ns	2
Port rise/fall time				
Normal drive pins				3
 2.7 ≤ VDD ≤ 3.6 V Fast slew rate 	_	3	ns	
Slow slew rate	_	10.5		
 1.71 ≤ VDD ≤ 2.7 V Fast slew rate 	_	4		
Slow slew rate	_	17		
High drive pins				4
Normal/low drive enabled		2.5	ns	
• 2.7 ≤ VDD ≤ 3.6 V	_	10.5	115	
Fast slew rateSlow slew rate	_	10.5		
• 1.71 ≤ VDD ≤ 2.7 V	_	4		
Fast slew rate	_	17		
Slow slew rate				
High drive enabled				
 2.7 ≤ VDD ≤ 3.6 V Fast slew rate 	_	2		
Slow slew rate	_	11		
• 1.71 ≤ VDD ≤ 2.7 V		2.5		
Fast slew rate	_			
Slow slew rate	_	17		
Normal drive fast pins				5
• 2.7 ≤ VDD ≤ 3.6 V	_	0.5	ns	
Fast slew rate		10	110	
 Slow slew rate 1.71 ≤ VDD ≤ 2.7 V 	_			
• 1.71 ≤ VDD ≤ 2.7 V • Fast slew rate	_	0.75		
Slow slew rate	_	19		
High drive fast pins				6
Normal/low drive enabled	_	0.5	ne	
• 2.7 ≤ VDD ≤ 3.6 V	_	0.5	ns	

Table 21. General switching specifications

Description	Min.	Max.	Unit	Notes
Fast slew rate	_	11		
 Slow slew rate 1.71 ≤ VDD ≤ 2.7 V Fast slew rate Slow slew rate 	_ _	1 19		
High drive enabled • 2.7 ≤ VDD ≤ 3.6 V • Fast slew rate	_	2		
 Slow slew rate 1.71 ≤ VDD ≤ 2.7 V Fast slew rate 	_	13		
Slow slew rate	_	21		

- 1. The synchronous and asynchronous timing must be met.
- 2. This is the shortest pulse that is guaranteed to be recognized.
- 3. For high drive pins with high drive enabled, load is 75pF; other pins load (normal/low drive) is 25pF. Fast slew rate is enabled by clearing PORTx_PCRn[SRE].
- 4. High drive pins are PTB0,PTB1, PTC3, and PTC4. High drive capability is enabled by setting PORTx_PCRn[DSE].
- 5. Normal drive fast pins are PTE20, PTE21, PTE22, and PTE23.
- 6. High drive fast pins are PTD4, PTD5, PTD6, and PTD7. High drive capability is enabled by setting PORTx_PCRn[DSE].

NOTE

Only PTA4, PTA20, and PTB19 pins have analog/passive filter.

7.4 Thermal specifications

7.4.1 Thermal operating requirements

Table 22. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
TJ	Die junction temperature	-40	125	°C	
T _A	Ambient temperature	-40	105	°C	1

1. Maximum T_A can be exceeded only if the user ensures that T_J does not exceed the maximum. The simplest method to determine T_J is: $T_J = T_A + R_{\theta JA} \times$ chip power dissipation.

7.4.2 Thermal attributes

Table 23. Thermal attributes

Board type ¹	Symbol	Description	100 LQFP	64 LQFP	Unit	Notes
Four-layer (2s2p)	$R_{\theta JA}$	Thermal resistance, junction to ambient (natural convection)	51	44	°C/W	
Four-layer (2s2p)	$\Psi_{ m JT}$	Thermal characterization parameter, junction to package top outside center (natural convection)	4	1.2	°C/W	2

^{1.} Thermal test board meets JEDEC specification for this package (JESD51-9).

8 Peripheral operating requirements and behaviors

8.1 Core modules

8.1.1 SWD electricals

Table 24. SWD full voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
J1	SWD_CLK frequency of operation			
	Serial wire debug	0	25	MHz
J2	SWD_CLK cycle period	1/J1	_	ns
J3	SWD_CLK clock pulse width			
	Serial wire debug	20	_	ns
J4	SWD_CLK rise and fall times	_	3	ns
J9	SWD_DIO input data setup time to SWD_CLK rise	10	_	ns
J10	SWD_DIO input data hold time after SWD_CLK rise	0	_	ns
J11	SWD_CLK high to SWD_DIO data valid	_	32	ns
J12	SWD_CLK high to SWD_DIO high-Z	5	_	ns

^{2.} Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air).

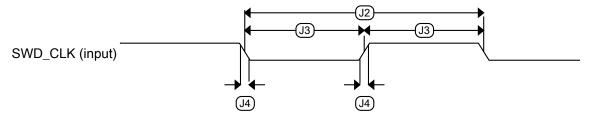


Figure 9. Serial wire clock input timing

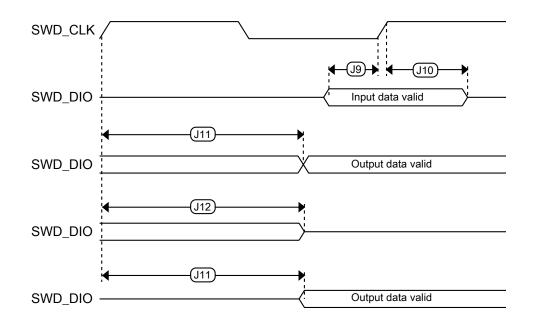


Figure 10. Serial wire data timing

8.2 System modules

There are no specifications necessary for the device's system modules.

8.3 Clock modules

8.3.1 System Clock Generation (SCG) specifications

8.3.1.1 Fast IRC (FIRC) specifications Table 25. Fast IRC (FIRC) specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{dd_firc}	Supply voltage	1.71	_	3.6	V	
F _{firc_target}	IRC target frequency (nominal)	_		_	MHz	1
	Trim range = 00		48			
	Trim range = 01		52			
	Trim range = 10		56			
	Trim range = 11		60			
Δf _{firc_ol_lv}	Open loop total deviation of FIRC frequency at low voltage (VDD=1.71V-1.89V) over full temperature • Regulator disable (SCG_FIRCCSR[FIRCREGOFF]=1) • Regulator enable	_	±0.5	±1.5	%F _{firc_targ}	2
Λf	(SCG_FIRCCSR[FIRCREGOFF]=0) Open loop total deviation of FIRC frequency at high		±0.5	±1.5	0/ E	2, 3
Δf _{firc_ol_hv}	voltage (VDD=1.89V-3.6V) over full temperature	_	±0.5	±1.5	%F _{firc_targ}	2, 3
	Regulator enable (SCG_FIRCCSR[FIRCREGOFF]=0)					
Δf _{firc_cl}	Fine Trim Resolution	_	_	± 0.1	%F _{firc_targ}	
J _{cyc_firc}	Period Jitter (RMS)	_	35	150	ps	
T _{st_firc}	Startup time	_	2	3	μs	4
I _{dd_fire}	Current consumption: • 48 MHz	_	350	400	μA	
	• 52 MHz	_	360	420		
	• 56 MHz	_	380	460		
	• 60 MHz	_	400	500		

- 1. FIRC trim range is programmable via SCG_FIRCCFG[RANGE].
- 2. For temperatures -40 to 85 °C, the maximum value is $\pm 1\%$, characterized on a few samples of different slots. This value is not guaranteed by production.
- 3. Closed loop operation of the FIRC is only usable for USB device operation; it is not usable for USB host operation. It is enabled by configuring for USB Device, selecting FIRC as USB clock source, and enabling the clock recover function (USBn_CLK_RECOVER_CTRL[CLOCK_RECOVER_EN]=1, SCG_FIRCCSR[FIRCREGOFF]=0).
- 4. FIRC startup time is defined as the time between clock enablement and clock availability for system use.

8.3.1.2 Slow IRC (SIRC) specifications Table 26. Slow IRC specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_sirc2M}	Supply current in 2 MHz mode	_	14	17	μΑ	

Table 26. Slow IRC specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_sirc8M}	Supply current in 8 MHz mode	_	25	35	μA	
f _{sirc}	Output frequency	_	2	_	MHz	1
		_	8	_		
Δf_{sirc}	Total deviation of trimmed frequency over voltage					2
	and temperature0 to 105 °C	_	_	±3	%f _{sirc}	
	• -40 to 0 °C	_	_	±4		
Δf_{sirc_t}	Total deviation of trimmed frequency over temperature @V _{DD} =3.3V	_	_	±3	%f _{sirc}	2
T _{su_sirc}	Startup time	_	_	12.5	μs	
J _{cyc_sirc}	Period jitter (RMS) • f _{sirc} = 2 MHz	_	350	_	ps	3
	• f _{sirc} = 8 Mhz	_	100	_		

- 1. Selection of output frequency for Slow IRC between 2 MHz and 8 MHz is controlled by SCG_ SIRCCFG[RANGE].
- 2. Maximum deviation occurs at cold temperature (-40 °C) and hot temperature (105 °C).
- 3. This specification was obtained using a NXP developed PCB. Jitter is dependent on the noise characteristics of each PCB and results will vary.

8.3.1.3 System PLL specifications Table 27. System PLL Specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{pll_ref}	PLL reference frequency range	8	_	16	MHz	
f _{vcoclk_2x}	VCO output frequency	180	_	288	MHz	
f _{vcoclk}	PLL output frequency	90	_	144	MHz	
I _{pli}	PLL operating current — VCO @ 180 MHz (f osc_hi_2 = 10 MHz , f pll_ref = 10 MHz ,VDIV multiplier = 18)	_	1.1	_	mA	1
	PLL operating current — VCO @ 288 MHz (f osc_hi_2 = 32 MHz , f pll_ref = 8 MHz , VDIV multiplier = 36)	_	2.0	_		
J _{cyc_pll}	PLL period jitter (RMS) • f _{vco} = 180 MHz	_	120	_	ps	2
	• f _{vco} = 288 MHz	_	80	_		
J _{acc_pll}	PLL accumilated jitter over 1 μs (RMS) • f _{vco} = 180 MHz	_	600	_	ps	2
	• f _{vco} = 288 MHz	_	300	_		
D _{unl}	Lock exit frequency tolerance	±4.47	_	±5.97	%	
t _{pll_lock}	Lock detector detection time	_	_	150 × 10 ⁻⁶	s	3

Table 27. System PLL Specifications

	Symbol	Description	Min.	Тур.	Max.	Unit	Notes
Ī					+ 1075(1/		
					f _{pll_ref})		

- 1. Excludes any oscillator currents that are also consuming power while PLL is in operation.
- 2. This specification was obtained using an NXP developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
- 3. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled to PLL enabled. If a crystal/resonator is being used as the reference, this specification assumes it is already running.

8.3.2 Oscillator electrical specifications

8.3.2.1 Oscillator DC electrical specifications Table 28. Oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V_{DD}	Supply voltage	1.71	_	3.6	V	
I _{DDOSC}	Supply current — low-power mode (HGO=0)					1
	• 32 kHz	_	500	_	nA	
	• 4 MHz	_	200	_	μA	
	• 8 MHz (RANGE=01)	_	300	_	μΑ	
	• 16 MHz	_	950	_	μΑ	
	• 24 MHz	_	1.2	_	mA	
	• 32 MHz	_	1.5	_	mA	
I _{DDOSC}	Supply current — high gain mode (HGO=1)					1
	• 32 kHz	_	25	_	μA	
	• 4 MHz	_	400	_	μA	
	• 8 MHz (RANGE=01)	_	500	_	μA	
	• 16 MHz	_	2.5	_	mA	
	• 24 MHz	_	3	_	mA	
	• 32 MHz	_	4	_	mA	
C _x	EXTAL load capacitance	_	_	_		2, 3
C _y	XTAL load capacitance	_	_	_		2, 3
R _F	Feedback resistor — low-frequency, low-power mode (HGO=0)	_	_	_	ΜΩ	2, 4
	Feedback resistor — low-frequency, high-gain mode (HGO=1)	_	10	_	ΜΩ	

Table 28. Oscillator DC electrical specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	Feedback resistor — high-frequency, low-power mode (HGO=0)	_	_	_	ΜΩ	
	Feedback resistor — high-frequency, high-gain mode (HGO=1)	_	1	_	ΜΩ	
R _S	Series resistor — low-frequency, low-power mode (HGO=0)	_	_	_	kΩ	
	Series resistor — low-frequency, high-gain mode (HGO=1)	_	200	_	kΩ	
	Series resistor — high-frequency, low-power mode (HGO=0)	_	_	_	kΩ	
	Series resistor — high-frequency, high-gain mode (HGO=1)					
		_	0	_	kΩ	
V _{pp} ⁵	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)	_	1.0	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	

- 1. V_{DD} =3.3 V, Temperature =25 °C
- 2. See crystal or resonator manufacturer's recommendation
- 3. C_x , C_y can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For all other cases external capacitors must be used.
- 4. When low power mode is selected, R_F is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

8.3.2.2 Oscillator frequency specifications Table 29. Oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low-frequency range (SCG_SOSCCFG[RANGE]=01)	32	_	40	kHz	
	Oscillator crystal or resonator frequency — medium frequency range (SCG_SOSCCFG[RANGE]=10)	1	_	8	MHz	

Table 29. Oscillator frequency specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency range (SCG_SOSCCFG[RANGE]=11)	8	_	32	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)	_	_	48	MHz	1, 2
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)	_	750	_	ms	3, 4, 5
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)	_	250	_	ms	
	Crystal startup time — 8 MHz medium frequency (SCG_SOSCCFG[RANGE]=11), low-power mode (HGO=0)	_	0.6	_	ms	
	Crystal startup time — 8 MHz medium frequency (SCG_SOSCCFG[RANGE]=10), high-gain mode (HGO=1)	_	1	_	ms	

- 1. Other frequency limits may apply when external clock is being used as a reference for the PLL.
- 2. When transitioning to system PLL mode, restrict the frequency of the input clock so that, when it is divided by PREDIV, it remains within the limits of the PLL reference input clock frequency.
- 3. Proper PC board layout procedures must be followed to achieve specifications.
- 4. Crystal startup time is defined as the time between the oscillator being enabled and the SCG_SOSCCSR[SOSCVLD] being set.
- 5. Crystal startup time is dependent on external crystal and/or resonator and loading capacitance as well as series resistance.

8.4 Memories and memory interfaces

8.4.1 Flash electrical specifications

This section describes the electrical characteristics of the flash memory module.

8.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

Table 30. Flash program/erase timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{hvpgm4}	Longword Program high-voltage time	_	7.5	18	μs	_
t _{hversscr}	Sector Erase high-voltage time	_	13	113	ms	1

Table 30. Flash program/erase timing specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{hversblk128k}	Erase Block high-voltage time for 128 KB	_	52	452	ms	1
t _{hversall}	Erase All high-voltage time	_	104	904	ms	1

^{1.} Maximum time based on expectations at cycling end-of-life.

8.4.1.2 Flash timing specifications — commands Table 31. Flash command timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	Read 1s Block execution time					1
t _{rd1blk128k}	128 KB program flash	_	_	1.7	ms	
t _{rd1sec1k}	Read 1s Section execution time (flash sector)	_	_	60	μs	1
t _{pgmchk}	Program Check execution time	_	_	45	μs	1
t _{rdrsrc}	Read Resource execution time	_	_	30	μs	1
t _{pgm4}	Program Longword execution time	_	65	145	μs	_
	Erase Flash Block execution time					2
t _{ersblk128k}	128 KB program flash	_	88	600	ms	
t _{ersscr}	Erase Flash Sector execution time	_	14	114	ms	2
t _{rd1all}	Read 1s All Blocks execution time	_	_	1.8	ms	1
t _{rdonce}	Read Once execution time	_	_	25	μs	1
t _{pgmonce}	Program Once execution time	_	65	_	μs	_
t _{ersall}	Erase All Blocks execution time	_	175	1300	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time	_	_	30	μs	1

^{1.} Assumes 25 MHz flash clock frequency.

8.4.1.3 Flash high voltage current behaviors Table 32. Flash high voltage current behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DD_PGM}	Average current adder during high voltage flash programming operation	_	2.5	6.0	mA
I _{DD_ERS}	Average current adder during high voltage flash erase operation	_	1.5	4.0	mA

^{2.} Maximum times for erase parameters based on expectations at cycling end-of-life.

8.4.1.4 Reliability specifications

Table 33. Flash reliability specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
t _{nvmretp10k}	Data retention after up to 10 K cycles	5	50	_	years	_
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	100	_	years	_
n _{nvmcycp}	Cycling endurance	10 K	50 K	_	cycles	2

- Typical data retention values are based on measured response accelerated at high temperature and derated to a
 constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in
 Engineering Bulletin EB619.
- 2. Cycling endurance represents number of program/erase cycles at −40 °C ≤ T_i ≤ 125 °C.

8.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

8.6 Analog

8.6.1 ADC electrical specifications

8.6.1.1 16-bit ADC operating conditions Table 34. 16-bit ADC operating conditions

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V_{DDA}	Supply voltage	Absolute	1.71	_	3.6	V	_
ΔV_{DDA}	Supply voltage	Delta to V _{DD} (V _{DD} – V _{DDA})	-100	0	+100	mV	2
ΔV_{SSA}	Ground voltage	Delta to V _{SS} (V _{SS} – V _{SSA})	-100	0	+100	mV	2
V _{ADIN}	Input voltage	16-bit differential mode	VREFL	_	31/32 × VREFH	V	_
		All other modes	VREFL		VREFH		
C _{ADIN}	Input	16-bit mode	_	8	10	pF	_
	capacitance	8-bit / 10-bit / 12-bit modes	_	4	5		
R _{ADIN}	Input series resistance		_	2	5	kΩ	_
R _{AS}	Analog source	16-bit modes					3, 4
	resistance		_	_	0.5	kΩ	

Table 34. 16-bit ADC operating conditions (continued)

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
		• f _{ADCK} > 8 MHz	_	_	1	kΩ	
		• f _{ADCK} = 4–8 MHz	_	_	2	kΩ	
		• f _{ADCK} < 4 MHz					
		13-bit / 12-bit modes • f _{ADCK} > 16 MHz • f _{ADCK} > 8 MHz • f _{ADCK} = 4–8 MHz • f _{ADCK} < 4 MHz 11-bit / 10-bit modes	- - -	_ _ _ _	0.5 1 2 5	kΩ kΩ kΩ	
		• f _{ADCK} > 8 MHz	_	_	2	kΩ	
		• f _{ADCK} = 4–8 MHz	_	_	5	kΩ	
		• f _{ADCK} < 4MHz	_	_	10	kΩ	
		9-bit / 8-bit modes • f _{ADCK} > 8 MHz • f _{ADCK} < 8 MHz	_ _	_ _	5 10	kΩ kΩ	
f _{ADCK}	ADC conversion	≤ 13-bit mode	1.0	_	24.0	MHz	5
	clock frequency	16-bit mode	2.0	_	12.0	MHz	
C _{rate}	ADC conversion rate	≤ 13-bit modes No ADC hardware averaging Continuous conversions enabled, subsequent conversion time	20.000	_	1200	ksps	6
C _{rate}	ADC conversion rate	16-bit mode No ADC hardware averaging Continuous conversions enabled, subsequent conversion time	37.037	_	461.467	ksps	6

^{1.} Typical values assume $V_{DDA} = 3.0 \text{ V}$, Temp = 25 °C, $f_{ADCK} = 1.0 \text{ MHz}$, unless otherwise stated. Typical values are for reference only, and are not tested in production.

^{2.} DC potential difference.

^{3.} Assumes ADLSMP=0

^{4.} This resistance is external to the MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R_{AS} * C_{AS} time constant should be kept to < 1 ns.

^{5.} To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.

^{6.} For guidelines and examples of conversion rate calculation, download the ADC calculator tool.

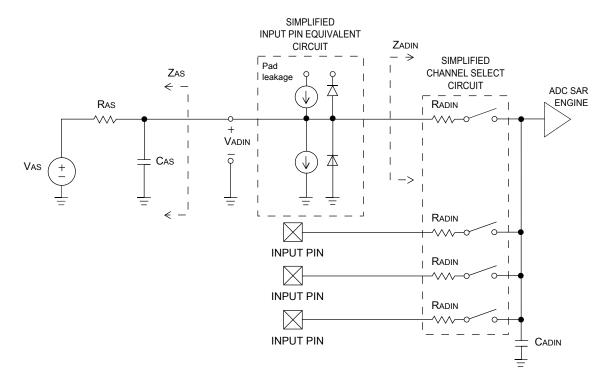


Figure 11. ADC input impedance equivalency diagram

8.6.1.2 16-bit ADC electrical characteristics

Table 35. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$)

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes	
I _{DDA_ADC}	Supply current		0.215	_	1.7	mA	3	
	ADC asynchronous	• ADLPC = 1, ADHSC = 0	1.2	2.4	3.9	MHz	t _{ADACK} = 1/	
	clock source	• ADLPC = 1, ADHSC = 1	2.4	4.0	6.1	MHz	f _{ADACK}	
f _{ADACK}		• ADLPC = 0, ADHSC = 0	3.0	5.2	7.3	MHz		
		• ADLPC = 0, ADHSC = 1	4.4	6.2	9.5	MHz		
	Sample Time	See Reference Manual chapter for sample times						
TUE	Total unadjusted	12-bit modes	_	±4	±6.8	LSB ⁴	5	
	error	• <12-bit modes	_	±1.4	±2.1			
DNL	Differential non-	12-bit modes	_	±0.7	-1.1 to	LSB ⁴	5	
	linearity	• <12-bit modes	_	±0.2	+1.9 -0.3 to 0.5			
INL	Integral non-linearity	12-bit modes	_	±1.0	–2.7 to +1.9	LSB ⁴	5	

Table 35. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
		• <12-bit modes	_	±0.5	-0.7 to +0.5		
E _{FS}	Full-scale error	12-bit modes	_	-4	-5.4	LSB ⁴	$V_{ADIN} = V_{DDA}^{5}$
		• <12-bit modes	_	-1.4	-1.8		
EQ	Quantization error	16-bit modes	_	-1 to 0	_	LSB ⁴	
		• ≤13-bit modes	_	_	±0.5		
ENOB	Effective number of	16-bit differential mode					6
	bits	• Avg = 32	12.8	14.5	_	bits	
		• Avg = 4	11.9	13.8	_	bits	
		16-bit single-ended modeAvg = 32Avg = 4	12.2 11.4	13.9 13.1	_	bits	
						bits	
SINAD	Signal-to-noise plus distortion	See ENOB	6.02 × ENOB + 1.76		dB		
THD	Total harmonic distortion	16-bit differential mode				dB	7
	distortion	• Avg = 32	— -94 	-94	-94 —	dB	
		16-bit single-ended mode • Avg = 32	_	-85	_		
SFDR	Spurious free dynamic range	16-bit differential mode • Avg = 32	82	95	_	dB	7
		7.Vg = 02			_	dB	
		16-bit single-ended mode • Avg = 32	78	90			
E _{IL}	Input leakage error			I _{In} × R _{AS}		mV	I _{In} = leakage current
							(refer to the MCU's voltage and current operating ratings)
	Temp sensor slope	Across the full temperature range of the device	1.55	1.62	1.69	mV/°C	8
V _{TEMP25}	Temp sensor voltage	25 °C	706	716	726	mV	8

All accuracy numbers assume the ADC is calibrated with V_{REFH} = V_{DDA}
 Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

- 3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed.
- 4. $1 LSB = (V_{REFH} V_{REFL})/2^N$
- 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
- 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
- 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.
- 8. ADC conversion clock < 3 MHz

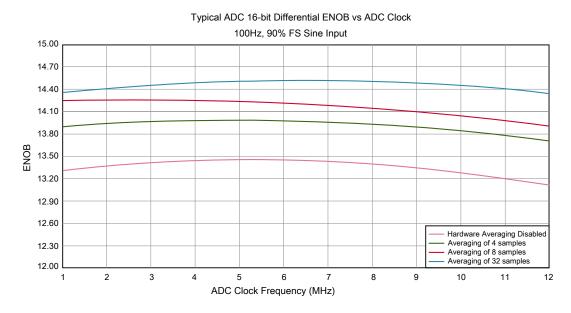


Figure 12. Typical ENOB vs. ADC_CLK for 16-bit differential mode

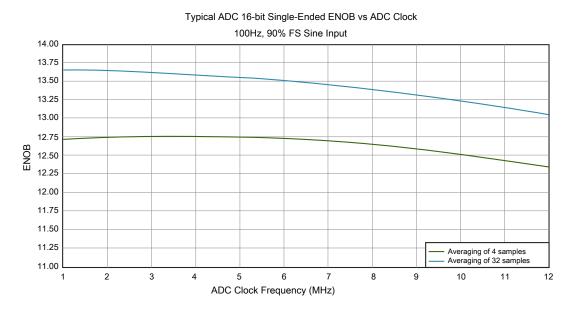


Figure 13. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode

8.6.2 Voltage reference electrical specifications

Table 36. VREF full-range operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V_{DDA}	Supply voltage for 1.2V output		3.6	V	_
	Supply voltage for 2.1V output	2.4	3.6	V	_
T _A	Temperature	Operating temperature range of the device		°C	
C _L	Output load capacitance	100		nF	1, 2

- 1. C_L must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference.
- 2. The load capacitance should not exceed +/-25% of the nominal specified C_L value over the operating temperature range of the device.

Table 37. VREF full-range operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim at	1.190	1.195	1.2	V	1
	nominal V _{DDA} and temperature=25°C	2.092	2.1	2.108	V	
V _{out}	Voltage reference 1.2 V output— factory trim	1.188	1.195	1.202	V	1
	Voltage reference 2.1 V output — factory trim	2.087	2.1	2.113	V	1
V _{step}	Voltage reference trim step for 1.2 V output	_	0.5	_	mV	1
	Voltage reference trim step for 2.1 V output	_	1.5	_	mV	1
Ac	Aging coefficient	_	_	400	uV/yr	_
I _{bg}	Bandgap only current	_	60	80	μΑ	1
I _{lp}	Low-power buffer current	_	180	360	μΑ	1
I _{hp}	High-power buffer current	_	480	960	μΑ	1
ΔV_{LOAD}	Load regulation — current is ± 1.0 mA	_	±0.2	_	mV	1, 2
T _{stup}	Buffer startup time	_	_	100	μs	_
V _{vdrift}	Voltage drift for 1.2 V output (Vmax -Vmin across the full voltage range)	_	0.5	2	mV	1
	Voltage drift for 2.1 V output (Vmax -Vmin across the full voltage range)	_	0.9	3.5	mV	
V _{tdrift}	Temperature drift for 1.2 V output (Vmax -Vmin across the full temperature range)	_	2	15	mV	3
	Temperature drift for 2.1 V output (Vmax -Vmin across the full temperature range)	_	3.5	26	mV	

^{1.} See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register for V_{out} selection of 1.2 V or 2.1 V.

^{2.} Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load

^{3.} To get best performance of VREF temperature drift, VREF_SC[ICOMPEN] must be set.

Table 38. VREF limited-range operating requirements

	Symbol	Description	Min.	Max.	Unit	Notes
Ī	T _A	Temperature	0	50	°C	_

Table 39. VREF limited-range operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{out}	Voltage reference output 1.2 V with factory trim	1.173	1.225	V	_
V _{out}	Voltage reference output 2.1 V with factory trim	2.088	2.115	V	_

8.6.3 CMP and 6-bit DAC electrical specifications

Table 40. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage	1.71	_	3.6	V
I _{DDHS}	Supply current, high-speed mode (EN=1, PMODE=1)	_	_	200	μΑ
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)	_	_	20	μA
V _{AIN}	Analog input voltage	V _{SS} – 0.3	_	V_{DD}	V
V _{AIO}	Analog input offset voltage	_	_	20	mV
V _H	Analog comparator hysteresis ¹				
	• CR0[HYSTCTR] = 00	_	5	_	mV
	• CR0[HYSTCTR] = 01	_	10	_	mV
	CR0[HYSTCTR] = 10	_	20	_	mV
	• CR0[HYSTCTR] = 11	_	30	_	mV
V _{CMPOh}	Output high	V _{DD} – 0.5	_	_	V
V _{CMPOI}	Output low	_	_	0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN=1, PMODE=1)	20	50	200	ns
t _{DLS}	Propagation delay, low-speed mode (EN=1, PMODE=0)	80	250	600	ns
	Analog comparator initialization delay ²	_	_	40	μs
I _{DAC6b}	6-bit DAC current adder (enabled)	_	7	_	μA
INL	6-bit DAC integral non-linearity	-0.5	_	0.5	LSB ³
DNL	6-bit DAC differential non-linearity	-0.3	_	0.3	LSB

^{1.} Typical hysteresis is measured with input voltage range limited to 0.6 to V_{DD} -0.6 V.

^{2.} Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.

^{3. 1} LSB = V_{reference}/64

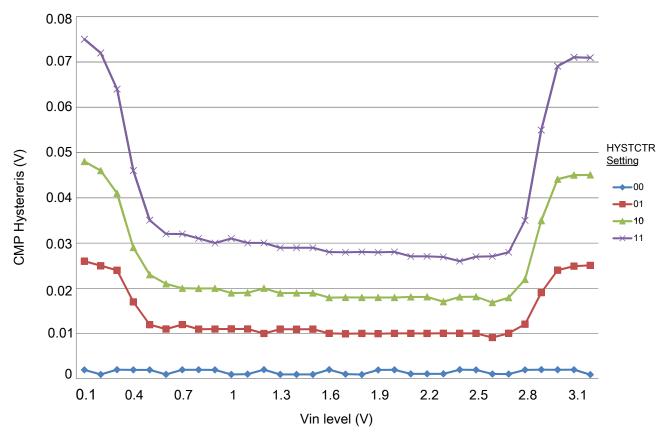


Figure 14. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)

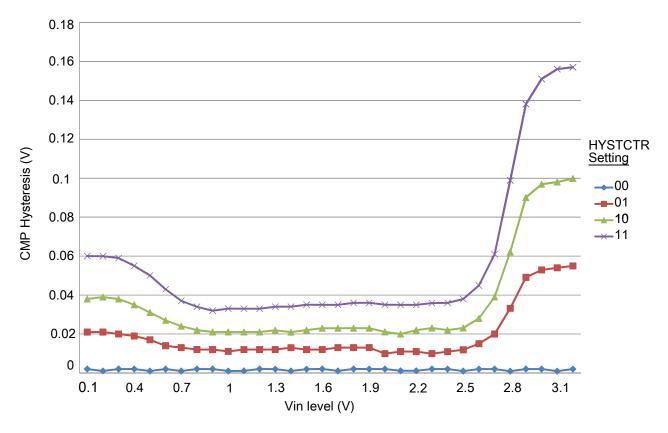


Figure 15. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)

8.6.4 12-bit DAC electrical characteristics

8.6.4.1 12-bit DAC operating requirements Table 41. 12-bit DAC operating requirements

Symbol	Desciption	Min.	Max.	Unit	Notes
V_{DDA}	Supply voltage		3.6	V	
V _{DACR}	Reference voltage	1.13	3.6	V	1
C _L	Output load capacitance	_	100	pF	2
IL	Output load current	_	1	mA	

^{1.} The DAC reference can be selected to be V_{DDA} or V_{REF_OUT} .

^{2.} A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.

8.6.4.2 12-bit DAC operating behaviors Table 42. 12-bit DAC operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA_DACL} P	Supply current — low-power mode	_	_	250	μΑ	
I _{DDA_DACH}	Supply current — high-speed mode	_	_	900	μΑ	
t _{DACLP}	Full-scale settling time (0x080 to 0xF7F) — low-power mode	_	100	200	μs	1
t _{DACHP}	Full-scale settling time (0x080 to 0xF7F) — high-power mode	_	15	30	μs	1
t _{CCDACLP}	Code-to-code settling time (0xBF8 to 0xC08) — low-power mode and high-speed mode	_	0.7	1	μs	1
V _{dacoutl}	DAC output voltage range low — high- speed mode, no load, DAC set to 0x000	_	_	100	mV	
V _{dacouth}	DAC output voltage range high — high- speed mode, no load, DAC set to 0xFFF	V _{DACR} -100	_	V _{DACR}	mV	
INL	Integral non-linearity error — high speed mode	_	_	±8	LSB	2
DNL	Differential non-linearity error — V _{DACR} > 2 V	_	_	±1	LSB	3
DNL	Differential non-linearity error — V _{DACR} = VREF_OUT	_	_	±1	LSB	4
V _{OFFSET}	Offset error	_	±0.4	±0.8	%FSR	5
E _G	Gain error	_	±0.1	±0.6	%FSR	5
PSRR	Power supply rejection ratio, V _{DDA} ≥ 2.4 V	60	_	90	dB	
T _{CO}	Temperature coefficient offset voltage	_	3.7	_	μV/C	6
T_GE	Temperature coefficient gain error	_	0.000421	_	%FSR/C	
Rop	Output resistance (load = $3 \text{ k}\Omega$)	_	_	250	Ω	
SR	Slew rate -80h→ F7Fh→ 80h				V/µs	
	High power (SP _{HP})	1.2	1.7	_		
	Low power (SP _{LP})	0.05	0.12	_		
BW	3dB bandwidth				kHz	
	High power (SP _{HP})	550	-	_		
	Low power (SP _{LP})	40	-	_		

- 1. Settling within ±1 LSB
- 2. The INL is measured for 0 + 100 mV to V_{DACR} –100 mV
- 3. The DNL is measured for 0 + 100 mV to V_{DACR} -100 mV
- 4. The DNL is measured for 0 + 100 mV to V_{DACR} -100 mV with V_{DDA} > 2.4 V 5. Calculated by a best fit curve from V_{SS} + 100 mV to V_{DACR} 100 mV
- 6. $V_{DDA} = 3.0 \text{ V}$, reference select set for V_{DDA} (DACx_CO:DACRFS = 1), high power mode (DACx_CO:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device

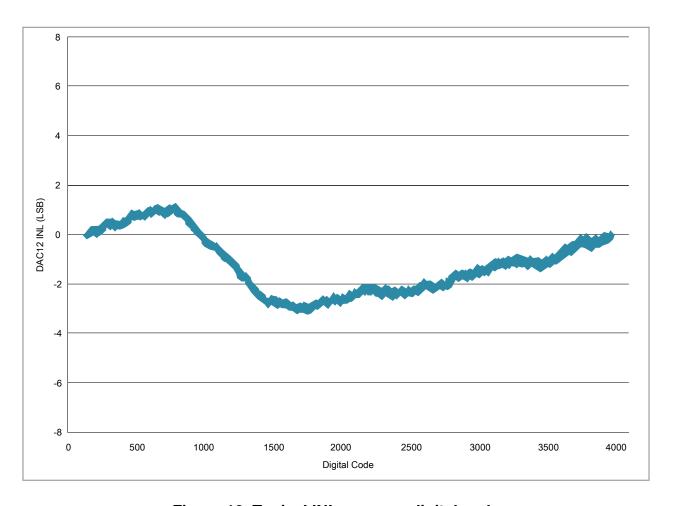


Figure 16. Typical INL error vs. digital code

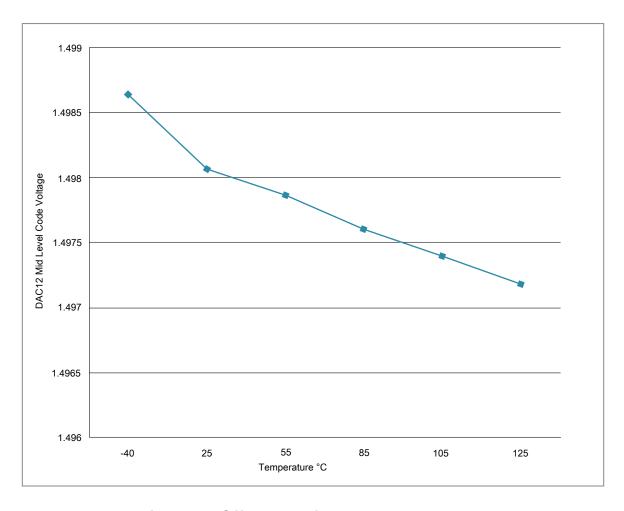


Figure 17. Offset at half scale vs. temperature

8.7 Timers

See General switching specifications.

8.8 Communication interfaces

8.8.1 EMV SIM specifications

Each EMV SIM module interface consists of a total of five pins.

The interface is designed to be used with synchronous Smart cards, meaning the EMV SIM module provides the clock used by the Smart card. The clock frequency is typically 372 times the Tx/Rx data rate.

There is no timing relationship between the clock and the data. The clock that the EMV SIM module provides to the Smart card is used by the Smart card to recover the clock from the data in the same manner as standard UART data exchanges. All five signals of the EMV SIM module are asynchronous with each other.

There are no required timing relationships between signals in normal mode. The smart card is initiated by the interface device; the Smart card responds with Answer to Reset. Although the EMV SIM interface has no defined requirements, the ISO/IEC 7816 defines reset and power-down sequences (for detailed information see ISO/IEC 7816).

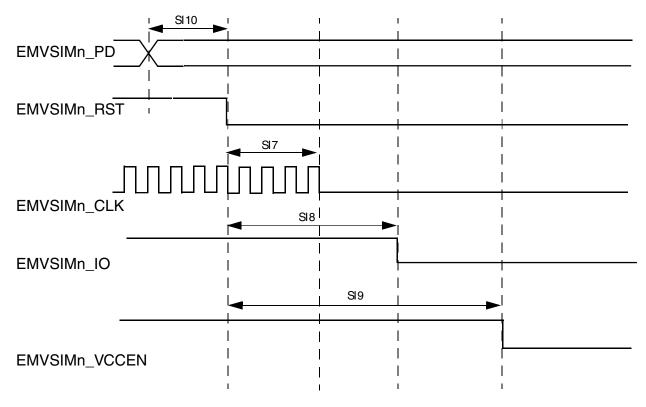


Figure 18. EMV SIM Clock Timing Diagram

The following table defines the general timing requirements for the EMV SIM interface.

Table 43. Timing Specifications, High Drive Strength

ID	Parameter	Symbol	Min	Max	Unit
SI 1	EMV SIM clock frequency (EMVSIMn_CLK) ¹	S _{freq}	1	5	MHz
SI 2	EMV SIM clock rise time (EMVSIMn_CLK) ²	S _{rise}	_	0.08 × (1/Sfreq)	ns
SI 3	EMV SIM clock fall time (EMVSIMn_CLK) ²	S _{fall}	_	0.08 × (1/Sfreq)	ns
SI 4	EMV SIM input transition time (EMVSIMn_IO, EMVSIMn_PD)	S _{tran}	20	25	ns
Si 5	EMV SIM I/O rise time / fall time (EMVSIMn_IO) ³	Tr/Tf	_	0.8	μs
Si 6	EMV SIM RST rise time / fall time (EMVSIMn_RST) ⁴	Tr/Tf	_	0.8	μs

^{1. 50%} duty cycle clock,

8.8.1.1 EMV SIM Reset Sequences

Smart cards may have internal reset, or active low reset. The following subset describes the reset sequences in these two cases.

8.8.1.1.1 Smart Cards with Internal Reset

Following figure shows the reset sequence for Smart cards with internal reset. The reset sequence comprises the following steps:

- After power-up, the clock signal is enabled on EMVSIMn_CLK (time T0)
- After 200 clock cycles, EMVSIMn_IO must be asserted.
- The card must send a response on EMVSIMn_IO acknowledging the reset between 400–40000 clock cycles after T0.

^{2.} With C = 50 pF

^{3.} With Cin = 30 pF, Cout = 30 pF,

^{4.} With Cin = 30 pF,

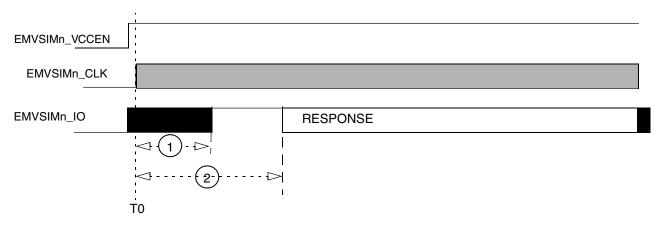


Figure 19. Internal Reset Card Reset Sequence

The following table defines the general timing requirements for the SIM interface.

 Table 44. Timing Specifications, Internal Reset Card Reset Sequence

Ref	Min	Max	Units
1	_		EMVSIMx_CLK clock cycles
2	400		EMVSIMx_CLK clock cycles

8.8.1.1.2 Smart Cards with Active Low Reset

Following figure shows the reset sequence for Smart cards with active low reset. The reset sequence comprises the following steps::

- After power-up, the clock signal is enabled on EMVSIMn_CLK (time T0)
- After 200 clock cycles, EMVSIMn_IO must be asserted.
- EMVSIMn_RST must remain low for at least 40,000 clock cycles after T0 (no response is to be received on RX during those 40,000 clock cycles)
- EMVSIMn_RST is asserted (at time T1)
- EMVSIMn_RST must remain asserted for at least 40,000 clock cycles after T1, and a response must be received on EMVSIMn_IO between 400 and 40,000 clock cycles after T1.

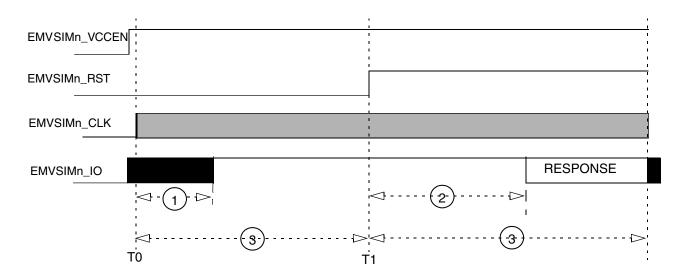


Figure 20. Active-Low-Reset Smart Card Reset Sequence

The following table defines the general timing requirements for the EMVSIM interface..

 Ref No
 Min
 Max
 Units

 1
 —
 200
 EMVSIMx_CLK clock cycles

 2
 400
 40,000
 EMVSIMx_CLK clock cycles

 3
 40,000
 —
 EMVSIMx_CLK clock cycles

Table 45. Timing Specifications, Internal Reset Card Reset Sequence

8.8.1.2 EMVSIM Power-Down Sequence

Following figure shows the EMV SIM interface power-down AC timing diagram. Table 46 table shows the timing requirements for parameters (SI7–SI10) shown in the figure. The power-down sequence for the EMV SIM interface is as follows:

- EMVSIMn_SIMPD port detects the removal of the Smart Card
- EMVSIMn_RST is negated
- EMVSIMn_CLK is negated
- EMVSIM_IO is negated
- EMVSIMx_VCCENy is negated

Each of the above steps requires one OSC32KCLK period (usually 32 kHz, also known as rtcclk in below figure). Power-down may be initiated by a Smart card removal detection; or it may be launched by the processor.

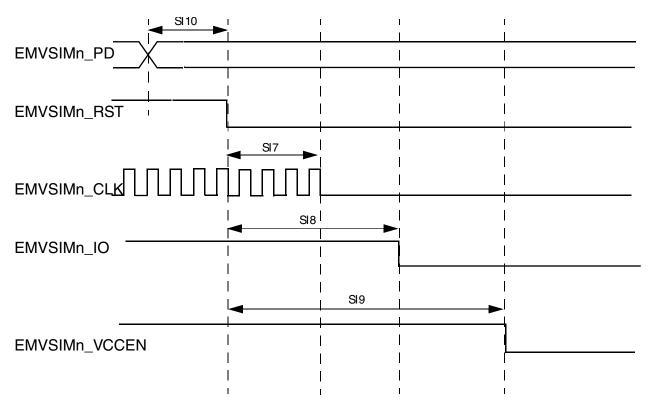


Figure 21. Smart Card Interface Power Down AC Timing

Table 46. Timing Requirements for Power-down Sequence

Ref No	Parameter	Symbol	Min	Max	Units
SI7	EMVSIM reset to SIM clock stop	S _{rst2clk}	0.9 × 1/ Frtcclk ¹	1.1 × 1/Frtcclk	μs
SI8	EMVSIM reset to SIM Tx data low	S _{rst2dat}	1.8 × 1/ Frtcclk	2.2 × 1/Frtcclk	μs
SI9	EMVSIM reset to SIM voltage enable low	S _{rst2ven}	2.7 × 1/ Frtcclk	3.3 × 1/Frtcclk	μs
SI10	EMVSIM presence detect to SIM reset low	S _{pd2rst}	0.9 × 1/ Frtcclk	1.1 × 1/Frtcclk	μѕ

1. Frtcclk is OSC32KCLK, and this clock must be enabled during the power down sequence.

NOTE

Same timing is also followed when auto power down is initiated. See Reference Manual for reference.

8.8.2 USB electrical specifications

The USB electricals for the USB On-the-Go module conform to the standards documented by the Universal Serial Bus Implementers Forum. For the most up-to-date standards, visit **usb.org**.

NOTE

The Fast IRC do not meet the USB jitter specifications for certification for Host mode operation.

8.8.3 USB VREG electrical specifications Table 47. USB VREG electrical specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
VREGIN	Input supply voltage	2.7	_	5.5	V	
I _{DDon}	Quiescent current — Run mode, load current equal zero, input supply (VREGIN) > 3.6 V	_	125	186	μA	
I _{DDstby}	Quiescent current — Standby mode, load current equal zero	_	1.1	10	μA	
I _{DDoff}	Quiescent current — Shutdown mode					
	 VREGIN = 5.0 V and temperature=25 °C 	_	650	_	nA	
	Across operating voltage and temperature	_	_	4	μA	
I _{LOADrun}	Maximum load current — Run mode	_	_	120	mA	
I _{LOADstby}	Maximum load current — Standby mode	_	_	1	mA	
V _{Reg33out}	Regulator output voltage — Input supply (VREGIN) > 3.6 V					
	Run mode	3	3.3	3.6	V	
	Standby mode	2.1	2.8	3.6	V	
V _{Reg33out}	Regulator output voltage — Input supply (VREGIN) < 3.6 V, pass-through mode	2.1	_	3.6	V	2
C _{OUT}	External output capacitor	1.76	2.2	8.16	μF	
ESR	External output capacitor equivalent series resistance	1	_	100	mΩ	
I _{LIM}	Short circuit current	_	290	_	mA	

^{1.} Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated.

^{2.} Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to I_{Load}.

8.8.4 LPSPI switching specifications

The Low Power Serial Peripheral Interface (LPSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes.

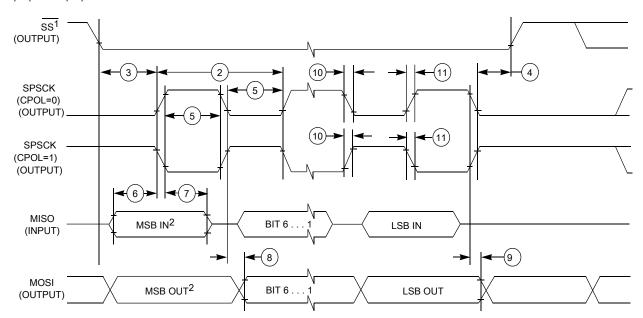
All timing is shown with respect to $20\%~V_{DD}$ and $80\%~V_{DD}$ thresholds, unless noted, as well as input signal transitions of 3 ns and a 30 pF maximum load on all LPSPI pins.

NOTE

- Slew rate disabled pads are those pins with PORTx_PCRn[SRE] bit cleared. Slew rate enabled pads are those pins with PORTx_PCRn[SRE] bit set.
- To achieve high bit rate, it is recommended to use fast pins (PTE20, PTE21, PTE22, PTE23, PTD4, PTD5, PTD6, and PTD7) and/or high drive pins (PTC3, PTC4, PTD4, PTD5, PTD6, and PTD7).

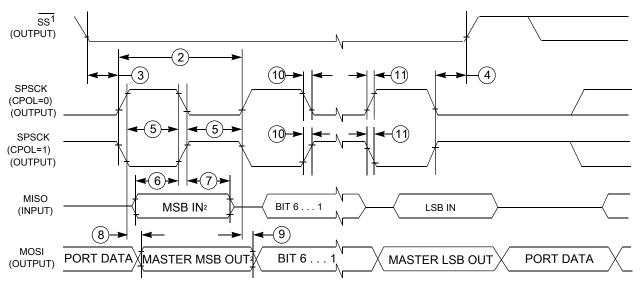
Table 48.	LPSPI master mod	de timing on slew	rate disabled pads

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	f _{periph} /2048	f _{periph} /2	Hz	1
2	t _{SPSCK}	SPSCK period	2 x t _{periph}	2048 x t _{periph}	ns	2
3	t _{Lead}	Enable lead time	1/2	_	t _{SPSCK}	_
4	t _{Lag}	Enable lag time	1/2	_	t _{SPSCK}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} - 30	1024 x t _{periph}	ns	_
6	t _{SU}	Data setup time (inputs)	18	_	ns	_
7	t _{HI}	Data hold time (inputs)	0	_	ns	_
8	t _v	Data valid (after SPSCK edge)	_	15	ns	_
9	t _{HO}	Data hold time (outputs)	0	_	ns	_
10	t _{RI}	Rise time input	_	t _{periph} - 25	ns	_
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output		25	ns	_
	t _{FO}	Fall time output				


^{1.} f_{periph} is the LPSPI peripheral functional clock.

^{2.} $t_{periph} = 1/f_{periph}$

Table 49. LPSPI master mode timing on slew rate enabled pads


Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	f _{periph} /2048	f _{periph} /2	Hz	1
2	t _{SPSCK}	SPSCK period	2 x t _{periph}	2048 x t _{periph}	ns	2
3	t _{Lead}	Enable lead time	1/2	_	t _{SPSCK}	_
4	t _{Lag}	Enable lag time	1/2	_	t _{SPSCK}	_
5	twspsck	Clock (SPSCK) high or low time	t _{periph} - 30	1024 x t _{periph}	ns	_
6	t _{SU}	Data setup time (inputs)	96	_	ns	_
7	t _{HI}	Data hold time (inputs)	0	_	ns	_
8	t _v	Data valid (after SPSCK edge)	_	52	ns	_
9	t _{HO}	Data hold time (outputs)	0	_	ns	_
10	t _{RI}	Rise time input	_	t _{periph} - 25	ns	_
	t _{FI}	Fall time input]			
11	t _{RO}	Rise time output	_	36	ns	_
	t _{FO}	Fall time output				

- 1. f_{periph} is the LPSPI peripheral functional clock
- 2. $t_{periph} = 1/f_{periph}$

- 1. If configured as an output.
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 22. LPSPI master mode timing (CPHA = 0)

^{1.}If configured as output

Figure 23. LPSPI master mode timing (CPHA = 1)

Table 50. LPSPI slave mode timing on slew rate disabled pads

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	0	f _{periph} /4	Hz	1
2	t _{SPSCK}	SPSCK period	4 x t _{periph}	_	ns	2
3	t _{Lead}	Enable lead time	1	_	t _{periph}	_
4	t _{Lag}	Enable lag time	1	-	t _{periph}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} - 30	_	ns	_
6	t _{SU}	Data setup time (inputs)	2.5	_	ns	_
7	t _{HI}	Data hold time (inputs)	3.5	_	ns	_
8	ta	Slave access time	_	t _{periph}	ns	3
9	t _{dis}	Slave MISO disable time	_	t _{periph}	ns	4
10	t _v	Data valid (after SPSCK edge)	_	31	ns	_
11	t _{HO}	Data hold time (outputs)	0	_	ns	_
12	t _{RI}	Rise time input	_	t _{periph} - 25	ns	_
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	_	25	ns	_
	t _{FO}	Fall time output				

^{1.} f_{periph} is the LPSPI peripheral functional clock

^{2.} LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

^{2.} $t_{periph} = 1/f_{periph}$

^{3.} Time to data active from high-impedance state

^{4.} Hold time to high-impedance state

Table 51.	LPSPI slave mo	de timing on slev	rate enabled pads
-----------	----------------	-------------------	-------------------

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	0	f _{periph} /4	Hz	1
2	t _{SPSCK}	SPSCK period	4 x t _{periph}	_	ns	2
3	t _{Lead}	Enable lead time	1	_	t _{periph}	_
4	t _{Lag}	Enable lag time	1	_	t _{periph}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} - 30	_	ns	_
6	t _{SU}	Data setup time (inputs)	2	_	ns	_
7	t _{HI}	Data hold time (inputs)	7	_	ns	_
8	ta	Slave access time	_	t _{periph}	ns	3
9	t _{dis}	Slave MISO disable time	_	t _{periph}	ns	4
10	t _v	Data valid (after SPSCK edge)	_	122	ns	_
11	t _{HO}	Data hold time (outputs)	0	_	ns	_
12	t _{RI}	Rise time input	_	t _{periph} - 25	ns	_
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	_	36	ns	_
	t _{FO}	Fall time output				

- 1. f_{periph} is the LPSPI peripheral functional clock
- $t_{periph} = 1/f_{periph}$ Time to data active from high-impedance state
- 4. Hold time to high-impedance state

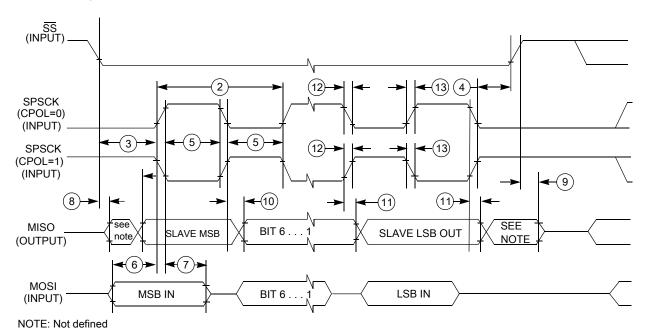


Figure 24. LPSPI slave mode timing (CPHA = 0)

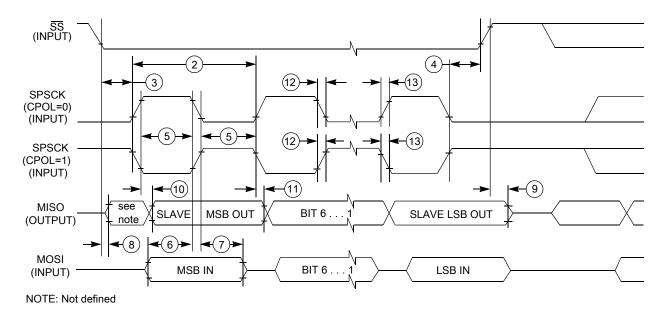


Figure 25. LPSPI slave mode timing (CPHA = 1)

8.8.5 LPI²C

Table 52. LPI²C specifications

Symbol	Description		Min.	Max.	Unit	Notes
f _{SCL}	SCL clock frequency	Standard mode (Sm)	0	100	kHz	1
		Fast mode (Fm)	0	400		1, 2
		Fast mode Plus (Fm+)	0	1000		1, 3
		Ultra Fast mode (UFm)	0	5000		1, 4
		High speed mode (Hs-mode)	0	3400		1, 5

- 1. See General switching specifications, measured at room temperature.
- 2. Measured with the maximum bus loading of 400pF at 3.3V VDD with pull-up Rp = 580Ω on normal drive pins or 350Ω on high drive pins, and at 1.8V VDD with Rp = 880Ω . For all other cases, select appropriate Rp per I2C Bus Specification and the pin drive capability.
- 3. Fm+ is only supported on high drive pin with high drive enabled. It is measured with the maximum bus loading of 400pF at 3.3V VDD with Rp = 350Ω . For all other cases, select appropriate Rp per I2C Bus Specification and the pin drive capability.
- 4. UFm is only supported on high drive pin with high drive enabled and push-pull output only mode. It is measured at 3.3V VDD with the maximum bus loading of 400pF. For 1.8V VDD, the maximum speed is 4Mbps.
- 5. Hs-mode is only supported in slave mode and on the high drive pins with high drive enabled.

8.8.6 LPUART

See General switching specifications.

8.9 Human-machine interfaces (HMI)

8.9.1 TSI electrical specifications

Table 53. TSI electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
TSI_RUNF	Fixed power consumption in run mode	_	100	_	μA
TSI_RUNV	Variable power consumption in run mode (depends on oscillator's current selection)	1.0	_	128	μА
TSI_EN	Power consumption in enable mode	_	100	_	μA
TSI_DIS	Power consumption in disable mode	_	1.2	_	μΑ
TSI_TEN	TSI analog enable time	_	66	_	μs
TSI_CREF	TSI reference capacitor	_	1.0	_	pF
TSI_DVOLT	Voltage variation of VP & VM around nominal values	0.19	_	1.03	V

9 Design considerations

9.1 Hardware design considerations

This device contains protective circuitry to guard against damage due to high static voltage or electric fields. However, take normal precautions to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit.

9.1.1 Printed circuit board recommendations

- Place connectors or cables on one edge of the board and do not place digital circuits between connectors.
- Drivers and filters for I/O functions must be placed as close to the connectors as possible. Connect TVS devices at the connector to a good ground. Connect filter capacitors at the connector to a good ground.
- Physically isolate analog circuits from digital circuits if possible.
- Place input filter capacitors as close to the MCU as possible.
- For best EMC performance, route signals as transmission lines; use a ground plane directly under LQFP/MAPBGA packages.

9.1.2 Power delivery system

Consider the following items in the power delivery system:

- Use a plane for ground.
- Use a plane for MCU VDD supply if possible.
- Always route ground first, as a plane or continuous surface, and never as sequential segments.
- Route power next, as a plane or traces that are parallel to ground traces.
- Place bulk capacitance, 10 µF or more, at the entrance of the power plane.
- Place bypass capacitors for MCU power domain as close as possible to each VDD/VSS pair, including VDDA/VSSA and VREFH/VREFL.
- The minimum bypass requirement is to place 0.1 μF capacitors positioned as near as possible to the package supply pins.
- The VREG_IN voltage range is 2.7 V to 5.5 V. Typically, 5.0V is applied here. If USB module is used, this pin must be powered to make the USB transceiver also powered. It is recommended to include a filter circuit with one bulk capacitor (no less than 2.2 μ F) and one 0.1 μ F capacitor to VREG_IN at this pin to improve USB performance. Total capacitors on VBUS should be less than 10 μ F.
- Take special care to minimize noise levels on the VREFH/VREFL inputs. An option is to use the internal reference voltage (output 1.2 V or 2.1 V typically) as the ADC reference.

NOTE

The internal reference voltage output (VREF_OUT) is bonded to the VREFH pin. When the VREF_OUT output is used, a $0.1~\mu F$ capacitor is required as a filter. Do not connect any other supply voltage to the pin that has VREF_OUT activated.

9.1.3 Analog design

Each ADC input must have an RC filter as shown in the following figure. The maximum value of R must be smaller than RAS max if high resolution is required. The value of C must be chosen to ensure that the RC time constant is very small compared to the sample period. See AN4373: Cookbook for SAR ADC Measurements for how to select proper RC values.

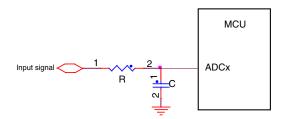


Figure 26. RC circuit for ADC input

High voltage measurement circuits require voltage division, current limiting, and overvoltage protection as shown the following figure. The voltage divider formed by R1 – R4 must yield a voltage less than or equal to VREFH. Typically, VREFH is connected to VDDA. The current must be limited to less than the negative injection current limit. Since the ADC pins do not have diodes to VDD, external clamp diodes must be included to protect against transient over-voltages.

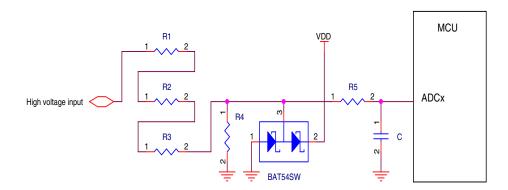


Figure 27. High voltage measurement with an ADC input

9.1.4 Digital design

Ensure that all I/O pins cannot get pulled above VDD (Max I/O is VDD+0.3V).

CAUTION

Do not provide power to I/O pins prior to VDD, especially the RESET_b pin.

• High drive pins

PTB0, PTB1, PTC3, PTC4, PTD4, PTD5, PTD6 and PTD7 I/O have both high drive and normal drive capability selected by the associated PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only. When in high drive mode, the sink/source current for a high drive pin can reach 20 mA. However, the total current flowing into the MCU VDD must not exceed maximum limit of IDD.

Fast pins

PTE20, PTE21, PTE22, PTE23, PTD4, PTD5, PTD6, PTD7 can support fast slew rate of 0.5 ns and are used for high speed communications. It is set/cleared by PTx_PCRn[SRE].

• Default I/O state

Most of digital pins are disabled (in high impedance state) after power up, so a pull-up/down is needed to a determined level for some applications. Please refer to the Signal Multiplexing and Pin Assignments chapter to know the default IO state for a dedicate pin.

• RESET_b pin

The RESET_b pin is an open-drain I/O pin that has an internal pullup resistor. An external RC circuit is recommended to filter noise as shown in the following figure. The resistor value must be in the range of 4.7 k Ω to 10 k Ω ; the recommended capacitance value is 0.1 μ F. The RESET_b pin also has a selectable digital filter to reject spurious noise.

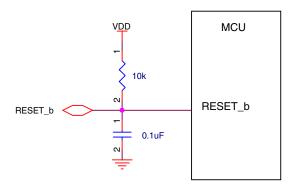


Figure 28. Reset circuit

When an external supervisor chip is connected to the RESET_b pin, a series resistor must be used to avoid damaging the supervisor chip or the RESET_b pin, as shown in the following figure. The series resistor value (RS below) must be in the range of $100~\Omega$ to $1~k\Omega$ depending on the external reset chip drive strength. The supervisor chip must have an active high, open-drain output.

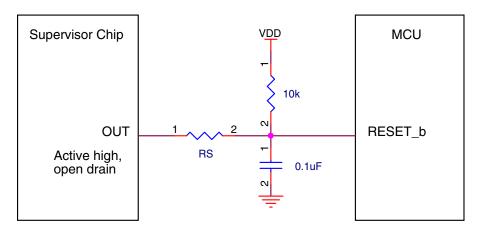


Figure 29. Reset signal connection to external reset chip

• NMI pin

Do not add a pull-down resistor or capacitor on the NMI_b pin, because a low level on this pin will trigger non-maskable interrupt. When this pin is enabled as the NMI function, an external pull-up resistor (10 k Ω) as shown in the following figure is recommended for robustness.

If the NMI_b pin is used as an I/O pin, use the following two ways to disable NMI function:

- a. Define NMI interrupt handler in which NMI pin function is remapped to other pin mux function
- b. Disable NMI function by programming flash configuration byte at 0x40d for FOPT, change FOPT[NMI_DIS] bit to zero. It will not take effect until next reset.

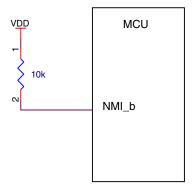


Figure 30. NMI pin biasing

• Debug interface

This MCU uses the standard Arm SWD interface protocol as shown in the following figure. While pull-up or pull-down resistors are not required (SWD_DIO has an internal pull-up and SWD_CLK has an internal pull-down), external $10 \text{ k}\Omega$ pull resistors are recommended for system robustness. The RESET_b pin recommendations mentioned above must also be considered.

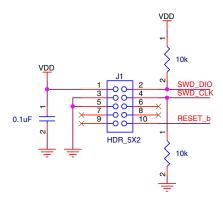


Figure 31. SWD debug interface

• Low leakage stop mode wakeup

Select low leakage wakeup pins (LLWU_Px) to wake the MCU from one of the low leakage stop modes (LLS/VLLSx). See K32 L2A Signal Multiplexing and Pin Assignments chapter for pin selection.

Unused pin

Unused GPIO pins must be left floating (no electrical connections) with the MUX field of the pin's PORTx_PCRn register equal to 000. This disables the digital input path to the MCU.

If the USB module is not used, leave the USB data pins (USB0_DP, USB0_DM) floating.

EMVSIM

When using EMVSIM, a typical 4.7 K Ω pull up resistor should be added on the EMVSIM_IO pin.

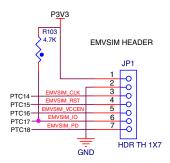


Figure 32. EMVSIM interface

• Pull up resistor for getting correct power consumption result

Connect the pull up resistor to VDD_MCU for the pins like RESET and NMI. For other pull up resistor, do not use VDD_MCU.

9.1.5 Crystal oscillator

When using an external crystal or ceramic resonator as the frequency reference for the MCU clock system, refer to the following table and diagrams.

The feedback resistor, RF, is incorporated internally with the low power oscillators. An external feedback is required when using high gain (HGO=1) mode. In harsh EMC environment, it is recommended to use high gain mode. For low frequency (32 to 40 kHz), switching between high gain and low power is not supported.

The series resistor, RS, is used to limit current to external crystal or resonator to avoid overdrive, and is required in high gain (HGO=1) mode when the crystal or resonator frequency is below 2 MHz. The low power oscillator (HGO=0) must not have any series resistor RS.

Internal load capacitors (Cx, Cy) are provided in the low frequency (32.786kHz) mode. Use the SCxP bits in the SCG_SOSCCFG register to adjust the load capacitance for the crystal. Typically, values of 10 pf to 16 pF are sufficient for 32.768 kHz crystals that have a 12.5 pF CL specification. The internal load capacitor selection must not be used for high frequency crystals and resonators. See crystal or resonator manufacturer's recommendation for parameters about load capacitance and RF.

Table 54. External crystal/resonator connections

Oscillator mode	Diagram
Low frequency (32 kHz-40 kHz), low power	Diagram 1
Low frequency (32 kHz-40 kHz), high gain	Diagram 2, Diagram 4
High/Medium frequency (1-32 MHz), low power	Diagram 3
High/Medium frequency (1-32MHz), high gain	Diagram 4

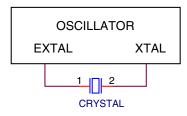


Figure 33. Crystal connection - Diagram 1

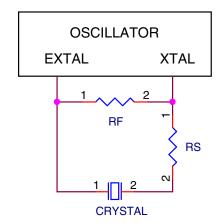


Figure 34. Crystal connection – Diagram 2

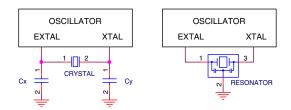


Figure 35. Crystal connection – Diagram 3

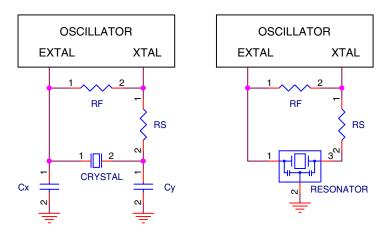


Figure 36. Crystal connection - Diagram 4

9.2 Software considerations

All K32L2A MCUs are supported by comprehensive NXP and third-party hardware and software enablement solutions, which can reduce development costs and time to market. Featured software and tools are listed below.

Evaluation and Prototyping Hardware

- NXP Freedom Development Platform: http://www.nxp.com/freedom
- Tower System Development Platform: http://www.nxp.com/tower

IDEs for Kinetis MCUs

MCUXpresso Integrated Development Environment (IDE): https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE

Run-time Software

- K32 L2A SDK: http://mcuxpresso.nxp.com
- MQX RTOS: http://www.nxp.com/mqx

For all other partner-developed software and tools, visit http://www.nxp.com/partners.

10 Part identification

10.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

10.2 Format

Part numbers for this device have the following format:

B PS C FS SPF T PG FR S PT

10.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field **Description** Values Brand • K32 PS **Product Series** L2 Core A= Sub-family A • B= Sub-family B FS Flash size • 1 = 64 KB • 2 = 128 KB • 3 = 256 KB • 4 = 512 KB SPF Special Feature • 0 = Dual core • 1 = Single core • V = -40 to 105 Temperature range (°C) PG Package • LH = 64 LQFP • LL = 100 LQFP FR • 1 = 0 - 72 MHz Fequency (MHz) • A = Initial Mask Set Silicon revision • B = 1st Major Spin

• R = Std Reel

Table 55. Part number fields descriptions

10.4 Example

PT

This is an example part number:

Packaging Type

K32L2A41VLL1A

11 Revision History

The following table provides a revision history for this document.

Table 56. Revision History

Rev. No.	Date	Substantial Changes
0	08/2019	Initial release
1	12/2019	In the features section: Under clocks, updated SIRC to "2/8 MHz slow internal reference clock (SIRC)". Removed "Bluetooth, Wi-Fi connectivity". Added a new bullet stating "USB FS OTG controller, capable of USB host or device operation". In the Fields section: Updated Special Feature values. Removed "T=Tray" from packaging type.
2	01/2020	 Added section Dimensions. In section Pinouts and Packaging, the default values of PTA1, PTA2, and PTA4/ LLWU_P3 updated to TSI0_CH2, TSI0_CH3, and NMI0_b respectively.
3	02/2021	 In section Fast IRC (FIRC) specifications: In the Open loop total deviation of FIRC frequency at low voltage (VDD=1.71V-1.89V) over full temperature specification, maximum regulator disable value updated to ±1.5. In the Open loop total deviation of FIRC frequency at high voltage (VDD=1.89V-3.6V) over full temperature specification, maximum value updated to ±1.5. Added footnote stating "For temperatures -40 to 85 °C, the maximum value is ±1%, characterized on a few samples of different slots. This value is not guaranteed by production.". Updated "Freescale" to "NXP" throughout the document. In section 16-bit ADC operating conditions, updated the link of the ADC calculator tool in the table footnotes. In section Software considerations, updated "Kinetis Design Studio IDE" to "MCUXpresso Integrated Development Environment (IDE)". The associated link is also updated.

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.

Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product

Table continues on the next page...

design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

Hazardous voltage — Although basic supply voltages of the product may be much lower, circuit voltages up to 60 V may appear when operating this product, depending on settings and application. Customers incorporating or otherwise using these products in applications where such high voltages may appear during operation, assembly, test etc. of such application, do so at their own risk. Customers agree to fully indemnify NXP Semiconductors for any damages resulting from or in connection with such high voltages. Furthermore, customers are drawn to safety standards (IEC 950, EN 60 950, CENELEC, ISO, etc.) and other (legal) requirements applying to such high voltages.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, EdgeLock, are trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved.

© NXP B.V. 2021.

All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 02/2021

Document identifier: K32L2Ax

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for ARM Microcontrollers - MCU category:

Click to view products by NXP manufacturer:

Other Similar products are found below:

R7FS3A77C2A01CLK#AC1 CP8363AT MB96F119RBPMC-GSE1 MB9BF122LPMC1-G-JNE2 MB9BF122LPMC-G-JNE2 MB9BF128SAPMC-GE2 MB9BF218TBGL-GE1 MB9BF529TBGL-GE1 26-21/R6C-AT1V2B/CT 5962-8506403MQA MB9AF342MAPMC-G-JNE2 MB96F001YBPMC1-GSE1 MB9BF121KPMC-G-JNE2 VA10800-D000003PCA CP8547AT CY9AF156NPMC-G-JNE2 MB9BF104NAPMC-G-JNE1 CY8C4724FNI-S402T ADUCM410BCBZ-RL7 GD32f303RGT6 NHS3152UK/A1Z MK26FN2M0CAC18R EFM32TG230F32-D-QFN64 EFM32TG232F32-D-QFP64 EFM32TG825F32-D-BGA48 MB9AFB44NBBGL-GE1 MB9BF304RBPMC-G-JNE2 MB9BF416RPMC-G-JNE2 MB9AF155MABGL-GE1 MB9BF306RBPMC-G-JNE2 MB9BF618TBGL-GE1 ATSAMS70N21A-CN MK20DX64VFT5 MK50DX128CMC7 MK51DN256CMD10 MK51DX128CMC7 MK53DX256CMD10 MKL25Z32VFT4 LPC1754FBD80 STM32F030K6T6TR STM32L073VBT6 AT91M42800A-33AU AT91SAM7L64-CU ATSAM3N0AA-MU ATSAM3N0CA-CU ATSAM3SD8BA-MU ATSAM4LC2BA-UUR ATSAM4LC4BA-MU ATSAM4LS2AA-MU ADuC7023BCPZ621-R7