K52P144M100SF2

K52 Sub-Family Data Sheet

Supports the following:
 MK52DN512ZCLQ10, MK52DN512ZCMD10

Features

- Operating Characteristics
- Voltage range: 1.71 to 3.6 V
- Flash write voltage range: 1.71 to 3.6 V
- Temperature range (ambient): -40 to $85^{\circ} \mathrm{C}$
- Performance
- Up to 100 MHz ARM Cortex-M4 core with DSP instructions delivering 1.25 Dhrystone MIPS per MHz
- Memories and memory interfaces
- Up to 512 KB program flash memory on nonFlexMemory devices
- Up to 256 KB program flash memory on FlexMemory devices
- Up to 256 KB FlexNVM on FlexMemory devices
- 4 KB FlexRAM on FlexMemory devices
- Up to 128 KB RAM
- Serial programming interface (EzPort)
- FlexBus external bus interface
- Clocks
- 3 to 32 MHz crystal oscillator
- 32 kHz crystal oscillator
- Multi-purpose clock generator
- System peripherals
- Multiple low-power modes to provide power optimization based on application requirements
- Memory protection unit with multi-master protection
- 16-channel DMA controller, supporting up to 63 request sources
- External watchdog monitor
- Software watchdog
- Low-leakage wakeup unit
- Security and integrity modules
- Hardware CRC module to support fast cyclic redundancy checks
- Hardware random-number generator
- Hardware encryption supporting DES, 3DES, AES, MD5, SHA-1, and SHA-256 algorithms
- 128-bit unique identification (ID) number per chip
- Human-machine interface
- Low-power hardware touch sensor interface (TSI)
- General-purpose input/output
- Analog modules
- Two 16-bit SAR ADCs
- Programmable gain amplifier (PGA) (up to x64) integrated into each ADC
- Two 12-bit DACs
- Two operational amplifiers
- Two transimpedance amplifiers
- Three analog comparators (CMP) containing a 6-bit DAC and programmable reference input
- Voltage reference
- Timers
- Programmable delay block
- Eight-channel motor control/general purpose/PWM timer
- Two 2-channel quadrature decoder/general purpose timers
- IEEE 1588 timers
- Periodic interrupt timers
- 16-bit low-power timer
- Carrier modulator transmitter
- Real-time clock

Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

- Communication interfaces
- Ethernet controller with MII and RMII interface to external PHY and hardware IEEE 1588 capability
- USB full-/low-speed On-the-Go controller with on-chip transceiver
- Three SPI modules
- Two I2C modules
- Six UART modules
- Secure Digital host controller (SDHC)
- I2S module

Table of Contents

1 Ordering parts 5
1.1 Determining valid orderable parts. 5
2 Part identification 5
2.1 Description 5
2.2 Format 5
2.3 Fields 5
2.4 Example 6
3 Terminology and guidelines 6
3.1 Definition: Operating requirement. 6
3.2 Definition: Operating behavior 7
3.3 Definition: Attribute. 7
3.4 Definition: Rating. 8
3.5 Result of exceeding a rating. 8
3.6 Relationship between ratings and operating requirements 8
3.7 Guidelines for ratings and operating requirements 9
3.8 Definition: Typical value 9
3.9 Typical value conditions 10
4 Ratings. 11
4.1 Thermal handling ratings 11
4.2 Moisture handling ratings 11
4.3 ESD handling ratings. 11
4.4 Voltage and current operating ratings 11
5 General. 12
5.1 AC electrical characteristics. 12
5.2 Nonswitching electrical specifications. 12
5.2.1 Voltage and current operating requirements. 13
5.2.2 LVD and POR operating requirements. 14
5.2.3 Voltage and current operating behaviors 14
5.2.4 Power mode transition operating behaviors. 16
5.2.5 Power consumption operating behaviors 17
5.2.6 EMC radiated emissions operating behaviors. 20
5.2.7 Designing with radiated emissions in mind 21
5.2.8 Capacitance attributes 21
5.3 Switching specifications 21
5.3.1 Device clock specifications 21
5.3.2 General switching specifications 21
5.4 Thermal specifications. 22
5.4.1 Thermal operating requirements 22
5.4.2 Thermal attributes 23
6 Peripheral operating requirements and behaviors. 24
6.1 Core modules. 24
6.1.1 Debug trace timing specifications. 24
6.1.2 JTAG electricals 25
6.2 System modules. 28
6.3 Clock modules 28
6.3.1 MCG specifications 28
6.3.2 Oscillator electrical specifications. 30
6.3.3 $\quad 32 \mathrm{kHz}$ Oscillator Electrical Characteristics 32
6.4 Memories and memory interfaces. 33
6.4.1 Flash electrical specifications. 33
6.4.2 EzPort Switching Specifications. 37
6.4.3 Flexbus Switching Specifications 38
6.5 Security and integrity modules 41
6.6 Analog. 41
6.6.1 ADC electrical specifications 41
6.6.2 CMP and 6-bit DAC electrical specifications. 49
6.6.3 12-bit DAC electrical characteristics. 51
6.6.4 Op-amp electrical specifications 54
6.6.5 Transimpedance amplifier electrical specifications - full range. 55
6.6.6 Transimpedance amplifier electrical specifications - limited range 56
6.6.7 Voltage reference electrical specifications 57
6.7 Timers. 58
6.8 Communication interfaces. 58
6.8.1 Ethernet switching specifications 58
6.8.2 USB electrical specifications 60
6.8.3 USB DCD electrical specifications 60
6.8.4 USB VREG electrical specifications61
6.8.5 DSPI switching specifications (limited voltage range). 61
6.8.6 DSPI switching specifications (full voltage range). 63
6.8.7 Inter-Integrated Circuit Interface (I2C) timing. 65
6.8.8 UART switching specifications. 66
6.8.9 SDHC specifications. 66
6.8.10 I2S switching specifications 67
6.9 Human-machine interfaces (HMI) 70
6.9.1 TSI electrical specifications. 70
7 Dimensions 71
7.1 Obtaining package dimensions 71
8 Pinout. 71
8.1 K52 Signal Multiplexing and Pin Assignments 71
8.2 K52 Pinouts. 77
9 Revision History 79

1 Ordering parts

1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to freescale.com and perform a part number search for the following device numbers: PK52 and MK52.

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:
Q K\#\# A M FFF R T PP CC N

2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	$\bullet \mathrm{M}=$ Fully qualified, general market flow
K\#\# $=$ Prequalification		

Table continues on the next page...
rerminology and guidelines

Field	Description	Values
FFF	Program flash memory size	- $32=32 \mathrm{~KB}$ - $64=64 \mathrm{~KB}$ - $128=128 \mathrm{~KB}$ - $256=256$ KB - $512=512 \mathrm{~KB}$ - $1 \mathrm{MO}=1 \mathrm{MB}$ - $2 \mathrm{MO}=2 \mathrm{MB}$
R	Silicon revision	- Z = Initial - (Blank) = Main - A = Revision after main
T	Temperature range (${ }^{\circ} \mathrm{C}$)	- $\mathrm{V}=-40$ to 105 - $\mathrm{C}=-40$ to 85
PP	Package identifier	- $\mathrm{FM}=32$ QFN ($5 \mathrm{~mm} \times 5 \mathrm{~mm}$) - $\mathrm{FT}=48$ QFN $(7 \mathrm{~mm} \times 7 \mathrm{~mm})$ - LF = 48 LQFP ($7 \mathrm{~mm} \times 7 \mathrm{~mm}$) - LH = 64 LQFP ($10 \mathrm{~mm} \times 10 \mathrm{~mm}$) - MP = 64 MAPBGA ($5 \mathrm{~mm} \times 5 \mathrm{~mm}$) - LK = 80 LQFP ($12 \mathrm{~mm} \times 12 \mathrm{~mm}$) - LL = 100 LQFP ($14 \mathrm{~mm} \times 14 \mathrm{~mm}$) - MC = 121 MAPBGA ($8 \mathrm{~mm} \times 8 \mathrm{~mm}$) - LQ = 144 LQFP ($20 \mathrm{~mm} \times 20 \mathrm{~mm}$) - MD = 144 MAPBGA ($13 \mathrm{~mm} \times 13 \mathrm{~mm}$) - MJ = 256 MAPBGA ($17 \mathrm{~mm} \times 17 \mathrm{~mm}$)
CC	Maximum CPU frequency (MHz)	- $5=50 \mathrm{MHz}$ - $7=72 \mathrm{MHz}$ - $10=100 \mathrm{MHz}$ - $12=120 \mathrm{MHz}$ - $15=150 \mathrm{MHz}$
N	Packaging type	- $\mathrm{R}=$ Tape and reel - (Blank) $=$ Trays

2.4 Example

This is an example part number:
MK52DN512ZVMD10

3 Terminology and guidelines

3.1 Definition: Operating requirement

An operating requirement is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip.

3.1.1 Example

This is an example of an operating requirement:

Symbol	Description	Min.	Max.	Unit
V_{DD}	1.0 V core supply voltage	0.9	1.1	V

3.2 Definition: Operating behavior

An operating behavior is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.

3.2.1 Example

This is an example of an operating behavior:

Symbol	Description	Min.	Max.	Unit
IWP	Digital I/O weak pullup/ pulldown current	10	130	$\mu \mathrm{~A}$

3.3 Definition: Attribute

An attribute is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.

3.3.1 Example

This is an example of an attribute:

Symbol	Description	Min.	Max.	Unit
CIN_D	Input capacitance: digital pins	-	7	pF

3.4 Definition: Rating

A rating is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:

- Operating ratings apply during operation of the chip.
- Handling ratings apply when the chip is not powered.

3.4.1 Example

This is an example of an operating rating:

Symbol	Description	Min.	Max.	Unit
V_{DD}	1.0 V core supply voltage	-0.3	1.2	V

3.5 Result of exceeding a rating

3.6 Relationship between ratings and operating requirements

Operating (power on)

$-\infty$
Handling (power off)

3.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

3.8 Definition: Typical value

A typical value is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

3.8.1 Example 1

This is an example of an operating behavior that includes a typical value:

Symbol	Description	Min.	Typ.	Max.	Unit
I_{WP}	Digital I/O weak pullup/pulldown current	10	70	130	$\mu \mathrm{~A}$

3.8.2 Example 2

This is an example of a chart that shows typical values for various voltage and temperature conditions:

3.9 Typical value conditions

Typical values assume you meet the following conditions (or other conditions as specified):

Symbol	Description	Value	Unit
T_{A}	Ambient temperature	25	${ }^{\circ} \mathrm{C}$
V_{DD}	3.3 V supply voltage	3.3	V

4 Ratings

4.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
$\mathrm{T}_{\text {STG }}$	Storage temperature	-55	150	${ }^{\circ} \mathrm{C}$	1
$\mathrm{~T}_{\text {SDR }}$	Solder temperature, lead-free	-	260	${ }^{\circ} \mathrm{C}$	2
	Solder temperature, leaded	-	245		

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	-	3	-	1

1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
$\mathrm{V}_{\text {HBM }}$	Electrostatic discharge voltage, human body model	-2000	+2000	V	1
$\mathrm{~V}_{\text {CDM }}$	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
$\mathrm{I}_{\text {LAT }}$	Latch-up current at ambient temperature of $105^{\circ} \mathrm{C}$	-100	+100	mA	3

1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM).
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.

4.4 Voltage and current operating ratings

Symbol	Description	Min.	Max.	Unit
V_{DD}	Digital supply voltage	-0.3	3.8	V
I_{DD}	Digital supply current	-	185	mA
$\mathrm{~V}_{\mathrm{DIO}}$	Digital input voltage (except RESET, EXTAL, and XTAL)	-0.3	5.5	V
$\mathrm{~V}_{\text {AIO }}$	Analog ${ }^{1}, \overline{R E S E T}$, EXTAL, and XTAL input voltage	-0.3	$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
I_{D}	Maximum current single pin limit (applies to all digital pins)	-25	25	mA
$\mathrm{~V}_{\text {DDA }}$	Analog supply voltage	$\mathrm{V}_{\mathrm{DD}}-0.3$	$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
$\mathrm{~V}_{\text {USB_DP }}$	USB_DP input voltage	-0.3	3.63	V
$\mathrm{~V}_{\text {USB_DM }}$	USB_DM input voltage	-0.3	3.63	V
VREGIN	USB regulator input	-0.3	6.0	V
$\mathrm{~V}_{\text {BAT }}$	RTC battery supply voltage	-0.3	3.8	V

1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.

5 General

5.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

The midpoint is $\mathrm{V}_{\mathrm{IL}}+\left(\mathrm{V}_{\mathrm{IH}}-\mathrm{V}_{\mathrm{IL}}\right) / 2$.
Figure 1. Input signal measurement reference
All digital I/O switching characteristics assume:

1. output pins

- have $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ loads,
- are configured for fast slew rate (PORTx_PCRn[SRE]=0), and
- are configured for high drive strength (PORTx_PCRn[DSE]=1)

2. input pins

- have their passive filter disabled (PORTx_PCRn[PFE]=0)

5.2 Nonswitching electrical specifications

5.2.1 Voltage and current operating requirements

Table 1. Voltage and current operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
$V_{\text {DD }}$	Supply voltage	1.71	3.6	V	
$V_{\text {DDA }}$	Analog supply voltage	1.71	3.6	V	
$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {DDA }}$	$\mathrm{V}_{\text {DD }}$-to- $\mathrm{V}_{\text {DDA }}$ differential voltage	-0.1	0.1	V	
$\mathrm{V}_{\text {SS }}-\mathrm{V}_{\text {SSA }}$	$\mathrm{V}_{\text {SS }}$-to- $\mathrm{V}_{\text {SSA }}$ differential voltage	-0.1	0.1	V	
$\mathrm{V}_{\text {BAT }}$	RTC battery supply voltage	1.71	3.6	V	
V_{IH}	Input high voltage - $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$ - $1.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 2.7 \mathrm{~V}$	$\begin{aligned} & 0.7 \times V_{\mathrm{DD}} \\ & 0.75 \times \mathrm{V}_{\mathrm{DD}} \end{aligned}$	-	$\begin{aligned} & V \\ & V \end{aligned}$	
VIL	Input low voltage - $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$ - $1.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 2.7 \mathrm{~V}$	-	$\begin{gathered} 0.35 \times V_{D D} \\ 0.3 \times V_{D D} \end{gathered}$	$\begin{aligned} & V \\ & V \end{aligned}$	
$\mathrm{V}_{\mathrm{HYS}}$	Input hysteresis	$0.06 \times \mathrm{V}_{\mathrm{DD}}$	-	V	
IICDIO	Digital pin negative DC injection current - single pin - $\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$	-5	-	mA	1
İCAIo	Analog ${ }^{2}$, EXTAL, and XTAL pin DC injection current single pin - $\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ (Negative current injection) - $\mathrm{V}_{\mathrm{IN}}>\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ (Positive current injection)	-5	$\begin{aligned} & -5 \end{aligned}$	mA	3
IICcont	Contiguous pin DC injection current —regional limit, includes sum of negative injection currents or sum of positive injection currents of 16 contiguous pins - Negative current injection - Positive current injection	$\begin{gathered} -25 \\ - \end{gathered}$	$\begin{gathered} - \\ +25 \end{gathered}$	mA	
$V_{\text {ODPU }}$	Open drain pullup voltage level	$V_{D D}$	$V_{\text {DD }}$	V	4
$V_{\text {RAM }}$	V_{DD} voltage required to retain RAM	1.2	-	V	
$\mathrm{V}_{\text {RFVBAT }}$	$\mathrm{V}_{\text {BAT }}$ voltage required to retain the VBAT register file	V POR_VBAT	-	V	

1. All 5 V tolerant digital I / O pins are internally clamped to $\mathrm{V}_{S S}$ through an ESD protection diode. There is no diode connection to V_{DD}. If $\mathrm{V}_{I N}$ is less than $\mathrm{V}_{\text {DIO_MIN }}$, a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as $R=\left(V_{\text {DIO_MIN }}-V_{\text {IN }}\right) / I_{\text {ICDIO }} \mid$.
2. Analog pins are defined as pins that do not have an associated general purpose I/O port function. Additionally, EXTAL and XTAL are analog pins.
3. All analog pins are internally clamped to $\mathrm{V}_{S S}$ and V_{DD} through ESD protection diodes. If V_{IN} is less than $\mathrm{V}_{\text {AIO_MIN }}$ or greater than $\mathrm{V}_{\text {AIO_MAX }}$, a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as $R=\left(V_{A I O} M_{I N}-V_{I N}\right) / I_{I C A I O}$. The positive injection current limiting resistor is calculated as $R=\left(V_{I N}-V_{A I O}{ }_{M A X}\right) / I_{I C A I O}$. Select the larger of these two calculated resistances if the pin is exposed to positive and negative injection currents.
4. Open drain outputs must be pulled to VDD.

5.2.2 LVD and POR operating requirements

Table 2. $V_{D D}$ supply LVD and POR operating requirements

Symbol	Description	Min.	Typ.	Max.	Unit	Notes
$\mathrm{V}_{\text {POR }}$	Falling VDD POR detect voltage	0.8	1.1	1.5	V	
$\mathrm{V}_{\text {LVDH }}$	Falling low-voltage detect threshold - high range (LVDV=01)	2.48	2.56	2.64	V	
$\mathrm{V}_{\text {LVW1H }}$ $\mathrm{V}_{\text {LVW2H }}$ $V_{\text {LVW3H }}$ $\mathrm{V}_{\text {LVW4H }}$	Low-voltage warning thresholds - high range - Level 1 falling (LVWV=00) - Level 2 falling (LVWV=01) - Level 3 falling (LVWV=10) - Level 4 falling (LVWV=11)	$\begin{aligned} & 2.62 \\ & 2.72 \\ & 2.82 \\ & 2.92 \end{aligned}$	$\begin{aligned} & 2.70 \\ & 2.80 \\ & 2.90 \\ & 3.00 \end{aligned}$	$\begin{aligned} & 2.78 \\ & 2.88 \\ & 2.98 \\ & 3.08 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	1
$\mathrm{V}_{\mathrm{HYSH}}$	Low-voltage inhibit reset/recover hysteresis high range	-	± 80	-	mV	
$\mathrm{V}_{\text {LVDL }}$	Falling low-voltage detect threshold — low range (LVDV=00)	1.54	1.60	1.66	V	
$V_{\text {LVW1L }}$ VLVw2L $V_{\text {LVW3L }}$ $V_{\text {LVW4L }}$	Low-voltage warning thresholds - low range - Level 1 falling (LVWV=00) - Level 2 falling (LVWV=01) - Level 3 falling (LVWV=10) - Level 4 falling (LVWV=11)	$\begin{aligned} & 1.74 \\ & 1.84 \\ & 1.94 \\ & 2.04 \end{aligned}$	$\begin{aligned} & 1.80 \\ & 1.90 \\ & 2.00 \\ & 2.10 \end{aligned}$	$\begin{aligned} & 1.86 \\ & 1.96 \\ & 2.06 \\ & 2.16 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	1
$\mathrm{V}_{\text {HYSL }}$	Low-voltage inhibit reset/recover hysteresis low range	-	± 60	-	mV	
$V_{B G}$	Bandgap voltage reference	0.97	1.00	1.03	V	
tLPO	Internal low power oscillator period - factory trimmed	900	1000	1100	$\mu \mathrm{s}$	

1. Rising thresholds are falling threshold + hysteresis voltage

Table 3. VBAT power operating requirements

Symbol	Description	Min.	Typ.	Max.	Unit	Notes
V POR_VBAT	Falling VBAT supply POR detect voltage	0.8	1.1	1.5	V	

5.2.3 Voltage and current operating behaviors

Table 4. Voltage and current operating behaviors

Symbol	Description	Min.	Typ. ${ }^{1}$	Max.	Unit	Notes
V_{OH}	Output high voltage - high drive strength - $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-9 \mathrm{~mA}$ - $1.71 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 2.7 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	$\begin{aligned} & V_{D D}-0.5 \\ & V_{D D}-0.5 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	—	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	
	Output high voltage - low drive strength - $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$ - $1.71 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 2.7 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-0.6 \mathrm{~mA}$	$\begin{aligned} & V_{D D}-0.5 \\ & V_{D D}-0.5 \end{aligned}$	-	-	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	
IOHT	Output high current total for all ports	-	-	100	mA	
V OL	Output low voltage - high drive strength - $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=9 \mathrm{~mA}$ - $1.71 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 2.7 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=3 \mathrm{~mA}$	—	—	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$	2
	Output low voltage - low drive strength - $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$ - $1.71 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 2.7 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=0.6 \mathrm{~mA}$	—	—	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	
IOLT	Output low current total for all ports	-	-	100	mA	
$\mathrm{I}_{\text {INA }}$	Input leakage current, analog pins and digital pins configured as analog inputs - $\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{DD}}$ - All pins except EXTAL32, XTAL32, EXTAL, XTAL - EXTAL (PTA18) and XTAL (PTA19) - EXTAL32, XTAL32	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 0.002 \\ & 0.004 \\ & 0.075 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.5 \\ & 10 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$	3, 4
$\mathrm{I}_{\text {IND }}$	Input leakage current, digital pins - $\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}$ - All digital pins - $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$ - All digital pins except PTD7 - PTD7		$\begin{aligned} & 0.002 \\ & 0.002 \\ & 0.004 \end{aligned}$	$\begin{gathered} 0.5 \\ 0.5 \\ 1 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$	4, 5
$\mathrm{I}_{\text {IND }}$	Input leakage current, digital pins - $\mathrm{V}_{\mathrm{IL}}<\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{DD}}$ - $V_{D D}=3.6 \mathrm{~V}$ - $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ - $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ - $\mathrm{V}_{\mathrm{DD}}=1.7 \mathrm{~V}$		$\begin{gathered} 18 \\ 12 \\ 8 \\ 3 \end{gathered}$	$\begin{gathered} 26 \\ 49 \\ 13 \\ 6 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$	4, 5, 6

Table continues on the next page...

Table 4. Voltage and current operating behaviors (continued)

Symbol	Description	Min.	Typ. ${ }^{1}$	Max.	Unit	Notes
$\mathrm{I}_{\mathrm{IND}}$	Input leakage current, digital pins $\bullet \mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\mathrm{IN}}<5.5 \mathrm{~V}$					4,5
$\mathrm{Z}_{\mathrm{IND}}$	Input impedance examples, digital pins					
	$\bullet \mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$	-	1	50	$\mu \mathrm{~A}$	
	$\bullet \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	-	-	48	$\mathrm{k} \Omega$	4,7
	$\bullet \mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V}$	-	-	55	$\mathrm{k} \Omega$	
	$\bullet \mathrm{V}_{\mathrm{DD}}=1.7 \mathrm{~V}$	-	-	57	$\mathrm{k} \Omega$	
R_{PU}	Internal pullup resistors	-	-	85	$\mathrm{k} \Omega$	
R_{PD}	Internal pulldown resistors	20	35	50	$\mathrm{k} \Omega$	8

1. Typical values characterized at $25^{\circ} \mathrm{C}$ and $\mathrm{VDD}=3.6 \mathrm{~V}$ unless otherwise noted.
2. Open drain outputs must be pulled to V_{DD}.
3. Analog pins are defined as pins that do not have an associated general purpose I/O port function.
4. Digital pins have an associated GPIO port function and have 5V tolerant inputs, except EXTAL and XTAL.
5. Internal pull-up/pull-down resistors disabled.
6. Characterized, not tested in production.
7. Examples calculated using $V_{I L}$ relation, $V_{D D}$, and $\max I_{I N D}: Z_{I N D}=V_{I L} / I_{I N D}$. This is the impedance needed to pull a high signal to a level below V_{IL} due to leakage when $\mathrm{V}_{\mathrm{IL}}<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\mathrm{DD}}$. These examples assume signal source low $=0 \mathrm{~V}$.
8. Measured at $V_{D D}$ supply voltage $=V_{D D}$ min and Vinput $=V_{S S}$
9. Measured at V_{DD} supply voltage $=\mathrm{V}_{\mathrm{DD}}$ min and Vinput $=\mathrm{V}_{\mathrm{DD}}$

5.2.4 Power mode transition operating behaviors

All specifications except $t_{\text {POR }}$, and VLLSx \rightarrow RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks $=100 \mathrm{MHz}$
- Bus clock $=50 \mathrm{MHz}$
- FlexBus clock $=50 \mathrm{MHz}$
- Flash clock $=25 \mathrm{MHz}$
- MCG mode: FEI

Table 5. Power mode transition operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
$\mathrm{t}_{\text {POR }}$	After a POR event, amount of time from the point $V_{D D}$ reaches 1.71 V to execution of the first instruction across the operating temperature range of the chip. - $V_{D D}$ slew rate $\geq 5.7 \mathrm{kV} / \mathrm{s}$ - V_{DD} slew rate $<5.7 \mathrm{kV} / \mathrm{s}$	-	$\begin{gathered} 300 \\ 1.7 \mathrm{~V} /\left(\mathrm{V}_{\mathrm{DD}}\right. \\ \text { slew rate }) \end{gathered}$	$\mu \mathrm{s}$	1
	- VLLS1 \rightarrow RUN	-	134	$\mu \mathrm{s}$	
	- VLLS2 \rightarrow RUN	-	96	$\mu \mathrm{s}$	
	- VLLS3 \rightarrow RUN	-	96	$\mu \mathrm{s}$	
	- LLS \rightarrow RUN	-	6.2	$\mu \mathrm{s}$	
	- VLPS \rightarrow RUN	-	5.9	$\mu \mathrm{s}$	
	- STOP \rightarrow RUN	-	5.9	$\mu \mathrm{s}$	

1. Normal boot (FTFL_OPT[LPBOOT]=1)

5.2.5 Power consumption operating behaviors

Table 6. Power consumption operating behaviors

Symbol	Description	Min.	Typ.	Max.	Unit	Notes
$\mathrm{I}_{\text {DDA }}$	Analog supply current	-	-	See note	mA	1
$\mathrm{I}_{\text {DD_RUN }}$	Run mode current - all peripheral clocks disabled, code executing from flash - @ 1.8V - @ 3.0V	—	$\begin{aligned} & 45 \\ & 47 \end{aligned}$	$\begin{aligned} & 70 \\ & 72 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	2
$\mathrm{I}_{\text {DD_RUN }}$	Run mode current - all peripheral clocks enabled, code executing from flash - @ 1.8V - @ 3.0V - @ $25^{\circ} \mathrm{C}$ - @ $125^{\circ} \mathrm{C}$		61 $\begin{aligned} & 63 \\ & 72 \end{aligned}$	85 71 87	mA mA mA	3, 4
IDD_WAIT	Wait mode high frequency current at 3.0 V - all peripheral clocks disabled	-	35	-	mA	2
IDD_WAIT	Wait mode reduced frequency current at 3.0 V all peripheral clocks disabled	-	15	-	mA	5
IDD_VLPR	Very-low-power run mode current at 3.0 V - all peripheral clocks disabled	-	N/A	-	mA	6

Table continues on the next page...

K52 Sub-Family Data Sheet Data Sheet, Rev. 7, 02/2013.

Table 6. Power consumption operating behaviors (continued)

Symbol	Description	Min.	Typ.	Max.	Unit	Notes
$\mathrm{I}_{\text {DD_VLPR }}$	Very-low-power run mode current at 3.0 V - all peripheral clocks enabled	-	N/A	-	mA	7
IDD_VLPW	Very-low-power wait mode current at 3.0 V - all peripheral clocks disabled	-	N/A	-	mA	8
$\mathrm{I}_{\text {DD_Stop }}$	Stop mode current at 3.0 V - @ -40 to $25^{\circ} \mathrm{C}$ - @ $70^{\circ} \mathrm{C}$ - @ $105^{\circ} \mathrm{C}$		$\begin{aligned} & 0.59 \\ & 2.26 \\ & 5.94 \end{aligned}$	$\begin{gathered} 1.4 \\ 7.9 \\ 19.2 \end{gathered}$	mA mA mA	
$\mathrm{I}_{\text {DD_VLPS }}$	Very-low-power stop mode current at 3.0 V - @ -40 to $25^{\circ} \mathrm{C}$ - @ $70^{\circ} \mathrm{C}$ - @ $105^{\circ} \mathrm{C}$		$\begin{gathered} 93 \\ 520 \\ 1350 \end{gathered}$	$\begin{gathered} 435 \\ 2000 \\ 4000 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$	
$\mathrm{I}_{\text {DD_LLS }}$	Low leakage stop mode current at 3.0 V - @ -40 to $25^{\circ} \mathrm{C}$ - @ $70^{\circ} \mathrm{C}$ - @ $105^{\circ} \mathrm{C}$		$\begin{gathered} 4.8 \\ 28 \\ 126 \end{gathered}$	$\begin{gathered} 20 \\ 68 \\ 270 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$	9
$\mathrm{I}_{\text {DD_VLLS3 }}$	Very low-leakage stop mode 3 current at 3.0 V - @ -40 to $25^{\circ} \mathrm{C}$ - @ $70^{\circ} \mathrm{C}$ - @ $105^{\circ} \mathrm{C}$		$\begin{gathered} 3.1 \\ 17 \\ 82 \end{gathered}$	$\begin{gathered} 8.9 \\ 35 \\ 148 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$	9
$\mathrm{I}_{\text {DD_VLLS2 }}$	Very low-leakage stop mode 2 current at 3.0 V - @ -40 to $25^{\circ} \mathrm{C}$ - @ $70^{\circ} \mathrm{C}$ - @ $105^{\circ} \mathrm{C}$		$\begin{aligned} & 2.2 \\ & 7.1 \\ & 41 \end{aligned}$	$\begin{gathered} 5.4 \\ 12.5 \\ 125 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$	
$\mathrm{I}_{\text {DD_VLLS } 1}$	Very low-leakage stop mode 1 current at 3.0 V - @ -40 to $25^{\circ} \mathrm{C}$ - @ $70^{\circ} \mathrm{C}$ - @ $105^{\circ} \mathrm{C}$	—	$\begin{aligned} & 2.1 \\ & 6.2 \\ & 30 \end{aligned}$	$\begin{gathered} 7.6 \\ 13.5 \\ 46 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$	
IDD_VBAT	Average current with RTC and 32 kHz disabled at 3.0 V - @ -40 to $25^{\circ} \mathrm{C}$ - @ $70^{\circ} \mathrm{C}$ - @ $105^{\circ} \mathrm{C}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.60 \\ & 1.97 \end{aligned}$	$\begin{gathered} 0.39 \\ 0.78 \\ 2.9 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$	

Table continues on the next page...

Table 6. Power consumption operating behaviors (continued)

Symbol	Description	Min.	Typ.	Max.	Unit	Notes
IDD_VBAT	Average current when CPU is not accessing RTC registers - @ 1.8V - @ -40 to $25^{\circ} \mathrm{C}$ - @ $70^{\circ} \mathrm{C}$ - @ $105^{\circ} \mathrm{C}$ - @ 3.0V - @ -40 to $25^{\circ} \mathrm{C}$ - @ $70^{\circ} \mathrm{C}$ - @ $105^{\circ} \mathrm{C}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 0.71 \\ & 1.01 \\ & 2.82 \\ & \\ & 0.84 \\ & 1.17 \\ & 3.16 \end{aligned}$	$\begin{gathered} 0.81 \\ 1.3 \\ 4.3 \\ \\ 0.94 \\ 1.5 \\ 4.6 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$	10

1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.
2. 100 MHz core and system clock, 50 MHz bus and FlexBus clock, and 25 MHz flash clock. MCG configured for FEl mode. All peripheral clocks disabled.
3. 100 MHz core and system clock, 50 MHz bus and FlexBus clock, and 25 MHz flash clock. MCG configured for FEI mode. All peripheral clocks enabled.
4. Max values are measured with CPU executing DSP instructions.
5. 25 MHz core and system clock, 25 MHz bus clock, and 12.5 MHz FlexBus and flash clock. MCG configured for FEI mode.
6. 2 MHz core, system, FlexBus, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. Code executing from flash.
7. 2 MHz core, system, FlexBus, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks enabled but peripherals are not in active operation. Code executing from flash.
8. 2 MHz core, system, FlexBus, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled.
9. Data reflects devices with 128 KB of RAM.
10. Includes 32 kHz oscillator current and RTC operation.

5.2.5.1 Diagram: Typical IDD_RUN operating behavior

The following data was measured under these conditions:

- MCG in FBE mode for 50 MHz and lower frequencies. MCG in FEE mode at greater than 50 MHz frequencies.
- USB regulator disabled
- No GPIOs toggled
- Code execution from flash with cache enabled
- For the ALLOFF curve, all peripheral clocks are disabled except FTFL

Figure 2. Run mode supply current vs. core frequency

5.2.6 EMC radiated emissions operating behaviors

Table 7. EMC radiated emissions operating behaviors as measured on 144LQFP and 144MAPBGA packages

Symbol	Description	Frequency band (MHz)	144LQFP	144MAPBGA	Unit	Notes
$\mathrm{V}_{\mathrm{RE} 1}$	Radiated emissions voltage, band 1	0.15-50	23	12	$\mathrm{dB} \mu \mathrm{V}$	1, 2
$\mathrm{V}_{\text {RE2 }}$	Radiated emissions voltage, band 2	50-150	27	24	$\mathrm{dB} \mu \mathrm{V}$	
$\mathrm{V}_{\text {RE3 }}$	Radiated emissions voltage, band 3	150-500	28	27	$\mathrm{dB} \mu \mathrm{V}$	
$\mathrm{V}_{\text {RE4 }}$	Radiated emissions voltage, band 4	500-1000	14	11	$\mathrm{dB} \mu \mathrm{V}$	
$\mathrm{V}_{\text {RE_IEC }}$	IEC level	0.15-1000	K	K	-	2, 3

1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions - TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.

K52 Sub-Family Data Sheet Data Sheet, Rev. 7, 02/2013.
2. $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{OSC}}=12 \mathrm{MHz}$ (crystal), $\mathrm{f}_{\mathrm{SYS}}=96 \mathrm{MHz}, \mathrm{f}_{\mathrm{BUS}}=48 \mathrm{MHz}$
3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions - TEM Cell and Wideband TEM Cell Method

5.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

1. Go to www.freescale.com.
2. Perform a keyword search for "EMC design."

5.2.8 Capacitance attributes

Table 8. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
$\mathrm{C}_{\mathrm{IN} _\mathrm{A}}$	Input capacitance: analog pins	-	7	pF
$\mathrm{C}_{\mathrm{IN} _\mathrm{D}}$	Input capacitance: digital pins	-	7	pF

5.3 Switching specifications

5.3.1 Device clock specifications

Table 9. Device clock specifications

Symbol	Description	Min.	Max.	Unit	Notes
Normal run mode					
$\mathrm{f}_{\text {SYS }}$	System and core clock	-	100	MHz	
$\mathrm{f}_{\text {SYS_USB }}$	System and core clock when Full Speed USB in operation	20	-	MHz	
$\mathrm{f}_{\text {ENET }}$	System and core clock when ethernet in operation - 10 Mbps - 100 Mbps	$\begin{gathered} 5 \\ 50 \end{gathered}$	-	MHz	
$\mathrm{f}_{\text {BUS }}$	Bus clock	-	50	MHz	
FB_CLK	FlexBus clock	-	50	MHz	
$\mathrm{f}_{\text {FLASH }}$	Flash clock	-	25	MHz	
f LPTMR	LPTMR clock	-	25	MHz	

5.3.2 General switching specifications

These general purpose specifications apply to all signals configured for GPIO, UART, CMT, IEEE 1588 timer, and $\mathrm{I}^{2} \mathrm{C}$ signals.

Table 10. General switching specifications

Symbol	Description	Min.	Max.	Unit	Notes
	GPIO pin interrupt pulse width (digital glitch filter disabled) - Synchronous path	1.5	-	Bus clock cycles	1, 2
	GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) - Asynchronous path	100	-	ns	3
	GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled) - Asynchronous path	16	-	ns	3
	External reset pulse width (digital glitch filter disabled)	100	-	ns	3
	Mode select (EZP_CS) hold time after reset deassertion	2	-	Bus clock cycles	
	Port rise and fall time (high drive strength) - Slew disabled - $1.71 \leq \mathrm{V}_{\mathrm{DD}} \leq 2.7 \mathrm{~V}$ - $2.7 \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$ - Slew enabled - $1.71 \leq \mathrm{V}_{\mathrm{DD}} \leq 2.7 \mathrm{~V}$ - $2.7 \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$		12 6 36 24	ns ns ns ns	4
	Port rise and fall time (low drive strength) - Slew disabled - $1.71 \leq V_{D D} \leq 2.7 \mathrm{~V}$ - $2.7 \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$ - Slew enabled - $1.71 \leq V_{D D} \leq 2.7 \mathrm{~V}$ - $2.7 \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$		12 6 36 24	ns ns ns ns	5

1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can be recognized in that case.
2. The greater synchronous and asynchronous timing must be met.
3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and VLLSx modes.
4. 75 pF load
5. 15 pF load

5.4 Thermal specifications

5.4.1 Thermal operating requirements

Table 11. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit
T_{J}	Die junction temperature	-40	125	${ }^{\circ} \mathrm{C}$
T_{A}	Ambient temperature	-40	85	${ }^{\circ} \mathrm{C}$

5.4.2 Thermal attributes

Board type	Symbol	Description	144 LQFP	$\begin{gathered} 144 \\ \text { MAPBGA } \end{gathered}$	Unit	Notes
Single-layer (1s)	$\mathrm{R}_{\text {өJA }}$	Thermal resistance, junction to ambient (natural convection)	45	48	${ }^{\circ} \mathrm{C} / \mathrm{W}$	1
Four-layer (2s2p)	$\mathrm{R}_{\text {өJA }}$	Thermal resistance, junction to ambient (natural convection)	36	29	${ }^{\circ} \mathrm{C} / \mathrm{W}$	1
Single-layer (1s)	$\mathrm{R}_{\text {өJMA }}$	Thermal resistance, junction to ambient (200 ft./ min. air speed)	36	38	${ }^{\circ} \mathrm{C} / \mathrm{W}$	1
Four-layer (2s2p)	$\mathrm{R}_{\text {өJMA }}$	Thermal resistance, junction to ambient (200 ft./ min. air speed)	30	25	${ }^{\circ} \mathrm{C} / \mathrm{W}$	1
-	$\mathrm{R}_{\text {өJB }}$	Thermal resistance, junction to board	24	16	${ }^{\circ} \mathrm{C} / \mathrm{W}$	2
-	$\mathrm{R}_{\text {өJC }}$	Thermal resistance, junction to case	9	9	${ }^{\circ} \mathrm{C} / \mathrm{W}$	3
-	$\Psi_{\text {JT }}$	Thermal characterization parameter, junction to package top outside center (natural convection)	2	2	${ }^{\circ} \mathrm{C} / \mathrm{W}$	4

1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions - Forced Convection (Moving Air).

rerpheral operating requirements and behaviors

2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions-Junction-to-Board.
3. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions-Natural Convection (Still Air).

6 Peripheral operating requirements and behaviors

6.1 Core modules

6.1.1 Debug trace timing specifications

Table 12. Debug trace operating behaviors

Symbol	Description	Min.	Max.	Unit
$\mathrm{T}_{\mathrm{cyc}}$	Clock period	Frequency dependent	MHz	
T_{wl}	Low pulse width	2	-	ns
T_{wh}	High pulse width	2	-	ns
T_{r}	Clock and data rise time	-	3	ns
$\mathrm{~T}_{\mathrm{f}}$	Clock and data fall time	-	3	ns
$\mathrm{~T}_{\mathrm{s}}$	Data setup	3	-	ns
T_{h}	Data hold	2	-	ns

Figure 3. TRACE_CLKOUT specifications

TRACE_CLKOUT

TRACE_D[3:0]

Figure 4. Trace data specifications

6.1.2 JTAG electricals

Table 13. JTAG limited voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
J1	TCLK frequency of operation - Boundary Scan - JTAG and CJTAG - Serial Wire Debug	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 10 \\ & 25 \\ & 50 \end{aligned}$	MHz
J2	TCLK cycle period	1/J1	-	ns
J3	TCLK clock pulse width - Boundary Scan - JTAG and CJTAG - Serial Wire Debug	$\begin{aligned} & 50 \\ & 20 \\ & 10 \end{aligned}$	$-$	ns ns ns
J4	TCLK rise and fall times	-	3	ns
J5	Boundary scan input data setup time to TCLK rise	20	-	ns
J6	Boundary scan input data hold time after TCLK rise	0	-	ns
J7	TCLK low to boundary scan output data valid	-	25	ns
J8	TCLK low to boundary scan output high-Z	-	25	ns
J9	TMS, TDI input data setup time to TCLK rise	8	-	ns
J10	TMS, TDI input data hold time after TCLK rise	1	-	ns
J11	TCLK low to TDO data valid	-	17	ns
J12	TCLK low to TDO high-Z	-	17	ns
J13	TRST assert time	100	-	ns
J14	TRST setup time (negation) to TCLK high	8	-	ns

Table 14. JTAG full voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
J1	TCLK frequency of operation			MHz
	\bullet Boundary Scan	0	10	
	\bullet JTAG and CJTAG	0	20	
	•Serial Wire Debug	0	40	
J2	TCLK cycle period	$1 / \mathrm{J} 1$	-	ns

Table continues on the next page...
rerrpheral operating requirements and behaviors
Table 14. JTAG full voltage range electricals (continued)

Symbol	Description	Min.	Max.	Unit
J3	TCLK clock pulse width - Boundary Scan - JTAG and CJTAG - Serial Wire Debug	$\begin{gathered} 50 \\ 25 \\ 12.5 \end{gathered}$		ns ns ns
J4	TCLK rise and fall times	-	3	ns
J5	Boundary scan input data setup time to TCLK rise	20	-	ns
J6	Boundary scan input data hold time after TCLK rise	0	-	ns
J7	TCLK low to boundary scan output data valid	-	25	ns
J8	TCLK low to boundary scan output high-Z	-	25	ns
J9	TMS, TDI input data setup time to TCLK rise	8	-	ns
J10	TMS, TDI input data hold time after TCLK rise	1.4	-	ns
J11	TCLK low to TDO data valid	-	22.1	ns
J12	TCLK low to TDO high-Z	-	22.1	ns
J13	TRST assert time	100	-	ns
J14	TRST setup time (negation) to TCLK high	8	-	ns

Figure 5. Test clock input timing

Figure 6. Boundary scan (JTAG) timing

Figure 7. Test Access Port timing

Figure 8. TRST timing

6.2 System modules

There are no specifications necessary for the device's system modules.

6.3 Clock modules

6.3.1 MCG specifications

Table 15. MCG specifications

Symbol	Description	Min.	Typ.	Max.	Unit	Notes
$\mathrm{f}_{\text {ints_ft }}$	Internal reference frequency (slow clock) factory trimmed at nominal VDD and $25^{\circ} \mathrm{C}$	-	32.768	-	kHz	
$\mathrm{f}_{\text {ints_t }}$	Internal reference frequency (slow clock) - user trimmed - over fixed voltage and temperature range of $0-70^{\circ} \mathrm{C}$	31.25	-	38.2	kHz	
$\Delta_{\text {fdco_res_t }}$	Resolution of trimmed average DCO output frequency at fixed voltage and temperature using SCTRIM and SCFTRIM	-	± 0.3	± 0.6	\% $\mathrm{f}_{\text {dco }}$	1
$\Delta \mathrm{f}_{\text {dco_t }}$	Total deviation of trimmed average DCO output frequency over fixed voltage and temperature range of $0-70^{\circ} \mathrm{C}$	-	± 4.5	-	\% $\mathrm{f}_{\text {dco }}$	1
$\mathrm{f}_{\text {intf_ft }}$	Internal reference frequency (fast clock) factory trimmed at nominal VDD and $25^{\circ} \mathrm{C}$	-	4	-	MHz	
$\mathrm{finti}^{\text {_ } t}$	Internal reference frequency (fast clock) - user trimmed at nominal VDD and $25^{\circ} \mathrm{C}$	3	-	5	MHz	
$\mathrm{f}_{\text {loc_low }}$	Loss of external clock minimum frequency RANGE $=00$	$\begin{gathered} (3 / 5) x \\ f_{\text {ints_t }} \end{gathered}$	-	-	kHz	
$\mathrm{f}_{\text {loc_high }}$	Loss of external clock minimum frequency RANGE $=01,10$, or 11	$(16 / 5) x$ $f_{\text {ints_t }}$	-	-	kHz	
FLL						
$\mathrm{f}_{\text {fll_ref }}$	FLL reference frequency range	31.25	-	39.0625	kHz	

Table continues on the next page...

Table 15. MCG specifications (continued)

Symbol	Description		Min.	Typ.	Max.	Unit	Notes
$\mathrm{f}_{\text {dco }}$	DCO output frequency range	Low range (DRS=00) $640 \times \mathrm{f}_{\text {fll_ref }}$	20	20.97	25	MHz	2, 3
		$\begin{gathered} \text { Mid range (DRS=01) } \\ 1280 \times \mathrm{f}_{\text {fll_ref }} \end{gathered}$	40	41.94	50	MHz	
		$\begin{gathered} \text { Mid-high range (DRS=10) } \\ 1920 \times \mathrm{f}_{\text {fll_ref }} \end{gathered}$	60	62.91	75	MHz	
		$\begin{aligned} & \text { High range (DRS=11) } \\ & 2560 \times \mathrm{f}_{\text {fll_ref }} \end{aligned}$	80	83.89	100	MHz	
$\mathrm{f}_{\text {dco_t_DMX32 }}$	DCO output frequency	Low range (DRS=00) $732 \times \mathrm{f}_{\text {fll_ref }}$	-	23.99	-	MHz	4, 5
		$\begin{gathered} \text { Mid range (DRS=01) } \\ 1464 \times \mathrm{f}_{\text {fll_ref }} \\ \hline \end{gathered}$	-	47.97	-	MHz	
		Mid-high range (DRS=10) $2197 \times \mathrm{f}_{\text {fll_ref }}$	-	71.99	-	MHz	
		$\begin{aligned} & \text { High range (DRS=11) } \\ & 2929 \times \mathrm{f}_{\text {fll_ref }} \end{aligned}$	-	95.98	-	MHz	
$J_{\text {cyc_fll }}$	FLL period jitter - $\mathrm{f}_{\mathrm{VCO}}=48 \mathrm{MHz}$ - $\mathrm{f}_{\mathrm{VCO}}=98 \mathrm{MHz}$		-	$\begin{aligned} & 180 \\ & 150 \end{aligned}$	—	ps	
$\mathrm{t}_{\text {fll_acquire }}$	FLL target frequency acquisition time		-	-	1	ms	6
PLL							
$\mathrm{f}_{\text {vco }}$	VCO operating frequency		48.0	-	100	MHz	
Ipll	PLL operating current - PLL @ $96 \mathrm{MHz}\left(\mathrm{f}_{\text {osc_hi_1 }}=8 \mathrm{MHz}, \mathrm{f}_{\text {plı_ref }}=\right.$ 2 MHz , VDIV multiplier = 48)		-	1060	-	$\mu \mathrm{A}$	7
$\mathrm{Ipll}^{\text {l }}$	PLL operating current - PLL @ $48 \mathrm{MHz}\left(\mathrm{f}_{\text {osc_hi_1 }}=8 \mathrm{MHz}, \mathrm{f}_{\text {plı_ref }}=\right.$ 2 MHz , VDIV multiplier = 24)		-	600	-	$\mu \mathrm{A}$	7
$\mathrm{f}_{\text {pll_ref }}$	PLL reference frequency range		2.0	-	4.0	MHz	
$J_{\text {cyc_pll }}$	PLL period jitter (RMS) - $\mathrm{f}_{\mathrm{vco}}=48 \mathrm{MHz}$ - $\mathrm{f}_{\mathrm{vco}}=100 \mathrm{MHz}$		-	$\begin{gathered} 120 \\ 50 \end{gathered}$	-	ps ps	8
Jacc_pll	PLL accumulated jitter over $1 \mu \mathrm{~s}$ (RMS) - $\mathrm{f}_{\mathrm{vco}}=48 \mathrm{MHz}$ - $\mathrm{f}_{\mathrm{vco}}=100 \mathrm{MHz}$		-	$\begin{gathered} 1350 \\ 600 \end{gathered}$	—	$\begin{aligned} & \text { ps } \\ & \text { ps } \end{aligned}$	8
$\mathrm{D}_{\text {lock }}$	Lock entry frequency tolerance		± 1.49	-	± 2.98	\%	
$\mathrm{D}_{\text {unl }}$	Lock exit frequency tolerance		± 4.47	-	± 5.97	\%	
$\mathrm{t}_{\text {pll_lock }}$	Lock detector detection time		-	-	$\begin{gathered} 150 \times 10^{-6} \\ +1075(1 / \\ \left.f_{\text {pll_ref }}\right) \end{gathered}$	S	9

K52 Sub-Family Data Sheet Data Sheet, Rev. 7, 02/2013.

rerrpheral operating requirements and behaviors

1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEl clock mode).
2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
3. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation ($\Delta f_{\text {dco_t }}$) over voltage and temperature should be considered.
4. These typical values listed are with the slow internal reference clock (FEl) using factory trim and DMX32=1.
5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
6. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, $\mathrm{FBE}, \mathrm{FBI})$. If a crystal/resonator is being used as the reference, this specification assumes it is already running.
7. Excludes any oscillator currents that are also consuming power while PLL is in operation.
8. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
9. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

6.3.2 Oscillator electrical specifications

This section provides the electrical characteristics of the module.

6.3.2.1 Oscillator DC electrical specifications

Table 16. Oscillator DC electrical specifications

Symbol	Description	Min.	Typ.	Max.	Unit	Notes
V_{DD}	Supply voltage	1.71	-	3.6	V	
$\mathrm{I}_{\text {DDOSC }}$	Supply current — low-power mode (HGO=0) - 32 kHz - 4 MHz - 8 MHz (RANGE=01) - 16 MHz - 24 MHz - 32 MHz	- - - - - -	$\begin{aligned} & 500 \\ & 200 \\ & 300 \\ & 950 \\ & 1.2 \\ & 1.5 \end{aligned}$	- - - - - -	nA $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ mA mA	1
$\mathrm{I}_{\text {dDOSC }}$	Supply current - high gain mode (HGO=1) - 32 kHz - 4 MHz - 8 MHz (RANGE=01) - 16 MHz - 24 MHz - 32 MHz	- - - - - -	$\begin{gathered} 25 \\ 400 \\ 500 \\ 2.5 \\ 3 \\ 4 \end{gathered}$	- - - - - -	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ mA mA mA	1
C_{x}	EXTAL load capacitance	-	-	-		2, 3
C_{y}	XTAL load capacitance	-	-	-		2, 3

Table continues on the next page...

Table 16. Oscillator DC electrical specifications (continued)

Symbol	Description	Min.	Typ.	Max.	Unit	Notes
R_{F}	Feedback resistor — low-frequency, low-power mode (HGO=0)	-	-	-	$\mathrm{M} \Omega$	2, 4
	Feedback resistor - low-frequency, high-gain mode (HGO=1)	-	10	-	$\mathrm{M} \Omega$	
	Feedback resistor - high-frequency, low-power mode (HGO=0)	-	-	-	$\mathrm{M} \Omega$	
	Feedback resistor - high-frequency, high-gain mode (HGO=1)	-	1	-	$\mathrm{M} \Omega$	
R_{S}	Series resistor - low-frequency, low-power mode (HGO=0)	-	-	-	$\mathrm{k} \Omega$	
	Series resistor - low-frequency, high-gain mode ($\mathrm{HGO}=1$)	-	200	-	$\mathrm{k} \Omega$	
	Series resistor - high-frequency, low-power mode (HGO=0)	-	-	-	$\mathrm{k} \Omega$	
	Series resistor - high-frequency, high-gain mode (HGO=1)	-	0	-	$\mathrm{k} \Omega$	
$\mathrm{V}_{\mathrm{pp}}{ }^{5}$	Peak-to-peak amplitude of oscillation (oscillator mode) - low-frequency, low-power mode ($\mathrm{HGO}=0$)	-	0.6	-	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) - low-frequency, high-gain mode $(\mathrm{HGO}=1)$	-	V_{DD}	-	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) - high-frequency, low-power mode ($\mathrm{HGO}=0$)	-	0.6	-	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) - high-frequency, high-gain mode $(\mathrm{HGO}=1)$	-	V_{DD}	-	V	

1. $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$, Temperature $=25^{\circ} \mathrm{C}$
2. See crystal or resonator manufacturer's recommendation
3. $\mathrm{C}_{\mathrm{x}}, \mathrm{C}_{\mathrm{y}}$ can be provided by using either the integrated capacitors or by using external components.
4. When low power mode is selected, R_{F} is integrated and must not be attached externally.
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

6.3.2.2 Oscillator frequency specifications

Table 17. Oscillator frequency specifications

Symbol	Description	Min.	Typ.	Max.	Unit	Notes
$\mathrm{f}_{\text {osc_lo }}$	Oscillator crystal or resonator frequency — low frequency mode (MCG_C2[RANGE]=00)	32	-	40	kHz	
$\mathrm{f}_{\text {osc_hi_1 }}$	Oscillator crystal or resonator frequency — high frequency mode (low range) (MCG_C2[RANGE]=01)	3	-	8	MHz	

Table continues on the next page...

Table 17. Oscillator frequency specifications (continued)

Symbol	Description	Min.	Typ.	Max.	Unit	Notes
$\mathrm{f}_{\text {osc_hi_2 }}$	Oscillator crystal or resonator frequency - high frequency mode (high range) (MCG_C2[RANGE]=1x)	8	-	32	MHz	
$\mathrm{f}_{\text {ec_extal }}$	Input clock frequency (external clock mode)	-	-	50	MHz	1,2
$\mathrm{t}_{\text {dc_extal }}$	Input clock duty cycle (external clock mode)	40	50	60	$\%$	
$\mathrm{t}_{\text {cst }}$	Crystal startup time -32 kHz low-frequency, low-power mode (HGO=0)	-	750	-	ms	3,4
	Crystal startup time -32 kHz low-frequency, high-gain mode (HGO=1)	-	250	-	ms	
	Crystal startup time - 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)	-	0.6	-	ms	

1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.
2. When transitioning from FBE to FEI mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.
3. Proper PC board layout procedures must be followed to achieve specifications.
4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set.

NOTE

The 32 kHz oscillator works in low power mode by default and cannot be moved into high power/gain mode.

6.3.3 $\mathbf{3 2} \mathbf{~ k H z}$ Oscillator Electrical Characteristics

This section describes the module electrical characteristics.

6.3.3.1 32 kHz oscillator DC electrical specifications

Table 18. 32 kHz oscillator DC electrical specifications

Symbol	Description	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\mathrm{BAT}}$	Supply voltage	1.71	-	3.6	V
R_{F}	Internal feedback resistor	-	100	-	$\mathrm{M} \Omega$
$\mathrm{C}_{\text {para }}$	Parasitical capacitance of EXTAL32 and XTAL32	-	5	7	pF
$\mathrm{V}_{\mathrm{pp}}{ }^{1}$	Peak-to-peak amplitude of oscillation	-	0.6	-	V

1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to required oscillator components and must not be connected to any other devices.

6.3.3.2 32 kHz oscillator frequency specifications

Table 19. 32 kHz oscillator frequency specifications

Symbol	Description	Min.	Typ.	Max.	Unit	Notes
$\mathrm{f}_{\text {osc_lo }}$	Oscillator crystal	-	32.768	-	kHz	
$\mathrm{t}_{\text {start }}$	Crystal start-up time	-	1000	-	ms	1
$\mathrm{f}_{\text {ec_extal32 }}$	Externally provided input clock frequency	-	32.768	-	kHz	2
$\mathrm{v}_{\text {ec_extal32 }}$	Externally provided input clock amplitude	700	-	$\mathrm{V}_{\text {BAT }}$	mV	2,3

1. Proper PC board layout procedures must be followed to achieve specifications.
2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The oscillator remains enabled and XTAL32 must be left unconnected.
3. The parameter specified is a peak-to-peak value and V_{IH} and V_{IL} specifications do not apply. The voltage of the applied clock must be within the range of V_{SS} to $\mathrm{V}_{\mathrm{BAT}}$.

6.4 Memories and memory interfaces

6.4.1 Flash electrical specifications

This section describes the electrical characteristics of the flash memory module.

6.4.1.1 Flash timing specifications - program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

Table 20. NVM program/erase timing specifications

Symbol	Description	Min.	Typ.	Max.	Unit	Notes
$\mathrm{t}_{\text {hvpgm4 }}$	Longword Program high-voltage time	-	7.5	18	$\mu \mathrm{~s}$	
$\mathrm{t}_{\text {hversscr }}$	Sector Erase high-voltage time	-	13	113	ms	1
$\mathrm{t}_{\text {hversblk256k }}$	Erase Block high-voltage time for 256 KB	-	416	3616	ms	1

1. Maximum time based on expectations at cycling end-of-life.

6.4.1.2 Flash timing specifications - commands

Table 21. Flash command timing specifications

Symbol	Description	Min.	Typ.	Max.	Unit	Notes
	Read 1s Block execution time $\mathrm{t}_{\text {rd1blk256k }}$	256 KB program/data flash	-	-	1.7	ms
$\mathrm{t}_{\text {rd1sec2k }}$	Read 1s Section execution time (flash sector)	-	-	60	$\mu \mathrm{~s}$	1

Table continues on the next page...
rerrpheral operating requirements and behaviors
Table 21. Flash command timing specifications (continued)

Symbol	Description	Min.	Typ.	Max.	Unit	Notes
$t_{\text {pgmchk }}$	Program Check execution time	-	-	45	$\mu \mathrm{s}$	1
$\mathrm{t}_{\text {rdrsrc }}$	Read Resource execution time	-	-	30	$\mu \mathrm{s}$	1
$\mathrm{t}_{\text {pgm4 }}$	Program Longword execution time	-	65	145	$\mu \mathrm{s}$	
$\mathrm{t}_{\text {ersblk } 256 \mathrm{k}}$	Erase Flash Block execution time - 256 KB program/data flash	-	435	3700	ms	2
$\mathrm{t}_{\text {ersscr }}$	Erase Flash Sector execution time	-	14	114	ms	2
$t_{\text {pgmsec512 }}$ $\mathrm{t}_{\text {pgmsec } 1 \mathrm{k}}$ $\mathrm{t}_{\text {pgmsec2k }}$	Program Section execution time - 512 bytes flash - 1 KB flash - 2 KB flash	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 2.4 \\ & 4.7 \\ & 9.3 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	ms ms ms	
$\mathrm{t}_{\text {rdiall }}$	Read 1s All Blocks execution time	-	-	1.8	ms	
$\mathrm{t}_{\text {rdonce }}$	Read Once execution time	-	-	25	$\mu \mathrm{s}$	1
$\mathrm{t}_{\text {pgmonce }}$	Program Once execution time	-	65	-	$\mu \mathrm{s}$	
$t_{\text {ersall }}$	Erase All Blocks execution time	-	870	7400	ms	2
$\mathrm{t}_{\text {vfykey }}$	Verify Backdoor Access Key execution time	-	-	30	$\mu \mathrm{s}$	1
$t_{\text {swapx01 }}$ $t_{\text {swapx02 }}$ $\mathrm{t}_{\text {swapx04 }}$ $t_{\text {swapx08 }}$	Swap Control execution time - control code 0×01 - control code 0×02 - control code 0x04 - control code 0×08	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 200 \\ 70 \\ 70 \\ - \end{gathered}$	$\begin{gathered} - \\ 150 \\ 150 \\ 30 \end{gathered}$	$\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$	
$t_{\text {pgmpart64k }}$ $t_{\text {pgmpart256k }}$	Program Partition for EEPROM execution time - 256 KB FlexNVM	-	450	-	ms	
$t_{\text {setramff }}$ $\mathrm{t}_{\text {setram }}$ 32k $\mathrm{t}_{\text {setram64k }}$ $t_{\text {setram } 256 k}$	Set FlexRAM Function execution time: - Control Code 0xFF - 32 KB EEPROM backup - 64 KB EEPROM backup - 256 KB EEPROM backup	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 70 \\ & 0.8 \\ & 1.3 \\ & 4.5 \end{aligned}$	$\begin{aligned} & - \\ & 1.2 \\ & 1.9 \\ & 5.5 \end{aligned}$	$\mu \mathrm{s}$ ms ms ms	
Byte-write to FlexRAM for EEPROM operation						
$\mathrm{t}_{\text {eewr8bers }}$	Byte-write to erased FlexRAM location execution time	-	175	260	$\mu \mathrm{s}$	3
$t_{\text {eewr8b32k }}$ $t_{\text {eewr8b64k }}$ $t_{\text {eewr8b128k }}$ $t_{\text {eewr8b256k }}$	Byte-write to FlexRAM execution time: - 32 KB EEPROM backup - 64 KB EEPROM backup - 128 KB EEPROM backup - 256 KB EEPROM backup	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 385 \\ 475 \\ 650 \\ 1000 \end{gathered}$	$\begin{aligned} & 1800 \\ & 2000 \\ & 2400 \\ & 3200 \end{aligned}$	$\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$	
Word-write to FlexRAM for EEPROM operation						

Table continues on the next page...

K52 Sub-Family Data Sheet Data Sheet, Rev. 7, 02/2013.

Table 21. Flash command timing specifications (continued)

Symbol	Description	Min.	Typ.	Max.	Unit	Notes
$t_{\text {eewr16bers }}$	Word-write to erased FlexRAM location execution time	-	175	260	$\mu \mathrm{s}$	
$t_{\text {eewr16b32k }}$ $t_{\text {eewr16b64k }}$ $t_{\text {eewr16b128k }}$ $t_{\text {eewr16b256k }}$	Word-write to FlexRAM execution time: - 32 KB EEPROM backup - 64 KB EEPROM backup - 128 KB EEPROM backup - 256 KB EEPROM backup	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 385 \\ 475 \\ 650 \\ 1000 \end{gathered}$	$\begin{aligned} & 1800 \\ & 2000 \\ & 2400 \\ & 3200 \end{aligned}$	$\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$	
Longword-write to FlexRAM for EEPROM operation						
$\mathrm{t}_{\text {eewr32bers }}$	Longword-write to erased FlexRAM location execution time	-	360	540	$\mu \mathrm{s}$	
$t_{\text {eewr32b32k }}$ $t_{\text {eewr32b64k }}$ $t_{\text {eewr32b128k }}$ $t_{\text {eewr32b256k }}$	Longword-write to FlexRAM execution time: - 32 KB EEPROM backup - 64 KB EEPROM backup - 128 KB EEPROM backup - 256 KB EEPROM backup	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 630 \\ 810 \\ 1200 \\ 1900 \end{gathered}$	$\begin{aligned} & 2050 \\ & 2250 \\ & 2675 \\ & 3500 \end{aligned}$	$\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$	

1. Assumes 25 MHz flash clock frequency.
2. Maximum times for erase parameters based on expectations at cycling end-of-life.
3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.

6.4.1.3 Flash high voltage current behaviors Table 22. Flash high voltage current behaviors

Symbol	Description	Min.	Typ.	Max.	Unit
$\mathrm{I}_{\mathrm{DD} _ \text {PGM }}$	Average current adder during high voltage flash programming operation	-	2.5	6.0	mA
$\mathrm{I}_{\mathrm{DD} _ \text {ERS }}$	Average current adder during high voltage flash erase operation	-	1.5	4.0	mA

6.4.1.4 Reliability specifications

Table 23. NVM reliability specifications

Symbol	Description	Min.	Typ. ${ }^{1}$	Max.	Unit	Notes	
Program Flash							
$\mathrm{t}_{\text {nvmretp10k }}$	Data retention after up to 10 K cycles	5	50	-	years		
$\mathrm{t}_{\text {nvmretp1k }}$	Data retention after up to 1 K cycles	20	100	-	years		
$\mathrm{n}_{\text {nvmcycp }}$	Cycling endurance	10 K	50 K	-	cycles	2	
$\mathrm{t}_{\text {nvmretd10k }}$	Data retention after up to 10 K cycles	Data Flash					

Table continues on the next page...

Table 23. NVM reliability specifications (continued)

Symbol	Description	Min.	Typ. ${ }^{1}$	Max.	Unit	Notes
$\mathrm{t}_{\text {nvmretd1k }}$	Data retention after up to 1 K cycles	20	100	-	years	
$\mathrm{n}_{\text {nvmcycd }}$	Cycling endurance	10 K	50 K	-	cycles	2
FlexRAM as EEPROM						
$\mathrm{t}_{\text {nvmretee100 }}$	Data retention up to 100\% of write endurance	5	50	-	years	
$\mathrm{t}_{\text {nvmretee10 }}$	Data retention up to 10\% of write endurance	20	100	-	years	
$\mathrm{n}_{\text {nvmwree } 16}$ $\mathrm{n}_{\text {nvmwree } 128}$ $\mathrm{n}_{\text {nvmwree512 }}$ $\mathrm{n}_{\text {nvmwree }} \mathrm{k}$ $\mathrm{n}_{\text {nvmwree32k }}$	Write endurance - EEPROM backup to FlexRAM ratio $=16$ - EEPROM backup to FlexRAM ratio $=128$ - EEPROM backup to FlexRAM ratio $=512$ - EEPROM backup to FlexRAM ratio $=4096$ - EEPROM backup to FlexRAM ratio = 32,768	$\begin{gathered} 35 \mathrm{~K} \\ 315 \mathrm{~K} \\ 1.27 \mathrm{M} \\ 10 \mathrm{M} \\ 80 \mathrm{M} \end{gathered}$	$\begin{gathered} 175 \mathrm{~K} \\ 1.6 \mathrm{M} \\ 6.4 \mathrm{M} \\ 50 \mathrm{M} \\ 400 \mathrm{M} \end{gathered}$	- - - - -	writes writes writes writes writes	3

1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant $25^{\circ} \mathrm{C}$ use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.
2. Cycling endurance represents number of program/erase cycles at $-40^{\circ} \mathrm{C} \leq T_{j} \leq 125^{\circ} \mathrm{C}$.
3. Write endurance represents the number of writes to each FlexRAM location at $-40^{\circ} \mathrm{C} \leq T j \leq 125^{\circ} \mathrm{C}$ influenced by the cycling endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup per subsystem. Minimum and typical values assume all byte-writes to FlexRAM.

6.4.1.5 Write endurance to FlexRAM for EEPROM

When the FlexNVM partition code is not set to full data flash, the EEPROM data set size can be set to any of several non-zero values.

The bytes not assigned to data flash via the FlexNVM partition code are used by the flash memory module to obtain an effective endurance increase for the EEPROM data. The built-in EEPROM record management system raises the number of program/erase cycles that can be attained prior to device wear-out by cycling the EEPROM data through a larger EEPROM NVM storage space.

While different partitions of the FlexNVM are available, the intention is that a single choice for the FlexNVM partition code and EEPROM data set size is used throughout the entire lifetime of a given application. The EEPROM endurance equation and graph shown below assume that only one configuration is ever used.
Writes_subsystem $=\frac{\text { EEPROM }-2 \times \text { EEESPLIT } \times \text { EEESIZE }}{\text { EEESPLIT } \times \text { EEESIZE }} \times$ Write_efficiency $\times n_{\text {nvmoycd }}$
where

- Writes_subsystem - minimum number of writes to each FlexRAM location for subsystem (each subsystem can have different endurance)

K52 Sub-Family Data Sheet Data Sheet, Rev. 7, 02/2013.

- EEPROM - allocated FlexNVM for each EEPROM subsystem based on DEPART; entered with the Program Partition command
- EEESPLIT - FlexRAM split factor for subsystem; entered with the Program Partition command
- EEESIZE - allocated FlexRAM based on DEPART; entered with the Program Partition command
- Write_efficiency -
- 0.25 for 8 -bit writes to FlexRAM
- 0.50 for 16 -bit or 32 -bit writes to FlexRAM
- $\mathrm{n}_{\text {nvmcycd }}$ - data flash cycling endurance (the following graph assumes 10,000 cycles)

Figure 9. EEPROM backup writes to FlexRAM

6.4.2 EzPort Switching Specifications

Table 24. EzPort switching specifications

Num	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V

Table continues on the next page...

Table 24. EzPort switching specifications (continued)

Num	Description	Min.	Max.	Unit
EP1	EZP_CK frequency of operation (all commands except READ)	-	$\mathrm{f}_{\text {SYS }} / 2$	MHz
EP1a	EZP_CK frequency of operation (READ command)	-	$\mathrm{f}_{\text {SYS }} / 8$	MHz
EP2	EZP_CS negation to next EZP_CS assertion	$2 \times$ t EZP_CK	-	ns
EP3	EZP_CS input valid to EZP_CK high (setup)	5	-	ns
EP4	EZP_CK high to EZP_CS input invalid (hold)	5	-	ns
EP5	EZP_D input valid to EZP_CK high (setup)	2	-	ns
EP6	EZP_CK high to EZP_D input invalid (hold)	5	-	ns
EP7	EZP_CK low to EZP_Q output valid	-	16	ns
EP8	EZP_CK low to EZP_Q output invalid (hold)	-	-	ns
EP9	EZP_CS negation to EZP_Q tri-state	-	12	ns

Figure 10. EzPort Timing Diagram

6.4.3 Flexbus Switching Specifications

All processor bus timings are synchronous; input setup/hold and output delay are given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal system bus frequency or an integer divider of that frequency.

The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Flexbus output clock (FB_CLK). All other timing relationships can be derived from these values.

Table 25. Flexbus limited voltage range switching specifications

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	2.7	3.6	V	
	Frequency of operation	-	FB_CLK	MHz	
FB1	Clock period	20	-	ns	
FB2	Address, data, and control output valid	-	11.5	ns	1
FB3	Address, data, and control output hold	0.5	-	ns	1
FB4	Data and FB_TA input setup	8.5	-	ns	2
FB5	Data and FB_TA input hold	0.5	-	ns	2

1. Specification is valid for all $F B _A D[31: 0]$, $\overline{F B} _B E / B W E n, \overline{F B} _C S n, F B _O E, F B _R / W, F B _T B S T, F B _T S I Z[1: 0], F B _A L E$, and FB_TS.
2. Specification is valid for all FB_AD[31:0] and FB_TA.

Table 26. Flexbus full voltage range switching specifications

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	1.71	3.6	V	
	Frequency of operation	-	FB_CLK	MHz	
FB1	Clock period	$1 /$ FB_CLK	-	ns	
FB2	Address, data, and control output valid	-	13.5	ns	1
FB3	Address, data, and control output hold	0	-	ns	1
FB4	Data and FB_TA input setup	13.7	-	ns	2
FB5	Data and FB_TA input hold	0.5	-	ns	2

1. Specification is valid for all FB_AD[31:0], $\overline{F B} _B E / B W E n, \overline{F B} _C S n, \overline{F B} _O E, F B _R / W, \overline{F B} _T B S T, F B _T S I Z[1: 0], F B _A L E$, and FB_TS.
2. Specification is valid for all FB_AD[31:0] and FB_TA.
rerrpheral operating requirements and behaviors

Figure 11. FlexBus read timing diagram

Figure 12. FlexBus write timing diagram

6.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

6.6 Analog

6.6.1 ADC electrical specifications

The 16-bit accuracy specifications listed in Table 27 and Table 28 are achievable on the differential pins ADCx_DP0, ADCx_DM0, ADCx_DP1, ADCx_DM1, ADCx_DP3, and ADCx_DM3.

The ADCx_DP2 and ADCx_DM2 ADC inputs are connected to the PGA outputs and are not direct device pins. Accuracy specifications for these pins are defined in Table 29 and Table 30.

All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications.

6.6.1.1 16-bit ADC operating conditions

Table 27. 16-bit ADC operating conditions

Symbol	Description	Conditions	Min.	Typ. ${ }^{1}$	Max.	Unit	Notes
$\mathrm{V}_{\text {DDA }}$	Supply voltage	Absolute	1.71	-	3.6	V	
$\Delta \mathrm{V}_{\text {DDA }}$	Supply voltage	Delta to $\mathrm{V}_{\mathrm{DD}}\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{DDA}}\right)$	-100	0	+100	mV	2
$\Delta \mathrm{V}_{\text {SSA }}$	Ground voltage	Delta to $\mathrm{V}_{S S}\left(\mathrm{~V}_{S S}-\mathrm{V}_{S S A}\right)$	-100	0	+100	mV	2
$\mathrm{V}_{\text {REFH }}$	ADC reference voltage high		1.13	$\mathrm{V}_{\text {DDA }}$	$\mathrm{V}_{\text {DDA }}$	V	
$\mathrm{V}_{\text {REFL }}$	ADC reference voltage low		$\mathrm{V}_{\text {SSA }}$	$\mathrm{V}_{\text {SSA }}$	$\mathrm{V}_{\text {SSA }}$	V	
$\mathrm{V}_{\text {ADIN }}$	Input voltage	- 16-bit differential mode - All other modes	VREFL VREFL	$\begin{aligned} & - \\ & - \end{aligned}$	$31 / 32 \text { * }$ VREFH VREFH	V	
$\mathrm{C}_{\text {ADIN }}$	Input capacitance	- 16-bit mode - 8-bit / 10-bit / 12-bit modes	-	8	$\begin{gathered} 10 \\ 5 \end{gathered}$	pF	
$\mathrm{R}_{\text {ADIN }}$	Input resistance		-	2	5	k ת	
$\mathrm{R}_{\text {AS }}$	Analog source resistance	13-bit / 12-bit modes $\mathrm{f}_{\mathrm{ADCK}}<4 \mathrm{MHz}$	-	-	5	$\mathrm{k} \Omega$	3
$\mathrm{f}_{\text {ADCK }}$	ADC conversion clock frequency	≤ 13-bit mode	1.0	-	18.0	MHz	4
$\mathrm{f}_{\text {ADCK }}$	ADC conversion clock frequency	16-bit mode	2.0	-	12.0	MHz	4
$\mathrm{C}_{\text {rate }}$	ADC conversion rate	≤ 13-bit modes No ADC hardware averaging Continuous conversions enabled, subsequent conversion time	20.000	-	818.330	Ksps	5

Table continues on the next page...

Table 27. 16-bit ADC operating conditions (continued)

Symbol	Description	Conditions	Min.	Typ. ${ }^{1}$	Max.	Unit	Notes
$\mathrm{C}_{\text {rate }}$	ADC conversion rate	16-bit mode No ADC hardware averaging Continuous conversions enabled, subsequent conversion time	37.037	-	461.467	Ksps	5

1. Typical values assume $\mathrm{V}_{\mathrm{DDA}}=3.0 \mathrm{~V}$, $\mathrm{Temp}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{ADCK}}=1.0 \mathrm{MHz}$, unless otherwise stated. Typical values are for reference only, and are not tested in production.
2. DC potential difference.
3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had $<8 \Omega$ analog source resistance. The $R_{A S} / C_{A S}$ time constant should be kept to < 1 ns .
4. To use the maximum ADC conversion clock frequency, the ADHSC bit must be set and the ADLPC bit must be clear.
5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.

Figure 13. ADC input impedance equivalency diagram

6.6.1.2 16-bit ADC electrical characteristics
 Table 28. 16-bit ADC characteristics ($\mathrm{V}_{\text {REFH }}=\mathrm{V}_{\text {DDA }}, \mathrm{V}_{\text {REFL }}=\mathrm{V}_{\text {SSA }}$)

Symbol	Description	Conditions 1	Min.	Typ. 2	Max.	Unit	Notes
$I_{\text {DDA_ADC }}$	Supply current		0.215	-	1.7	mA	3

Table continues on the next page...
reripheral operating requirements and behaviors
Table 28. 16-bit ADC characteristics ($\mathrm{V}_{\text {REFH }}=\mathrm{V}_{\mathrm{DDA}}, \mathrm{V}_{\text {REFL }}=\mathrm{V}_{\mathrm{SSA}}$) (continued)

Symbol	Description	Conditions ${ }^{1}$	Min.	Typ. ${ }^{2}$	Max.	Unit	Notes
$\mathrm{f}_{\text {ADACK }}$	ADC asynchronous clock source	- $\operatorname{ADLPC}=1, \mathrm{ADHSC}=0$ - $\operatorname{ADLPC}=1, \mathrm{ADHSC}=1$ - $\operatorname{ADLPC}=0$, ADHSC $=0$ - $\operatorname{ADLPC}=0, \mathrm{ADHSC}=1$	$\begin{aligned} & \hline 1.2 \\ & 2.4 \\ & 3.0 \\ & 4.4 \end{aligned}$	$\begin{aligned} & \hline 2.4 \\ & 4.0 \\ & 5.2 \\ & 6.2 \end{aligned}$	$\begin{aligned} & 3.9 \\ & 6.1 \\ & 7.3 \\ & 9.5 \end{aligned}$	MHz MHz MHz MHz	$\begin{gathered} \mathrm{t}_{\mathrm{ADACK}}=1 / \\ \mathrm{f}_{\mathrm{ADACK}} \end{gathered}$
	Sample Time	See Reference Manual chapter for sample times					
TUE	Total unadjusted error	- 12-bit modes - <12-bit modes	-	$\begin{gathered} \pm 4 \\ \pm 1.4 \end{gathered}$	$\begin{aligned} & \pm 6.8 \\ & \pm 2.1 \end{aligned}$	LSB ${ }^{4}$	5
DNL	Differential nonlinearity	- 12-bit modes - <12-bit modes	$\begin{aligned} & \text { - } \\ & - \end{aligned}$	$\begin{aligned} & \pm 0.7 \\ & \pm 0.2 \end{aligned}$	$\begin{array}{\|c\|} \hline-1.1 \text { to }+1.9 \\ -0.3 \text { to } 0.5 \\ \hline \end{array}$	LSB ${ }^{4}$	5
INL	Integral nonlinearity	- 12-bit modes - <12-bit modes		$\begin{aligned} & \pm 1.0 \\ & \pm 0.5 \end{aligned}$	$\begin{array}{\|l\|} \hline-2.7 \text { to }+1.9 \\ -0.7 \text { to }+0.5 \\ \hline \end{array}$	LSB ${ }^{4}$	5
$\mathrm{EFS}_{\text {S }}$	Full-scale error	- 12-bit modes - <12-bit modes	-	$\begin{gathered} \hline-4 \\ -1.4 \end{gathered}$	$\begin{aligned} & \hline-5.4 \\ & -1.8 \end{aligned}$	LSB ${ }^{4}$	$\begin{gathered} \mathrm{V}_{\mathrm{ADIN}}= \\ \mathrm{V}_{\mathrm{DDA}} \\ 5 \end{gathered}$
E_{Q}	Quantization error	- 16-bit modes - ≤ 13-bit modes	-	$-1 \text { to } 0$	$\begin{gathered} - \\ \pm 0.5 \end{gathered}$	LSB ${ }^{4}$	
ENOB	Effective number of bits	16-bit differential mode - $\operatorname{Avg}=32$ - $\operatorname{Avg}=4$ 16-bit single-ended mode - $\operatorname{Avg}=32$ - $\operatorname{Avg}=4$	12.8 11.9 12.2 11.4	14.5 13.8 13.9 13.1		bits bits bits bits	6
SINAD	Signal-to-noise plus distortion	See ENOB	$6.02 \times \mathrm{ENOB}+1.76$			dB	
THD	Total harmonic distortion	16-bit differential mode - $\operatorname{Avg}=32$ 16-bit single-ended mode - $\operatorname{Avg}=32$		-94 -85		dB dB	7
SFDR	Spurious free dynamic range	16-bit differential mode - $\operatorname{Avg}=32$ 16-bit single-ended mode - $\operatorname{Avg}=32$	82 78	95 90		dB dB	7

Table continues on the next page...

Table 28. 16-bit ADC characteristics ($\mathrm{V}_{\text {REFH }}=\mathrm{V}_{\mathrm{DDA}}, \mathrm{V}_{\text {REFL }}=\mathrm{V}_{\mathrm{SSA}}$) (continued)

Symbol	Description	Conditions ${ }^{1}$	Min.	Typ. ${ }^{2}$	Max.	Unit	Notes
E_{IL}	Input leakage error		$\mathrm{In} \times \mathrm{R}_{\text {AS }}$			mV	$\mathrm{I}_{\mathrm{ln}}=$ leakage current (refer to the MCU's voltage and current operating ratings)
	Temp sensor slope	Across the full temperature range of the device	1.55	1.62	1.69	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
$\mathrm{V}_{\text {TEMP25 }}$	Temp sensor voltage	$25^{\circ} \mathrm{C}$	706	716	726	mV	

1. All accuracy numbers assume the ADC is calibrated with $V_{\text {REFH }}=V_{\text {DDA }}$
2. Typical values assume $\mathrm{V}_{\mathrm{DDA}}=3.0 \mathrm{~V}$, $\mathrm{Temp}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{ADCK}}=2.0 \mathrm{MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power). For lowest power operation the ADLPC bit must be set, the HSC bit must be clear with 1 MHz ADC conversion clock speed.
4. $1 \mathrm{LSB}=\left(\mathrm{V}_{\text {REFH }}-\mathrm{V}_{\text {REFL }}\right) / 2^{\mathrm{N}}$
5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE $=\% 1, \mathrm{AVGS}=\% 11$)
6. Input data is 100 Hz sine wave. ADC conversion clock $<12 \mathrm{MHz}$.
7. Input data is 1 kHz sine wave. ADC conversion clock $<12 \mathrm{MHz}$.

Typical ADC 16-bit Differential ENOB vs ADC Clock 100Hz, 90\% FS Sine Input

Figure 14. Typical ENOB vs. ADC_CLK for 16-bit differential mode

Typical ADC 16-bit Single-Ended ENOB vs ADC Clock
100Hz, 90\% FS Sine Input

Figure 15. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode

6.6.1.3 16-bit ADC with PGA operating conditions

 Table 29. 16-bit ADC with PGA operating conditions| Symbol | Description | Conditions | Min. | Typ. ${ }^{1}$ | Max. | Unit | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{\text {DDA }}$ | Supply voltage | Absolute | 1.71 | - | 3.6 | V | |
| $\mathrm{V}_{\text {REFPGA }}$ | PGA ref voltage | | $\begin{gathered} \text { VREF_OU } \\ \text { T } \end{gathered}$ | $\begin{gathered} \text { VREF_OU } \\ \text { T } \end{gathered}$ | $\begin{gathered} \text { VREF_OU } \\ \text { T } \end{gathered}$ | V | 2, 3 |
| $\mathrm{V}_{\text {ADIN }}$ | Input voltage | | $V_{\text {SSA }}$ | - | $\mathrm{V}_{\text {DDA }}$ | V | |
| V_{CM} | Input Common Mode range | | $\mathrm{V}_{\text {SSA }}$ | - | $\mathrm{V}_{\text {DDA }}$ | V | |
| $\mathrm{R}_{\text {PGAD }}$ | Differential input impedance | $\begin{aligned} & \text { Gain }=1,2,4,8 \\ & \text { Gain }=16,32 \\ & \text { Gain }=64 \end{aligned}$ | $\begin{aligned} & - \\ & - \end{aligned}$ | $\begin{aligned} & 128 \\ & 64 \\ & 32 \end{aligned}$ | $\begin{aligned} & - \\ & - \end{aligned}$ | k Ω | $\mathrm{IN}+$ to $\mathrm{IN}-4$ |
| $\mathrm{R}_{\text {AS }}$ | Analog source resistance | | - | 100 | - | Ω | 5 |
| T_{S} | ADC sampling time | | 1.25 | - | - | $\mu \mathrm{s}$ | 6 |

Table continues on the next page...

Table 29. 16-bit ADC with PGA operating conditions (continued)

Symbol	Description	Conditions	Min.	Typ. ${ }^{1}$	Max.	Unit	Notes
$\mathrm{C}_{\text {rate }}$	ADC conversion rate	≤ 13 bit modes No ADC hardware averaging Continuous conversions enabled Peripheral clock $=50$ MHz	18.484	-	450	Ksps	7
		16 bit modes No ADC hardware averaging Continuous conversions enabled Peripheral clock $=50$ MHz	37.037	-	250	Ksps	8

1. Typical values assume $\mathrm{V}_{\mathrm{DDA}}=3.0 \mathrm{~V}$, Temp $=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{ADCK}}=6 \mathrm{MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.
2. ADC must be configured to use the internal voltage reference (VREF_OUT)
3. PGA reference is internally connected to the VREF_OUT pin. If the user wishes to drive VREF_OUT with a voltage other than the output of the VREF module, the VREF module must be disabled.
4. For single ended configurations the input impedance of the driven input is $R_{\text {PGAD }} / 2$
5. The analog source resistance (R_{AS}), external to MCU , should be kept as minimum as possible. Increased R_{AS} causes drop in PGA gain without affecting other performances. This is not dependent on ADC clock frequency.
6. The minimum sampling time is dependent on input signal frequency and ADC mode of operation. A minimum of $1.25 \mu \mathrm{~s}$ time should be allowed for $F_{\text {in }}=4 \mathrm{kHz}$ at 16-bit differential mode. Recommended ADC setting is: ADLSMP=1, ADLSTS=2 at 8 MHz ADC clock.
7. ADC clock $=18 \mathrm{MHz}, \mathrm{ADLSMP}=1, \mathrm{ADLST}=00, \mathrm{ADHSC}=1$
8. ADC clock $=12 \mathrm{MHz}, \mathrm{ADLSMP}=1, \mathrm{ADLST}=01, \mathrm{ADHSC}=1$

6.6.1.4 16-bit ADC with PGA characteristics

Table 30. 16-bit ADC with PGA characteristics

Symbol	Description	Conditions	Min.	Typ. ${ }^{1}$	Max.	Unit	Notes
IDDA_PGA	Supply current	Low power (ADC_PGA[PGALPb]=0)	-	420	644	$\mu \mathrm{A}$	2
$\mathrm{I}_{\mathrm{DC} \text { _PGA }}$	Input DC current		$\frac{2}{R_{\text {PGAD }}}\left(\frac{\left(V_{\text {REFPGG }} \times 0.583\right)-V_{\mathrm{CM}}}{(\mathrm{Gain}+1)}\right)$			A	3
		$\begin{aligned} & \text { Gain }=1, \mathrm{~V}_{\text {REFPGA }}=1.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CM}}=0.5 \mathrm{~V} \end{aligned}$	-	1.54	-	$\mu \mathrm{A}$	
		$\begin{aligned} & \text { Gain }=64, \mathrm{~V}_{\text {REFPGA }}=1.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CM}}=0.1 \mathrm{~V} \end{aligned}$	-	0.57	-	$\mu \mathrm{A}$	

Table continues on the next page...

Table 30. 16-bit ADC with PGA characteristics (continued)

Symbol	Description	Conditions	Min.	Typ. ${ }^{1}$	Max.	Unit	Notes
G	Gain ${ }^{4}$	- PGAG=0 - PGAG=1 - PGAG=2 - PGAG=3 - $P G A G=4$ - PGAG=5 - PGAG=6	0.95 1.9 3.8 7.6 15.2 30.0 58.8	1 2 4 8 16 31.6 63.3	1.05 2.1 4.2 8.4 16.6 33.2 67.8		$\mathrm{R}_{\text {AS }}<100 \Omega$
BW	Input signal bandwidth	- 16-bit modes - < 16-bit modes	—	—	$\begin{gathered} 4 \\ 40 \end{gathered}$	$\begin{aligned} & \hline \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$	
PSRR	Power supply rejection ratio	Gain=1	-	-84	-	dB	$\begin{gathered} \mathrm{V}_{\mathrm{DDA}}=3 \mathrm{~V} \\ \pm 100 \mathrm{mV}, \\ \mathrm{f}_{\mathrm{VDDA}}=50 \mathrm{~Hz}, \\ 60 \mathrm{~Hz} \end{gathered}$
CMRR	Common mode rejection ratio	- Gain=1 - Gain=64	—	$\begin{aligned} & \hline-84 \\ & -85 \end{aligned}$	-	dB dB	$\begin{gathered} \mathrm{V}_{\mathrm{CM}}= \\ 500 \mathrm{mVpp}, \\ \mathrm{f}_{\mathrm{VCM}}=50 \mathrm{~Hz}, \\ 100 \mathrm{~Hz} \end{gathered}$
$\mathrm{V}_{\text {OFS }}$	Input offset voltage		-	0.2	-	mV	Output offset = $V_{\text {OFS }}{ }^{*}($ Gain +1$)$
TGSW	Gain switching settling time		-	-	10	$\mu \mathrm{s}$	5
EIL	Input leakage error	All modes		$\mathrm{I}_{\mathrm{In}} \times \mathrm{R}_{\text {AS }}$		mV	$I_{\text {In }}=$ leakage current (refer to the MCU's voltage and current operating ratings)
$\mathrm{V}_{\text {PP, DIFF }}$	Maximum differential input signal swing		$(\underline{m i n})$ where	$\begin{aligned} & \frac{V_{\mathrm{DDA}}-V_{X}}{\text { Gain }} \\ & =\mathrm{V}_{\text {REFPG }} \end{aligned}$	$\begin{aligned} & \left.\frac{.2) \times 4}{}\right) \\ & \times 0.583 \end{aligned}$	V	6
SNR	Signal-to-noise ratio	- Gain=1 - Gain=64	$\begin{aligned} & \hline 80 \\ & 52 \end{aligned}$	$\begin{aligned} & 90 \\ & 66 \end{aligned}$	—	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	16-bit differential mode, Average=32
THD	Total harmonic distortion	- Gain=1 - Gain=64	$\begin{aligned} & 85 \\ & 49 \end{aligned}$	$\begin{gathered} 100 \\ 95 \end{gathered}$	-	dB dB	16-bit differential mode, Average=32, $\mathrm{f}_{\text {in }}=100 \mathrm{~Hz}$
SFDR	Spurious free dynamic range	- Gain=1 - Gain=64	$\begin{aligned} & \hline 85 \\ & 53 \end{aligned}$	$\begin{gathered} 105 \\ 88 \end{gathered}$	-	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	16-bit differential mode, Average=32, $\mathrm{f}_{\mathrm{in}}=100 \mathrm{~Hz}$

Table continues on the next page...

Table 30. 16-bit ADC with PGA characteristics (continued)

Symbol	Description	Conditions	Min.	Typ. ${ }^{1}$	Max.	Unit	Notes
ENOB	Effective number of bits	- Gain=1, Average=4 - Gain=64, Average=4 - Gain=1, Average=32 - Gain=2, Average=32 - Gain=4, Average=32 - Gain=8, Average=32 - Gain=16, Average=32 - Gain=32, Average=32 - Gain=64, Average=32	$\begin{gathered} \hline 11.6 \\ 7.2 \\ 12.8 \\ 11.0 \\ 7.9 \\ 7.3 \\ 6.8 \\ 6.8 \\ 7.5 \end{gathered}$	$\begin{gathered} 13.4 \\ 9.6 \\ 14.5 \\ 14.3 \\ 13.8 \\ 13.1 \\ 12.5 \\ 11.5 \\ 10.6 \end{gathered}$	- - - - - - - - -	bits bits bits bits bits bits bits bits bits	16 -bit differential mode, $f_{\text {in }}=100 \mathrm{~Hz}$
SINAD	Signal-to-noise plus distortion ratio	See ENOB		ENOB		dB	

1. Typical values assume $\mathrm{V}_{\mathrm{DDA}}=3.0 \mathrm{~V}$, $\mathrm{Temp}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{ADCK}}=6 \mathrm{MHz}$ unless otherwise stated.
2. This current is a PGA module adder, in addition to ADC conversion currents.
3. Between $\operatorname{IN}+$ and $I N-$. The PGA draws a DC current from the input terminals. The magnitude of the DC current is a strong function of input common mode voltage $\left(\mathrm{V}_{\mathrm{CM}}\right)$ and the PGA gain.
4. Gain $=2^{\text {PGAG }}$
5. After changing the PGA gain setting, a minimum of 2 ADC+PGA conversions should be ignored.
6. Limit the input signal swing so that the PGA does not saturate during operation. Input signal swing is dependent on the PGA reference voltage and gain setting.

6.6.2 CMP and 6-bit DAC electrical specifications Table 31. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Typ.	Max.	Unit
V_{DD}	Supply voltage	1.71	-	3.6	V
$\mathrm{I}_{\text {DDHS }}$	Supply current, High-speed mode (EN=1, PMODE=1)	-	-	200	$\mu \mathrm{A}$
$\mathrm{I}_{\text {DDLS }}$	Supply current, low-speed mode (EN=1, PMODE=0)	-	-	20	$\mu \mathrm{A}$
$\mathrm{V}_{\text {AIN }}$	Analog input voltage	$\mathrm{V}_{\text {SS }}-0.3$	-	V_{DD}	V
$\mathrm{V}_{\text {AIO }}$	Analog input offset voltage	-	-	20	mV
V_{H}	Analog comparator hysteresis ${ }^{1}$ - $\operatorname{CRO}[H Y S T C T R]=00$ - $\operatorname{CRO}[H Y S T C T R]=01$ - $\operatorname{CRO}[H Y S T C T R]=10$ - $\operatorname{CRO}[H Y S T C T R]=11$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 5 \\ 10 \\ 20 \\ 30 \end{gathered}$		mV mV mV mV
$\mathrm{V}_{\text {CMPOh }}$	Output high	$\mathrm{V}_{\mathrm{DD}}-0.5$	-	-	V
$\mathrm{V}_{\text {CMPOI }}$	Output low	-	-	0.5	V
$\mathrm{t}_{\text {DHS }}$	Propagation delay, high-speed mode (EN=1, PMODE=1)	20	50	200	ns

Table continues on the next page...

Table 31. Comparator and 6-bit DAC electrical specifications (continued)

Symbol	Description	Min.	Typ.	Max.	Unit
$\mathrm{t}_{\text {DLS }}$	Propagation delay, low-speed mode (EN=1, PMODE=0)	80	250	600	ns
	Analog comparator initialization delay ${ }^{2}$	-	-	40	$\mu \mathrm{~s}$
$\mathrm{I}_{\text {DAC6b }}$	6-bit DAC current adder (enabled)	-	7	-	$\mu \mathrm{A}$
INL	6-bit DAC integral non-linearity	-0.5	-	0.5	LSB 3
DNL	6-bit DAC differential non-linearity	-0.3	-	0.3	LSB

1. Typical hysteresis is measured with input voltage range limited to 0.6 to $\mathrm{V}_{\mathrm{DD}}-0.6 \mathrm{~V}$.
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.
3. $1 \mathrm{LSB}=\mathrm{V}_{\text {reference }} / 64$

Figure 16. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=0)

Figure 17. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=1)

6.6.3 12-bit DAC electrical characteristics

6.6.3.1 12-bit DAC operating requirements

Table 32. 12-bit DAC operating requirements

Symbol	Desciption	Min.	Max.	Unit	Notes
$\mathrm{V}_{\mathrm{DDA}}$	Supply voltage	1.71	3.6	V	
$\mathrm{~V}_{\mathrm{DACR}}$	Reference voltage	1.13	3.6	V	1
$\mathrm{~T}_{\mathrm{A}}$	Temperature	Operating temperature range of the device	${ }^{\circ} \mathrm{C}$		
C_{L}	Output load capacitance	-	100	pF	2
I_{L}	Output load current	-	1	mA	

1. The DAC reference can be selected to be $\mathrm{V}_{\text {DDA }}$ or the voltage output of the VREF module (VREF_OUT)
2. A small load capacitance $(47 \mathrm{pF})$ can improve the bandwidth performance of the DAC

6.6.3.2 12-bit DAC operating behaviors

Table 33. 12-bit DAC operating behaviors

Symbol	Description	Min.	Typ.	Max.	Unit	Notes
$\begin{gathered} \mathrm{I}_{\text {DDA_DACL }} \\ \mathrm{P} \end{gathered}$	Supply current - low-power mode	-	-	150	$\mu \mathrm{A}$	
$\begin{gathered} \text { IDDA_DACH } \\ \mathrm{P} \end{gathered}$	Supply current - high-speed mode	-	-	700	$\mu \mathrm{A}$	
$\mathrm{t}_{\text {DACLP }}$	Full-scale settling time (0x080 to 0xF7F) -low-power mode	-	100	200	$\mu \mathrm{s}$	1
$\mathrm{t}_{\text {DACHP }}$	Full-scale settling time (0x080 to 0xF7F) -high-power mode	-	15	30	$\mu \mathrm{s}$	1
$\mathrm{t}_{\text {CCDACLP }}$	Code-to-code settling time (0xBF8 to 0xC08) - low-power mode and high-speed mode	-	0.7	1	$\mu \mathrm{s}$	1
$\mathrm{V}_{\text {dacoutl }}$	DAC output voltage range low - high-speed mode, no load, DAC set to 0x000	-	-	100	mV	
$\mathrm{V}_{\text {dacouth }}$	DAC output voltage range high - highspeed mode, no load, DAC set to 0xFFF	$\begin{gathered} \hline \mathrm{V}_{\mathrm{DACR}} \\ -100 \end{gathered}$	-	$\mathrm{V}_{\text {DACR }}$	mV	
INL	Integral non-linearity error - high speed mode	-	-	± 8	LSB	2
DNL	Differential non-linearity error $-V_{\text {DACR }}>2$ V	-	-	± 1	LSB	3
DNL	Differential non-linearity error $-\mathrm{V}_{\mathrm{DACR}}=$ VREF_OUT	-	-	± 1	LSB	4
$\mathrm{V}_{\text {OFFSET }}$	Offset error	-	± 0.4	± 0.8	\%FSR	5
E_{G}	Gain error	-	± 0.1	± 0.6	\%FSR	5
PSRR	Power supply rejection ratio, $\mathrm{V}_{\text {DDA }} \geq 2.4 \mathrm{~V}$	60	-	90	dB	
T_{CO}	Temperature coefficient offset voltage	-	3.7	-	$\mu \mathrm{V} / \mathrm{C}$	6
T_{GE}	Temperature coefficient gain error	-	0.000421	-	\%FSR/C	
Rop	Output resistance load $=3 \mathrm{k} \Omega$	-	-	250	Ω	
SR	Slew rate $-80 \mathrm{~h} \rightarrow \mathrm{~F} 7 \mathrm{Fh} \rightarrow 80 \mathrm{~h}$ - High power ($\mathrm{SP}_{\mathrm{HP}}$) - Low power (SP ${ }_{\text {LP }}$)	$\begin{gathered} 1.2 \\ 0.05 \end{gathered}$	$\begin{gathered} 1.7 \\ 0.12 \end{gathered}$	-	V/us	
CT	Channel to channel cross talk	-	-	-80	dB	
BW	3dB bandwidth - High power ($\mathrm{SP}_{\mathrm{HP}}$) - Low power ($\mathrm{SP}_{\mathrm{LP}}$)	$\begin{gathered} 550 \\ 40 \end{gathered}$	-	-	kHz	

1. Settling within $\pm 1 \mathrm{LSB}$
2. The INL is measured for $0+100 \mathrm{mV}$ to $\mathrm{V}_{\mathrm{DACR}}-100 \mathrm{mV}$
3. The DNL is measured for $0+100 \mathrm{mV}$ to $\mathrm{V}_{\text {DACR }}-100 \mathrm{mV}$
4. The DNL is measured for $0+100 \mathrm{mV}$ to $\mathrm{V}_{\mathrm{DACR}}-100 \mathrm{mV}$ with $\mathrm{V}_{\mathrm{DDA}}>2.4 \mathrm{~V}$
5. Calculated by a best fit curve from $V_{S S}+100 \mathrm{mV}$ to $\mathrm{V}_{\mathrm{DACR}}-100 \mathrm{mV}$
6. $V_{D D A}=3.0 \mathrm{~V}$, reference select set for $\mathrm{V}_{\mathrm{DDA}}$ ($D A C x _C O: D A C R F S=1$), high power mode ($D A C x _C 0: L P E N=0$), DAC set to 0×800, temperature range is across the full range of the device

Figure 18. Typical INL error vs. digital code
rerrpheral operating requirements and behaviors

Figure 19. Offset at half scale vs. temperature

6.6.4 Op-amp electrical specifications

Table 34. Op-amp electrical specifications

Symbol	Description	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {DD }}$	Operating voltage	1.71	-	3.6	V
$\mathrm{I}_{\text {SUPPLY }}$	Supply current (lout=OmA, CL=0), low-power mode	-	106	125	$\mu \mathrm{~A}$
$\mathrm{I}_{\text {SUPPLY }}$	Supply current (lout=OmA, CL=0), high-speed mode	-	545	630	$\mu \mathrm{~A}$
$\mathrm{~V}_{\text {OS }}$	Input offset voltage	-	± 3	± 10	mV
$\alpha_{\text {VOS }}$	Input offset voltage temperature coefficient	-	10	-	$\mu \mathrm{V} / \mathrm{C}$
$\mathrm{I}_{\text {OS }}$	Typical input offset current across the following temp range (0-50 $\left.{ }^{\circ} \mathrm{C}\right)$	-	± 500	-	pA
$\mathrm{I}_{\text {OS }}$	Typical input offset current across the following temp range $\left(-40-105^{\circ} \mathrm{C}\right)$	-	4	-	nA

Table continues on the next page...

Table 34. Op-amp electrical specifications (continued)

Symbol	Description	Min.	Typ.	Max.	Unit
$\mathrm{I}_{\text {BIAS }}$	Typical input bias current across the following temp range $\left(0-50^{\circ} \mathrm{C}\right)$	-	± 500	-	pA
$\mathrm{I}_{\text {BIAS }}$	Typical input bias current across the following temp range $\left(-40-105^{\circ} \mathrm{C}\right)$	-	± 4	-	nA
$\mathrm{V}_{\text {CML }}$	Input common mode voltage low	0	-	-	V
$\mathrm{V}_{\text {CMH }}$	Input common mode voltage high	-	-	VDD	V
$\mathrm{R}_{\text {IN }}$	Input resistance	-	500	-	$\mathrm{M} \Omega$
$\mathrm{C}_{\text {IN }}$	Input capacitance	-	17^{1}	-	pF
$\left\|X_{\text {IN }}\right\|$	AC input impedance ($\mathrm{f}_{\mathrm{IN}}=100 \mathrm{kHz}$)	-	50	-	$\mathrm{M} \Omega$
CMRR	Input common mode rejection ratio	60	-	-	dB
PSRR	Power supply rejection ratio	60	-	-	dB
SR	Slew rate ($\Delta \mathrm{V}_{\text {IN }}=500 \mathrm{mV}$), low-power mode	0.1	-	-	V/ $\mu \mathrm{s}$
SR	Slew rate ($\Delta \mathrm{V}_{\mathrm{IN}}=500 \mathrm{mV}$), high-speed mode	1.5	4	-	V/ $\mu \mathrm{s}$
GBW	Unity gain bandwidth, low-power mode	0.15	-	-	MHz
GBW	Unity gain bandwidth, high-speed mode	1	-	-	MHz
A_{V}	DC open-loop voltage gain	80	90	-	dB
CL(max)	Load capacitance driving capability	-	100	-	pF
$\mathrm{R}_{\text {OUT }}$	Output resistance @ 100 kHz , high speed mode	-	1500	-	Ω
$\mathrm{V}_{\text {OUT }}$	Output voltage range	0.12	-	VDD - 0.12	V
IOUT	Output load current	-	± 0.5	-	mA
GM	Gain margin	-	20	-	dB
PM	Phase margin	45	56	-	deg
Vn	Voltage noise density (noise floor) 1 kHz	-	350	-	$\mathrm{nV} / \mathrm{JHz}$
Vn	Voltage noise density (noise floor) 10kHz	-	90	-	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$

1. The input capacitance is dependant on the package type used.

6.6.5 Transimpedance amplifier electrical specifications - full range Table 35. TRIAMP full range operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
$\mathrm{V}_{\mathrm{DDA}}$	Supply voltage	1.71	3.6	V	
$\mathrm{~V}_{\mathrm{IN}}$	Input voltage range	-0.1	$\mathrm{~V}_{\mathrm{DDA}}-1.4$	V	
C_{L}	Output load capacitance	-	100	pf	

Table 36. TRIAMP full range operating behaviors

Symbol	Description	Min.	Typ.	Max.	Unit	Notes
ISUPPLY	Supply current (lout=OmA, CL=0) - Low-power mode	-	60	80	$\mu \mathrm{A}$	
ISUPPLY	Supply current (lout=OmA, CL=0) - High-speed mode	-	280	450	$\mu \mathrm{A}$	
$\mathrm{V}_{\text {OS }}$	Input offset voltage	-	± 3	± 5	mV	
$\alpha_{\text {vos }}$	Input offset voltage temperature coefficient	-	4.8	-	$\mu \mathrm{V} / \mathrm{C}$	
Ios	Input offset current	-	± 0.3	± 5	nA	
$\mathrm{I}_{\text {BIAS }}$	Input bias current	-	± 0.3	± 5	nA	
$\mathrm{R}_{\text {IN }}$	Input resistance	500	-	-	$\mathrm{M} \Omega$	
$\mathrm{C}_{\text {IN }}$	Input capacitance	-	17	-	pF	
R ${ }_{\text {OUT }}$	Output AC impedance	-	-	1500	Ω	@ 100kHz, High speed mode
${ }^{\text {IX }}$ IN ${ }^{\text {l }}$	AC input impedance ($\mathrm{f}_{\mathrm{I}}=100 \mathrm{kHz}$)	-	159	-	$\mathrm{k} \Omega$	
CMRR	Input common mode rejection ratio	60	-	-	dB	
PSRR	Power supply rejection ratio	60	-	-	dB	
SR	Slew rate ($\Delta \mathrm{V}_{\text {IN }}=100 \mathrm{mV}$) - Low-power mode	0.1	-	-	V/ $\mu \mathrm{s}$	
SR	Slew rate ($\Delta \mathrm{V}_{\text {IN }}=100 \mathrm{mV}$) - High speed mode	1	-	-	V/ $\mu \mathrm{s}$	
GBW	Unity gain bandwidth - Low-power mode 50pF	0.15	-	-	MHz	
GBW	Unity gain bandwidth - High speed mode 50pF	1	-	-	MHz	
A_{V}	DC open-loop voltage gain	80	-	-	dB	
VOUT	Output voltage range	0.15	-	$\mathrm{V}_{\mathrm{DD}}-0.15$	V	
Iout	Output load current	-	± 0.5	-	mA	
GM	Gain margin	-	20	-	dB	
PM	Phase margin	50	60	-	deg	
Vn	Voltage noise density (noise floor) 1 kHz	-	280	-	$\mathrm{nV} / \mathrm{JHz}$	
Vn	Voltage noise density (noise floor) 10kHz	-	100	-	$\mathrm{nV} / \mathrm{JHz}$	

6.6.6 Transimpedance amplifier electrical specifications - limited range

Table 37. TRIAMP limited range operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
$\mathrm{V}_{\mathrm{DDA}}$	Supply voltage	2.4	3.3	V	
$\mathrm{~V}_{\mathrm{IN}}$	Input voltage range	0.1	$\mathrm{~V}_{\mathrm{DDA}}-1.4$	V	
$\mathrm{~T}_{\mathrm{A}}$	Temperature	0	50	C	
C_{L}	Output load capacitance	-	100	pf	

Table 38. TRIAMP limited range operating behaviors

Symbol	Description	Min.	Typ.	Max.	Unit	Notes
$\mathrm{V}_{\text {OS }}$	Input offset voltage	-	± 3	± 5	mV	
$\alpha_{\text {vos }}$	Input offset voltage temperature coefficient	-	4.8	-	$\mu \mathrm{V} / \mathrm{C}$	
Ios	Input offset current	-	± 300	± 600	pA	
$\mathrm{I}_{\text {BIAS }}$	Input bias current	-	± 300	± 600	pA	
$\mathrm{R}_{\text {OUT }}$	Output AC impedance	-	-	1500	Ω	@ 100kHz, High speed mode
$\left\|\mathrm{X}_{\text {IN }}\right\|$	AC input impedance ($\mathrm{f}_{\mathrm{I}}=100 \mathrm{kHz}$)	-	159	-	$\mathrm{k} \Omega$	
CMRR	Input common mode rejection ratio	-	70	-	dB	
PSRR	Power supply rejection ratio	-	70	-	dB	
SR	Slew rate ($\Delta \mathrm{V}_{\mathrm{IN}}=500 \mathrm{mV}$) - Low-power mode	0.1	-	-	V/ $\mu \mathrm{s}$	
SR	Slew rate ($\Delta \mathrm{V}_{\text {IN }}=500 \mathrm{mV}$) - High speed mode	1.5	3.5	-	V/ $\mu \mathrm{s}$	
GBW	Unity gain bandwidth - Low-power mode 50pF	0.15	-	-	MHz	
GBW	Unity gain bandwidth - High speed mode 50pF	1	-	-	MHz	
A_{V}	DC open-loop voltage gain	80	-	-	dB	
GM	Gain margin	-	20	-	dB	
PM	Phase margin	60	69	-	deg	

6.6.7 Voltage reference electrical specifications

Table 39. VREF full-range operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
$\mathrm{V}_{\mathrm{DDA}}$	Supply voltage	1.71	3.6	V	
$\mathrm{~T}_{\mathrm{A}}$	Temperature	Operating temperature range of the device	${ }^{\circ} \mathrm{C}$		
C_{L}	Output load capacitance	100		nF	1,2

1. C_{L} must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference.
2. The load capacitance should not exceed $+/-25 \%$ of the nominal specified C_{L} value over the operating temperature range of the device.

Table 40. VREF full-range operating behaviors

Symbol	Description	Min.	Typ.	Max.	Unit	Notes
$\mathrm{V}_{\text {out }}$	Voltage reference output with factory trim at nominal $\mathrm{V}_{\text {DDA }}$ and temperature=25C	1.1915	1.195	1.1977	V	
$\mathrm{~V}_{\text {out }}$	Voltage reference output - factory trim	1.1584	-	1.2376	V	
$\mathrm{~V}_{\text {step }}$	Voltage reference trim step	-	0.5	-	mV	

Table continues on the next page...

Table 40. VREF full-range operating behaviors (continued)

Symbol	Description	Min.	Typ.	Max.	Unit	Notes
$\mathrm{V}_{\text {tdrift }}$	Temperature drift (Vmax -Vmin across the full temperature range)	-	-	80	mV	
I_{bg}	Bandgap only current	-	-	80	$\mu \mathrm{~A}$	1
I_{Ip}	Low-power buffer current	-	-	360	uA	1
I_{hp}	High-power buffer current	-	-	1	mA	1
$\Delta \mathrm{~V}_{\text {LOAD }}$	Load regulation • current $=+1.0 \mathrm{~mA}$ • current $=-1.0 \mathrm{~mA}$	-	2	-	mV	1,2
$\mathrm{~T}_{\text {stup }}$	Buffer startup time	-	-	-		
$\mathrm{V}_{\text {vdritt }}$	Voltage drift (Vmax -Vmin across the full voltage range)	-	2	-	mV	1

1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.
2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load

Table 41. VREF limited-range operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
T_{A}	Temperature	0	50	${ }^{\circ} \mathrm{C}$	

Table 42. VREF limited-range operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
$\mathrm{V}_{\text {out }}$	Voltage reference output with factory trim	1.173	1.225	V	

6.7 Timers

See General switching specifications.

6.8 Communication interfaces

6.8.1 Ethernet switching specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

6.8.1.1 MII signal switching specifications

The following timing specs meet the requirements for MII style interfaces for a range of transceiver devices.

Table 43. MII signal switching specifications

Symbol	Description	Min.	Max.	Unit
-	RXCLK frequency	-	25	MHz
MII1	RXCLK pulse width high	35\%	65\%	RXCLK period
MII2	RXCLK pulse width low	35\%	65\%	RXCLK period
MII3	RXD[3:0], RXDV, RXER to RXCLK setup	5	-	ns
MII4	RXCLK to RXD[3:0], RXDV, RXER hold	5	-	ns
-	TXCLK frequency	-	25	MHz
MII5	TXCLK pulse width high	35\%	65\%	TXCLK period
MII6	TXCLK pulse width low	35\%	65\%	TXCLK period
MII7	TXCLK to TXD[3:0], TXEN, TXER invalid	2	-	ns
MII8	TXCLK to TXD[3:0], TXEN, TXER valid	-	25	ns

Figure 20. MII transmit signal timing diagram
rerrpheral operating requirements and behaviors

Figure 21. MII receive signal timing diagram

6.8.1.2 RMII signal switching specifications

The following timing specs meet the requirements for RMII style interfaces for a range of transceiver devices.

Table 44. RMII signal switching specifications

Num	Description	Min.	Max.	Unit
-	EXTAL frequency (RMII input clock RMII_CLK)	-	50	MHz
RMII1	RMII_CLK pulse width high	35%	65%	RMII_CLK period
RMII2	RMII_CLK pulse width low	35%	65%	RMII_CLK period
RMII3	RXD[1:0], CRS_DV, RXER to RMII_CLK setup	4	-	ns
RMII4	RMII_CLK to RXD[1:0], CRS_DV, RXER hold	2	-	ns
RMII7	RMII_CLK to TXD[1:0], TXEN invalid	4	-	ns
RMII8	RMII_CLK to TXD[1:0], TXEN valid	-	15	ns

6.8.2 USB electrical specifications

The USB electricals for the USB On-the-Go module conform to the standards documented by the Universal Serial Bus Implementers Forum. For the most up-to-date standards, visit usb.org.

6.8.3 USB DCD electrical specifications

Table 45. USB DCD electrical specifications

Symbol	Description	Min.	Typ.	Max.	Unit
V DP_SRC	USB_DP source voltage (up to $250 \mu \mathrm{~A})$	0.5	-	0.7	V
VLGC	Threshold voltage for logic high	0.8	-	2.0	V
$\mathrm{I}_{\text {DP_SRC }}$	USB_DP source current	7	10	13	$\mu \mathrm{~A}$
$\mathrm{I}_{\text {DM_SINK }}$	USB_DM sink current	50	100	150	$\mu \mathrm{~A}$
$\mathrm{R}_{\text {DM_DWN }}$	D- pulldown resistance for data pin contact detect	14.25	-	24.8	$\mathrm{k} \Omega$
V $_{\text {DAT_REF }}$	Data detect voltage	0.25	0.33	0.4	V

6.8.4 USB VREG electrical specifications

Table 46. USB VREG electrical specifications

Symbol	Description	Min.	Typ. ${ }^{1}$	Max.	Unit	Notes
VREGIN	Input supply voltage	2.7	-	5.5	V	
$\mathrm{I}_{\text {DDon }}$	Quiescent current - Run mode, load current equal zero, input supply (VREGIN) > 3.6 V	-	120	186	$\mu \mathrm{A}$	
$\mathrm{I}_{\text {DDstby }}$	Quiescent current — Standby mode, load current equal zero	-	1.27	30	$\mu \mathrm{A}$	
$\mathrm{I}_{\text {DDoff }}$	Quiescent current - Shutdown mode - VREGIN $=5.0 \mathrm{~V}$ and temperature $=25^{\circ} \mathrm{C}$ - Across operating voltage and temperature	-	$\begin{gathered} 650 \\ - \end{gathered}$	-	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$	
ILOADrun	Maximum load current - Run mode	-	-	120	mA	
ILOADstby	Maximum load current - Standby mode	-	-	1	mA	
$V_{\text {Reg33out }}$	Regulator output voltage - Input supply $($ VREGIN $) ~>~ 3.6 ~ V ~$ - Run mode - Standby mode	$\begin{gathered} 3 \\ 2.1 \end{gathered}$	$\begin{aligned} & 3.3 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	
$\mathrm{V}_{\text {Reg33out }}$	Regulator output voltage - Input supply (VREGIN) < 3.6 V, pass-through mode	2.1	-	3.6	V	2
Cout	External output capacitor	1.76	2.2	8.16	$\mu \mathrm{F}$	
ESR	External output capacitor equivalent series resistance	1	-	100	$\mathrm{m} \Omega$	
ILIM	Short circuit current	-	290	-	mA	

1. Typical values assume VREGIN $=5.0 \mathrm{~V}$, Temp $=25^{\circ} \mathrm{C}$ unless otherwise stated.
2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to $I_{\text {Load }}$.

6.8.5 DSPI switching specifications (limited voltage range)

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provide DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

Table 47. Master mode DSPI timing (limited voltage range)

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	2.7	3.6	V	
	Frequency of operation	-	25	MHz	
DS1	DSPI_SCK output cycle time	$2 \times \mathrm{t}_{\text {BUS }}$	-	ns	
DS2	DSPI_SCK output high/low time	$\left(\mathrm{t}_{\text {SCK }} / 2\right)-2$	$\left(\mathrm{t}_{\text {SCK }} / 2\right)+2$	ns	
DS3	DSPI_PCSn valid to DSPI_SCK delay	$\left.\mathrm{t}_{\text {Bus }} \times 2\right)-$ 2	-	ns	1
DS4	DSPI_SCK to DSPI_PCSn invalid delay	$\left(t_{\text {Bus }} \times 2\right)-$ 2	-	ns	2
DS5	DSPI_SCK to DSPI_SOUT valid	-	8.5	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	-2	-	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	15	-	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0	-	ns	

1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].
2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

Figure 22. DSPI classic SPI timing - master mode
Table 48. Slave mode DSPI timing (limited voltage range)

Num	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
	Frequency of operation		12.5	MHz
DS9	DSPI_SCK input cycle time	$4 \times \mathrm{t}_{\mathrm{Bus}}$	-	ns

Table continues on the next page...

Table 48. Slave mode DSPI timing (limited voltage range) (continued)

Num	Description	Min.	Max.	Unit
DS10	DSPI_SCK input high/low time	$\left(\mathrm{t}_{\text {SCk }} / 2\right)-2$	$\left(\mathrm{t}_{\text {SCK } / 2} / 2\right)+2$	ns
DS11	DSPI_SCK to DSPI_SOUT valid	-	10	ns
DS12	DSPI_SCK to DSPI_SOUT invalid	0	-	ns
DS13	DSPI_SIN to DSPI_SCK input setup	2	-	ns
DS14	DSPI_SCK to DSPI_SIN input hold	7	-	ns
DS15	$\overline{\text { DSPI_SS active to DSPI_SOUT driven }}$	-	14	ns
DS16	$\overline{\text { DSPI_SS inactive to DSPI_SOUT not driven }}$	-	14	ns

Figure 23. DSPI classic SPI timing - slave mode

6.8.6 DSPI switching specifications (full voltage range)

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

Table 49. Master mode DSPI timing (full voltage range)

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	1.71	3.6	V	1
	Frequency of operation	-	12.5	MHz	
DS1	DSPI_SCK output cycle time	$4 \times \mathrm{t}_{\mathrm{BUS}}$	-	ns	
DS2	DSPI_SCK output high/low time	$\left(\mathrm{t}_{\text {SCK }} / 2\right)-4$	$\left(\mathrm{t}_{\text {SCK/2 }}+4\right.$	ns	
DS3	DSPI_PCSn valid to DSPI_SCK delay	$\left(\mathrm{t}_{\text {BUS }} \times 2\right)-$ 4	-	ns	2

Table continues on the next page...

Table 49. Master mode DSPI timing (full voltage range) (continued)

Num	Description	Min.	Max.	Unit	Notes
DS4	DSPI_SCK to DSPI_PCSn invalid delay	$\left(t_{\text {Bus }} \times 2\right)$ 4	-	ns	3
DS5	DSPI_SCK to DSPI_SOUT valid	-	10	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	-4.5	-	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	20.5	-	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0	-	ns	

1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced.
2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].
3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

Figure 24. DSPI classic SPI timing - master mode
Table 50. Slave mode DSPI timing (full voltage range)

Num	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
	Frequency of operation	-	6.25	MHz
DS9	DSPI_SCK input cycle time	$8 \times \mathrm{t}_{\mathrm{Bus}}$	-	ns
DS10	DSPI_SCK input high/low time	$\left(\mathrm{t}_{\mathrm{scK}} / 2\right)-4$	$\left(\mathrm{t}_{\text {SCK/2 }}\right)+4$	ns
DS11	DSPI_SCK to DSPI_SOUT valid	-	20	ns
DS12	DSPI_SCK to DSPI_SOUT invalid	0	-	ns
DS13	DSPI_SIN to DSPI_SCK input setup	2	-	ns
DS14	DSPI_SCK to DSPI_SIN input hold	7	-	ns
DS15	DSPI_SS active to DSPI_SOUT driven	-	19	ns
DS16	DSPI_SS inactive to DSPI_SOUT not driven	-	19	ns

Figure 25. DSPI classic SPI timing - slave mode

6.8.7 Inter-Integrated Circuit Interface $\left(\mathrm{I}^{2} \mathrm{C}\right)$ timing

 Table 51. $I^{2} \mathrm{C}$ timing| Characteristic | Symbol | Standard Mode | | Fast Mode | | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Minimum | Maximum | Minimum | Maximum | |
| SCL Clock Frequency | $\mathrm{f}_{\text {SCL }}$ | 0 | 100 | 0 | 400 | kHz |
| Hold time (repeated) START condition. After this period, the first clock pulse is generated. | $\mathrm{t}_{\mathrm{HD}} ;$ STA | 4 | - | 0.6 | - | $\mu \mathrm{s}$ |
| LOW period of the SCL clock | tow | 4.7 | - | 1.3 | - | $\mu \mathrm{s}$ |
| HIGH period of the SCL clock | $\mathrm{t}_{\text {HIGH }}$ | 4 | - | 0.6 | - | $\mu \mathrm{s}$ |
| Set-up time for a repeated START condition | $\mathrm{t}_{\text {SU }} ;$ STA | 4.7 | - | 0.6 | - | $\mu \mathrm{s}$ |
| Data hold time for $\mathrm{I}_{2} \mathrm{C}$ bus devices | $\mathrm{t}_{\mathrm{HD}} ;$ DAT | 0^{1} | 3.45^{2} | 0^{3} | 0.9^{1} | $\mu \mathrm{s}$ |
| Data set-up time | $\mathrm{t}_{\text {SU }} ;$ DAT | $250{ }^{4}$ | - | $100^{2,5}$ | - | ns |
| Rise time of SDA and SCL signals | t_{r} | - | 1000 | $20+0.1 \mathrm{C}_{\mathrm{b}}{ }^{6}$ | 300 | ns |
| Fall time of SDA and SCL signals | t_{f} | - | 300 | $20+0.1 \mathrm{C}_{\mathrm{b}}{ }^{5}$ | 300 | ns |
| Set-up time for STOP condition | $\mathrm{t}_{\text {SU }} ;$ STO | 4 | - | 0.6 | - | $\mu \mathrm{s}$ |
| Bus free time between STOP and START condition | $\mathrm{t}_{\text {BUF }}$ | 4.7 | - | 1.3 | - | $\mu \mathrm{s}$ |
| Pulse width of spikes that must be suppressed by the input filter | $\mathrm{t}_{\text {SP }}$ | N/A | N/A | 0 | 50 | ns |

1. The master mode $I^{2} C$ deasserts $A C K$ of an address byte simultaneously with the falling edge of SCL. If no slaves acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL lines.
2. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.
3. Input signal Slew $=10 \mathrm{~ns}$ and Output Load $=50 \mathrm{pf}$
4. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.
5. A Fast mode $I^{2} \mathrm{C}$ bus device can be used in a Standard mode I2C bus system, but the requirement t_{SU}; DAT ≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line $t_{\text {rmax }}+t_{\text {SU; DAT }}$ $=1000+250=1250 \mathrm{~ns}$ (according to the Standard mode $\mathrm{I}^{2} \mathrm{C}$ bus specification) before the SCL line is released.
6. $\mathrm{C}_{\mathrm{b}}=$ total capacitance of the one bus line in pF .

Figure 26. Timing definition for fast and standard mode devices on the $I^{2} \mathrm{C}$ bus

6.8.8 UART switching specifications

See General switching specifications.

6.8.9 SDHC specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

Table 52. SDHC switching specifications

Num	Symbol	Description	Min.	Max.	Unit
	Card input clock				
SD1	fpp	Clock frequency (low speed)	0	400	kHz
	fpp	Clock frequency (SDISDIO full speed\high speed)	0	$25 \backslash 50$	MHz
	fpp	Clock frequency (MMC full speed\high speed)	0	$20 \backslash 50$	MHz
	f_{OD}	Clock frequency (identification mode)	0	400	kHz
SD2	t_{WL}	Clock low time	7	-	ns
SD3	t_{WH}	Clock high time	7	-	ns
SD4	$\mathrm{t}_{\text {TLH }}$	Clock rise time	-	3	ns
SD5	$\mathrm{t}_{\text {THL }}$	Clock fall time	-	3	ns
	SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)				
SD6	t_{OD}	SDHC output delay (output valid)	-5	8.3	ns
	SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)				
SD7	$\mathrm{t}_{\text {ISU }}$	SDHC input setup time	5	-	ns
SD8	t_{H}	SDHC input hold time	0	-	ns

Figure 27. SDHC timing

6.8.10 $\quad I^{2} S$ switching specifications

This section provides the AC timings for the $\mathrm{I}^{2} \mathrm{~S}$ in master (clocks driven) and slave modes (clocks input). All timings are given for non-inverted serial clock polarity
$(\operatorname{TCR}[T S C K P]=0, \operatorname{RCR}[\operatorname{RSCKP}]=0)$ and a non-inverted frame sync $(T C R[T F S I]=0$, RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal (I2S_BCLK) and/or the frame sync (I2S_FS) shown in the figures below.

Table 53. $\mathrm{I}^{2} \mathrm{~S}$ master mode timing (limited voltage range)

Num	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
S1	I2S_MCLK cycle time	$2 \times$ tsYs		ns
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period
S3	I2S_BCLK cycle time	$5 \times$ tsys	-	ns
S4	I2S_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_BCLK to I2S_FS output valid	-	15	ns
S6	I2S_BCLK to I2S_FS output invalid	-2.5	-	ns
S7	I2S_BCLK to I2S_TXD valid	-	15	ns
S8	I2S_BCLK to I2S_TXD invalid	-3	-	ns
S9	I2S_RXD/I2S_FS input setup before I2S_BCLK	20	-	ns
S10	I2S_RXD/I2S_FS input hold after I2S_BCLK	0	-	ns

Figure 28. $I^{2} S$ timing — master mode
Table 54. $I^{2} S$ slave mode timing (limited voltage range)

Num	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
S11	I2S_BCLK cycle time (input)	$8 \times$ tsYs	-	ns
S12	I2S_BCLK pulse width high/low (input)	45%	55%	MCLK period
S13	I2S_FS input setup before I2S_BCLK	10	-	ns
S14	I2S_FS input hold after I2S_BCLK	3	-	ns
S15	I2S_BCLK to I2S_TXD/I2S_FS output valid	-	20	ns
S16	I2S_BCLK to I2S_TXD/I2S_FS output invalid	0	-	ns
S17	I2S_RXD setup before I2S_BCLK	10	-	ns
S18	I2S_RXD hold after I2S_BCLK	2	-	ns

Figure 29. $I^{2} S$ timing - slave modes
Table 55. $I^{2} \mathrm{~S}$ master mode timing (full voltage range)

Num	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S1	I2S_MCLK cycle time	$2 \times$ tsYs		ns
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period
S3	I2S_BCLK cycle time	$5 \times$ tsYs	-	ns
S4	I2S_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_BCLK to I2S_FS output valid	-	15	ns
S6	I2S_BCLK to I2S_FS output invalid	-4.3	-	ns
S7	I2S_BCLK to I2S_TXD valid	-	15	ns
S8	I2S_BCLK to I2S_TXD invalid	-4.6	-	ns
S9	I2S_RXD/I2S_FS input setup before I2S_BCLK	23.9	-	ns
S10	I2S_RXD/I2S_FS input hold after I2S_BCLK	0	-	ns

Table 56. $I^{2} S$ slave mode timing (full voltage range)

Num	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S11	I2S_BCLK cycle time (input)	$8 \times$ tsYs	-	ns
S12	I2S_BCLK pulse width high/low (input)	45%	55%	MCLK period
S13	I2S_FS input setup before I2S_BCLK	10	-	ns
S14	I2S_FS input hold after I2S_BCLK	3.5	-	ns
S15	I2S_BCLK to I2S_TXD/I2S_FS output valid	-	28.6	ns
S16	I2S_BCLK to I2S_TXD/I2S_FS output invalid	0	-	ns
S17	I2S_RXD setup before I2S_BCLK	10	-	ns
S18	I2S_RXD hold after I2S_BCLK	2	-	ns

6.9 Human-machine interfaces (HMI)

6.9.1 TSI electrical specifications

Table 57. TSI electrical specifications

Symbol	Description	Min.	Typ.	Max.	Unit	Notes
$\mathrm{V}_{\text {DDTSI }}$	Operating voltage	1.71	-	3.6	V	
$\mathrm{C}_{\text {ELE }}$	Target electrode capacitance range	1	20	500	pF	1
$\mathrm{f}_{\text {REFmax }}$	Reference oscillator frequency	-	5.5	12.7	MHz	2
$\mathrm{f}_{\text {ELEmax }}$	Electrode oscillator frequency	-	0.5	4.0	MHz	3
$\mathrm{C}_{\text {REF }}$	Internal reference capacitor	0.5	1	1.2	pF	
$\mathrm{V}_{\text {DELTA }}$	Oscillator delta voltage	100	600	760	mV	4
$\mathrm{I}_{\text {REF }}$	Reference oscillator current source base current \bullet 1uA setting (REFCHRG=0) $\bullet 32 u A ~ s e t t i n g ~(R E F C H R G=31) ~$	-	1.133	1.5	$\mu \mathrm{~A}$	3,5
$\mathrm{I}_{\text {ELE }}$	Electrode oscillator current source base current \bullet 1uA setting (EXTCHRG=0)	-	1.133	1.5	$\mu \mathrm{~A}$	3,6
Pres5	Electrode capacitance measurement precision	-	8.3333	38400	$\mathrm{fF} / \mathrm{count}$	7
Pres20	Electrode capacitance measurement precision	-	8.3333	38400	$\mathrm{fF} / \mathrm{count}$	8
Pres100	Electrode capacitance measurement precision	-	8.3333	38400	$\mathrm{fF} / \mathrm{count}$	9
MaxSens	Maximum sensitivity	0.003	12.5	-	$\mathrm{fF} / \mathrm{count}$	10
Res	Resolution	-	-	16	bits	
$\mathrm{T}_{\text {Con20 }}$	Response time @ 20 pF	8	15	25	$\mu \mathrm{~s}$	11
$\mathrm{I}_{\text {TSI_RUN }}$	Current added in run mode	-	55	-	$\mu \mathrm{A}$	
$\mathrm{I}_{\text {TSI_LP }}$	Low power mode current adder	-	1.3	2.5	$\mu \mathrm{~A}$	12

1. The TSI module is functional with capacitance values outside this range. However, optimal performance is not guaranteed.
2. CAPTRM=7, DELVOL=7, and fixed external capacitance of 20 pF .
3. CAPTRM=0, $D E L V O L=2$, and fixed external capacitance of 20 pF .
4. CAPTRM=0, EXTCHRG=9, and fixed external capacitance of 20 pF .
5. The programmable current source value is generated by multiplying the SCANC[REFCHRG] value and the base current.
6. The programmable current source value is generated by multiplying the SCANC[EXTCHRG] value and the base current.
7. Measured with a 5 pF electrode, reference oscillator frequency of $10 \mathrm{MHz}, \mathrm{PS}=128, \mathrm{NSCN}=8$; lext $=16$.
8. Measured with a 20 pF electrode, reference oscillator frequency of $10 \mathrm{MHz}, \mathrm{PS}=128, \mathrm{NSCN}=2$; lext $=16$.
9. Measured with a 20 pF electrode, reference oscillator frequency of $10 \mathrm{MHz}, \mathrm{PS}=16, \mathrm{NSCN}=3$; lext $=16$.
10. Sensitivity defines the minimum capacitance change when a single count from the TSI module changes, it is equal to ($\mathrm{C}_{\text {ref }}$
 configuration: lext $=5 \mu \mathrm{~A}, \mathrm{EXTCHRG}=4, \mathrm{PS}=128, \mathrm{NSCN}=2, \mathrm{I}_{\text {ref }}=16 \mu \mathrm{~A}, \operatorname{REFCHRG}=15, \mathrm{C}_{\mathrm{ref}}=1.0 \mathrm{pF}$. The minimum sensitivity describes the smallest possible capacitance that can be measured by a single count (this is the best sensitivity but is described as a minimum because it's the smallest number). The minimum sensitivity parameter is based on the following configuration: $I_{\text {ext }}=1 \mu \mathrm{~A}, \mathrm{EXTCHRG}=0, \mathrm{PS}=128, \mathrm{NSCN}=32, \mathrm{I}_{\text {ref }}=32 \mu \mathrm{~A}$, REFCHRG $=31, \mathrm{C}_{\mathrm{ref}}=0.5$ pF
11. Time to do one complete measurement of the electrode. Sensitivity resolution of $0.0133 \mathrm{pF}, \mathrm{PS}=0, \mathrm{NSCN}=0,1$ electrode, DELVOL = 2, EXTCHRG $=15$.
12. CAPTRM $=7$, $D E L V O L=2, R E F C H R G=0$, $E X T C H R G=4, P S=7$, $N S C N=0 F$, LPSCNITV=F, LPO is selected (1 kHz), and fixed external capacitance of 20 pF . Data is captured with an average of 7 periods window.

7 Dimensions

7.1 Obtaining package dimensions

Package dimensions are provided in package drawings.
To find a package drawing, go to freescale.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
144-pin LQFP	$98 A S S 23177 \mathrm{~W}$
144-pin MAPBGA	$98 \mathrm{ASA00222D}$

8 Pinout

8.1 K52 Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

$\begin{gathered} 144 \\ \text { LQFP } \end{gathered}$	$\begin{aligned} & 144 \\ & \text { MAP } \\ & \text { BGA } \end{aligned}$	Pin Name	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
-	C10	NC	NC	NC								
-	B10	NC	NC	NC								
-	A10	NC	NC	NC								
1	D3	PTEO	ADC1_SE4a	ADC1_SE4a	PTE0	SPIT_PCS1	UART1_TX	SDHCO_D1		12C1_SDA		
2	D2	PTE1/ LLWUPO	ADC1_SE5a	ADC1_SE5a	PTE1/ LLWU_PO	SPI1_SOUT	UART1_RX	SDHCO_DO		12C1_SCL		
3	D1	PTE2 LLWU_P1	ADC1_SE6a	ADC1_SE6a	PTE2/ LLWU_P1	SPl1_SCK	$\begin{array}{\|l} \mid \text { UART1_CTS_ } \\ b \end{array}$	SDHCO_DCLK				
4	E4	PTE3	ADC1_SE7a	ADC1_SE7a	PTE3	SPl1_SIN	$\begin{array}{\|l} \mid \text { UART1_RTS_ } \\ b \end{array}$	SDHCO_CMD				
5	E5	VDD	VDD	VDD								
6	F6	VSS	VSS	VSS								
7	E3	PTE4I LLWUP2	DISABLED		PTE4 LLWUP2	SPIT_PCSO	UART3_TX	SDHCO_D3				
8	E2	PTE5	DISABLED		PTE5	SP11_PCS2	UART3_RX	SDHCO_D2				

$\begin{gathered} 144 \\ \text { LQFP } \end{gathered}$	$\begin{aligned} & 144 \\ & \text { MAP } \\ & \text { BGA } \end{aligned}$	Pin Name	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
9	E1	PTE6	DISABLED		PTE6	SPl1_PCS3	$\begin{array}{\|l\|} \hline \text { UART3_CTS_ } \\ b \end{array}$	12SO_MCLK		I2SO_CLKIN		
10	F4	PTE7	DISABLED		PTE7		$\begin{aligned} & \text { UART3_RTS_ } \\ & b \end{aligned}$	12SO_RXD				
11	F3	PTE8	DISABLED		PTE8		UART5_TX	12SO_RX_FS				
12	F2	PTE9	DISABLED		PTE9		UART5_RX	$\begin{aligned} & \text { l2SO_RX } \\ & \text { BCLK } \end{aligned}$				
13	F1	PTE10	DISABLED		PTE10		UART5_CTS_ b	12SO_TXD				
14	G4	PTE11	DISABLED		PTE11		UART5_RTS_ b	12SO_TX_FS				
15	G3	PTE12	DISABLED		PTE12			$\begin{aligned} & \text { I2SO_TX } \\ & \text { BCLK } \end{aligned}$				
16	E6	VDD	VDD	VDD								
17	F7	VSS	VSS	VSS								
18	H3	VSS	VSS	VSS								
19	H1	USBO_DP	USBO_DP	USBO_DP								
20	H2	USBO_DM	USBO_DM	USBO_DM								
21	G1	VOUT33	VOUT33	VOUT33								
22	G2	VREGIN	VREGIN	VREGIN								
23	J1	ADCO_DP1/ OPO_DPO	$\begin{aligned} & \hline \text { ADCO_DP1/ } \\ & \text { OPO_DPO } \end{aligned}$	$\begin{aligned} & \hline \text { ADCO_DP1/ } \\ & \text { OPO_DPO } \end{aligned}$								
24	J2	ADCO DM1/ OPO_DMO	$\begin{aligned} & \hline \text { ADCO_DM1/ } \\ & \text { OPO_DMO } \end{aligned}$	$\begin{aligned} & \hline \text { ADCO_DM1/ } \\ & \text { OPO_DMO } \end{aligned}$								
25	K1	ADC1_DP1/ OP1_DPO/ OP1_DM1	$\begin{aligned} & \text { ADC1_DP1/ } \\ & \text { OP1_DPO/ } \\ & \text { OP1_DM1 } \end{aligned}$	ADC1_DP1/ OP1_DPO OP1_DM1								
26	K2	ADC1_DM1/ OP1_DMO	$\begin{aligned} & \text { ADC1_DM1/ } \\ & \text { OP1_DMO } \end{aligned}$	$\begin{aligned} & \text { ADC1_DM1/ } \\ & \text { OP1_DMO } \end{aligned}$								
27	L1	PGAO_DP/ ADCO_DPO/ ADC1_DP3	$\begin{aligned} & \text { PGAO_DP/ } \\ & \text { ADCO_DPO/ } \\ & \text { ADC1_DP3 } \end{aligned}$	PGAO_DP/ ADCODPO/ ADC1_DP3								
28	L2	PGAO DM ADCO_DMO/ ADC1_DM3	$\begin{aligned} & \hline \text { PGAO_DM/ } \\ & \text { ADCODMO/ } \\ & \text { ADC1_DM3 } \end{aligned}$	PGAO DM ADCO_DMO/ ADC1_DM3								
29	M1	PGA1_DP/ ADC1_DPO/ ADCO_DP3	$\begin{aligned} & \hline \text { PGA1_DP/ } \\ & \text { ADC1_DPO/ } \\ & \text { ADCO_DP3 } \end{aligned}$	PGA1_DP/ ADC1_DPO/ ADCO_DP3								
30	M2	$\begin{aligned} & \hline \text { PGA1_DM/ } \\ & \text { ADC1_DMO/ } \\ & \text { ADCO_DM3 } \end{aligned}$	$\begin{aligned} & \hline \text { PGA1_DM/ } \\ & \text { ADC1_DMO/ } \\ & \text { ADCO_DM3 } \end{aligned}$	PGA1_DM/ ADC1_DMO/ ADCO_DM3								
31	H5	VDDA	VDDA	VDDA								
32	G5	VREFH	VREFH	VREFH								
33	G6	VREFL	VREFL	VREFL								
34	H6	VSSA	VSSA	VSSA								

$\begin{gathered} 144 \\ \text { LQFP } \end{gathered}$	$\begin{aligned} & 144 \\ & \text { MAP } \\ & \text { BGA } \end{aligned}$	Pin Name	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
35	K3	ADC1_SE16/ OP1_OUT/ CMP2_N21 ADCO_SE22/ OPO_DP2 OP1_DP2	$\begin{aligned} & \text { ADC1_SE16/ } \\ & \text { OP1_OUT/ } \\ & \text { CMP2_IN2/ } \\ & \text { ADCO_SE2// } \\ & \text { OPO_DP2/ } \\ & \text { OP1_DP2 } \end{aligned}$	ADC1_SE16/ OP1_OUT/ CMP2_N21 ADCO_SE22 OPO_DP2 OP1_DP2								
36	J3	ADCO_SE16/ OPO_OUT/ CMP1_N2/ ADCO SE21/ OPO_DP1/ OP1_DP1	ADCO_SE16/ OPO_OUT/ CMP1_N2/ ADCO_SE21/ OPO_DP1/ OP1_DP1	ADCO_SE16/ OPO_OUT/ CMP1_N2/ ADCO_SE21/ OPO_DP1/ OP1_DP1								
37	M3	VREF_OUT/ CMP1_N5/ CMPO_IN5/ ADC1_SE18	VREF_OUT/ CMP1_N5/ CMPO_N5/ ADC1_SE18	VREF_OUT/ CMP1_N5/ CMPO_N5/ ADC1_SE18								
38	L3	TRIO_OUT/ OP1_DM2	$\begin{aligned} & \hline \text { TR1O_OUT/ } \\ & \text { OP1_DM2 } \end{aligned}$	TRIO_OUT/ OP1_DM2								
39	L4	TRIO_DM	TRIO_DM	TRIO_DM								
40	M4	TRIO_DP	TRIO_DP	TRIO_DP								
41	L5	TR11_DM	TR11_DM	TR11_DM								
42	M5	TRI1_DP	TRII_DP	TRII_DP								
43	K5	TRI1_OUT/ CMP2_N5/ ADC1_SE22	TRI1_OUT/ CMP2_N5/ ADCC__SE22	TRII_OUT/ CMP2_IN5/ ADC1_SE22								
44	K4	DACO OUT/ CMP1_IN3/ ADCO SE23I OPO_DP4\| OP1_DP4	$\begin{aligned} & \text { DACO_OUT// } \\ & \text { CMP1_IN3/ } \\ & \text { ADCO_SE23/ } \\ & \text { OPO_DP4/ } \\ & \text { OP1_DP4 } \end{aligned}$	DACO_OUT/ CMP1_N3/ ADCO_SE23/ OPO_DP4/ OP1_DP4								
45	J4	DAC1_OUT/ CMP2_N3/ ADC1_SE23/ OPO_DP5/ OP1_DP5	$\begin{aligned} & \text { DAC1_OUT/ } \\ & \text { CMP2_IN3/ } \\ & \text { ADC1_SE23/ } \\ & \text { OPO_DP5/ } \\ & \text { OP1_DP5 } \end{aligned}$	DAC1_OUT/ CMP2_N3/ ADC1_SE23/ OPO_DP5/ OP1_DP5								
46	M7	XTAL32	XTAL32	XTAL32								
47	M6	EXTAL32	EXTAL32	EXTAL32								
48	L6	VBAT	VBAT	VBAT								
49	H4	PTE28	DISABLED		PTE28							
50	J5	PTAO	$\begin{aligned} & \text { JTAG_TCLK/ } \\ & \text { SWD_CLK/ } \\ & \text { EZP_CLK } \end{aligned}$	TSIO_CH1	PTAO	UARTO_CTS_ b	FTMO_CH5				JTAG_TCLKI SWD_CLK	EZP_CLK
51	J6	PTA1	$\begin{aligned} & \text { JTAG_TDI\|\| } \\ & \text { EZP_DI } \end{aligned}$	TSIO_CH2	PTA1	UARTO_RX	FTMO_CH6				JTAG_TD	EZP_D
52	K6	PTA2	$\begin{aligned} & \text { JTAG_TDO/ } \\ & \text { TRACE_SWO/ } \\ & \text { EZP_DO } \end{aligned}$	TSIO_CH3	PTA2	UARTO_TX	FTMO_CH7				$\begin{aligned} & \text { JTAG_TDO/ } \\ & \text { TRACE_SWO } \end{aligned}$	EZP_DO
53	K7	PTA3	$\begin{aligned} & \text { JTAG_TMS/ } \\ & \text { SWD_DIO } \end{aligned}$	TSIO_CH4	PTA3	UARTO_RTS_ b	FTMO_CHO				$\begin{aligned} & \text { JTAG_TMS/ } \\ & \text { SWD_DIO } \end{aligned}$	

K52 Sub-Family Data Sheet Data Sheet, Rev. 7, 02/2013.

$\begin{gathered} 144 \\ \text { LQFP } \end{gathered}$	$\begin{aligned} & 144 \\ & \text { MAP } \\ & \text { BGA } \end{aligned}$	Pin Name	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
54	L7	PTA4/ LLWU P3	$\begin{array}{\|l\|} \text { NMI_bl } \\ \text { EZP_CS_b } \end{array}$	TSIO_CH5	PTA4/ LLWU P3		FTMO_CH1				NMI_b	EZP_CS_b
55	M8	PTA5	DISABLED		PTA5		FTMO_CH2	RMIIO_RXER MIIO_RXER	CMP2_OUT	I2SO_RX BCLK	JTAG_TRST	
56	E7	VDD	VDD	VDD								
57	G7	VSS	VSS	VSS								
58	$J 7$	PTA6	DISABLED		PTA6		FTMO_CH3				$\begin{aligned} & \text { TRACE } \\ & \text { CLKOUT } \end{aligned}$	
59	J8	PTA7	ADCO_SE10	ADCO_SE10	PTA7		FTMO_CH4				TRACE_D3	
60	K8	PTA8	ADCO_SE11	ADCO_SE11	PTA8		FTM1_CHO			$\begin{array}{\|l} \hline \text { FTM1_QD_ } \\ \text { PHA } \end{array}$	TRACE_D2	
61	L8	PTA9	DISABLED		PTA9		FTM1_CH1	MIIO_RXD3		$\begin{array}{\|l} \hline \text { FTM1_QD_ } \\ \text { PHB } \end{array}$	TRACE_D1	
62	M9	PTA10	DISABLED		PTA10		FTM2_CHO	MIIO_RXD2		$\begin{aligned} & \hline \text { FTM2_QD_ } \\ & \text { PHA } \end{aligned}$	TRACE_DO	
63	L9	PTA11	DISABLED		PTA11		FTM2_CH1	MIIO_RXCLK		$\begin{aligned} & \hline \text { FTM2_QD_ } \\ & \text { PHB } \end{aligned}$		
64	K9	PTA12	CMP2_INO	CMP2_INO	PTA12		FTM1_CHO	RMIIO_RXD1/ MIIO_RXD1		12SO_TXD	$\begin{aligned} & \hline \text { FTM1_QD_ } \\ & \text { PHA } \end{aligned}$	
65	J9	PTA13 LLWUP4	CMP2_IN1	CMP2_IN1	PTA13/ LLWUP4		FTM1_CH1	$\begin{aligned} & \text { RMIIO_RXDO/ } \\ & \text { MIIO_XXDO } \end{aligned}$		12SO_TX_FS	$\begin{aligned} & \hline \text { FTM1_QD_ } \\ & \text { PHB } \end{aligned}$	
66	L10	PTA14	DISABLED		PTA14	SPIO PCSO	UARTO_TX	RMIIO_CRS_ DVI MIIO_RXDV		$\begin{aligned} & \text { 12SOTX_ } \\ & \text { BCLK } \end{aligned}$		
67	L11	PTA15	DISABLED		PTA15	SPIO_SCK	UARTO_RX	RMIIO TXEN MIIO_TXEN		I2SO_RXD		
68	K10	PTA16	DISABLED		PTA16	SPIO_SOUT	$\begin{aligned} & \text { UARTO_CTS_ } \\ & b \end{aligned}$	$\begin{aligned} & \text { RMIIOTXDO/ } \\ & \text { MIIO_TXDO } \end{aligned}$		12SO_RX_FS		
69	K11	PTA17	ADC1_SE17	ADC1_SE17	PTA17	SPIO_SIN	UARTO_RTS_ b	$\begin{aligned} & \text { RMIIOTXD1/ } \\ & \text { MIIO_TXD1 } \end{aligned}$		12SO_MCLK	12SO_CLKIN	
70	E8	VDD	VDD	VDD								
71	G8	VSS	VSS	VSS								
72	M12	PTA18	EXTAL	EXTAL	PTA18		FTMO_FLT2	FTM_CLKINO				
73	M11	PTA19	XTAL	XTAL	PTA19		FTM1_FLTO	FTM_CLKIN1		LPTO_ALT1		
74	L12	RESET_b	RESET_b	RESET_b								
75	K12	PTA24	DISABLED		PTA24			MIIO_TXD2		FB_A29		
76	J12	PTA25	DISABLED		PTA25			MIIO_TXCLK		FB_A28		
77	J11	PTA26	DISABLED		PTA26			MIIO_TXD3		FB_A27		
78	J10	PTA27	DISABLED		PTA27			MIIO_CRS		FB_A26		
79	H12	PTA28	DISABLED		PTA28			MIIO_TXER		FB_A25		
80	H11	PTA29	DISABLED		PTA29			MIIO_COL		FB_A24		
81	H10	PTBO/ LLWU P5	ADCO_SE8/ ADC1_SE8/ TSIO_CHO	ADCO_SE8 ADC1_SE8/ TSIO_CHO	PTBO LLWU_P5	12CO_SCL	FTM1_CHO	RMIIO_MDIO/ MIIO_MDIO		$\begin{aligned} & \text { FTM1_QD_ } \\ & \text { PHA } \end{aligned}$		

$\begin{gathered} 144 \\ \text { LQFP } \end{gathered}$	$\begin{aligned} & 144 \\ & \text { MAP } \\ & \text { BGA } \end{aligned}$	Pin Name	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
82	H9	PTB1	ADCO_SE9/ ADC1_SE9/ TSIO_CH6	$\begin{aligned} & \hline \text { ADCO_SE9/ } \\ & \text { ADC1_SE9/ } \\ & \text { TSIO_CH6 } \end{aligned}$	PTB1	12CO_SDA	FTM1_CH1	$\begin{aligned} & \text { RMIIOMDC/ } \\ & \text { MIIO_MDC } \end{aligned}$		$\begin{aligned} & \hline \text { FTM1_QD_ } \\ & \text { PHB } \end{aligned}$		
83	G12	PTB2	$\begin{array}{\|l\|} \hline \text { ADCO_SE12/ } \\ \text { TSIO_CH7 } \end{array}$	$\begin{aligned} & \hline \text { ADCO_SE12/ } \\ & \text { TSIO_CH7 } \end{aligned}$	PTB2	12CO_SCL	UARTO_RTS_ b	$\begin{aligned} & \hline \text { ENETO_1588_ } \\ & \text { TMRO } \end{aligned}$		FTMO_FLT3		
84	G11	PTB3	$\begin{array}{\|l\|} \hline \text { ADCO_SE13/ } \\ \text { TSIO_CH8 } \end{array}$	$\begin{aligned} & \text { ADCO_SE13/ } \\ & \text { TSIO_CH8 } \end{aligned}$	PTB3	I2CO_SDA	$\begin{aligned} & \text { UARTO_CTS_ } \\ & \text { b } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { ENETO_1588_ } \\ \text { TMR1 } \end{array}$		FTMO_FLTO		
85	G10	PTB4	ADC1_SE10	ADC1_SE10	PTB4			$\begin{array}{\|l} \mid \text { ENETO_1588_ } \\ \text { TMR2 } \end{array}$		FTM1_FLTO		
86	G9	PTB5	ADC1_SE11	ADC1_SE11	PTB5			$\begin{aligned} & \hline \text { ENETO_1588_ } \\ & \text { TMR3 } \end{aligned}$		FTM2_FLTO		
87	F12	PTB6	ADC1_SE12	ADC1_SE12	PTB6				FB_AD23			
88	F11	PTB7	ADC1_SE13	ADC1_SE13	PTB7				FB_AD22			
89	F10	PTB8			PTB8		UART3_RTS_ b		FB_AD21			
90	F9	PTB9			PTB9	SPIT_PCS1	$\begin{aligned} & \text { UART3_CTS_ } \\ & b \end{aligned}$		FB_AD20			
91	E12	PTB10	ADC1_SE14	ADC1_SE14	PTB10	SPIT PCSO	UART3_RX		FB_AD19	FTMO_FLT1		
92	E11	PTB11	ADC1_SE15	ADC1_SE15	PTB11	SPIT_SCK	UART3_TX		FB_AD18	FTMO_FLT2		
93	H7	VSS	VSS	VSS								
94	F5	VDD	VDD	VDD								
95	E10	PTB16	TSIO_CH9	TSIO_CH9	PTB16	SPIT_SOUT	UARTORX		FB_AD17	EWM _IN		
96	E9	PTB17	TSIO_CH10	TSIO_CH10	PTB17	SPI_SIN	UARTO_TX		FB_AD16	EWM_OUT_b		
97	D12	PTB18	TSIO_CH11	TSIO_CH11	PTB18		FTM2_CHO	$\begin{aligned} & \text { I2SOTX_ } \\ & \text { BCLK } \end{aligned}$	FB_AD15	$\begin{aligned} & \text { FTM2_QD_ } \\ & \text { PHA } \end{aligned}$		
98	011	PTB19	TSIO_CH12	TSIO_CH12	PTB19		FTM2_CH1	I2SO_TX_FS	FB_OE_b	$\begin{aligned} & \text { FTM2_QD_ } \\ & \text { PHB } \end{aligned}$		
99	D10	PTB20			PTB20	SP12 PCSO			FB_AD31	CMPO_OUT		
100	D9	PTB21			PTB21	SP12_SCK			FB_AD30	CMP1_OUT		
101	C12	PTB22			PTB22	SP12_SOUT			FB_AD29	CMP2_OUT		
102	C 11	PTB23			PTB23	SPI2_SIN	SP10_PCS5		FB_AD28			
103	B12	PTCO	$\begin{array}{\|l} \hline \text { ADCO_SE14/ } \\ \text { TSIO_CH13 } \end{array}$	$\begin{aligned} & \text { ADCO_SE14/ } \\ & \text { TSIO_CH13 } \end{aligned}$	PTCO	SPIO PCS4	PDBO_EXTRG	I2SO_TXD	FB_AD14			
104	B11	PTC1/ LLWU_P6	$\begin{array}{\|l\|} \hline \text { ADCO_SE15/ } \\ \text { TSIO_CH14 } \end{array}$	ADCO_SE15/ TSIO_CH14	PTC1/ LLWUP6	SP10 PCS3	UART1_RTS_ b	FTMO_CHO	FB_AD13			
105	A12	PTC2	$\begin{array}{\|l\|} \hline \text { ADCO_SE4b/ } \\ \text { CMP1_INO/ } \\ \text { TSIO_CH15 } \end{array}$	$\begin{aligned} & \text { ADCO_SE4b/ } \\ & \text { CMP1_INO/ } \\ & \text { TSIO_CH15 } \end{aligned}$	PTC2	SPIO PCS2	$\begin{aligned} & \hline \text { UART1_CTS_ } \\ & \mathrm{b} \end{aligned}$	FTMO_CH1	FB_AD12			
106	A11	PTC3 LLWU_P7	CMP1_IN1	CMP1_IN1	PTC3/ LLWUPT	SPIO_PCS1	UART1_RX	FTMO_CH2	FB_CLKOUT			
107	H8	VSS	VSS	VSS								
108	-	VDD	VDD	VDD								
109	A9	PTC4 LLWU_P8			PTC4/ LLWUP8	SPIO PCSO	UART1_TX	FTMO_CH3	FB_AD11	CMP1_OUT		

K52 Sub-Family Data Sheet Data Sheet, Rev. 7, 02/2013.

$\begin{array}{c\|} \hline 144 \\ \text { LQFP } \end{array}$	$\begin{aligned} & 144 \\ & \text { MAP } \\ & \text { BGA } \end{aligned}$	Pin Name	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
110	D8	PTC5 LLWU_Pg			PTC5/ LLWU Pg	SPIO_SCK		LPTO_ALT2	FB_AD10	CMPO_OUT		
111	C8	PTC6/ LLWU_P10	CMPO_INO	CMPO_INO	PTC6 LLWU_P10	SPIO_SOUT	PDBO_EXTRG		FB_AD9			
112	B8	PTC7	CMPO_IN1	CMPO_IN1	PTC7	SPIO_SIN			FB_AD8			
113	A8	PTC8	$\begin{aligned} & \text { ADC1_SE4b/ } \\ & \text { CMPO_N2 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { ADC1_SE4b/ } \\ \text { CMPO_IN2 } \end{array}$	PTC8		I2SO_MCLK	I2SO_CLKIN	FB_AD7			
114	D7	PTC9	$\begin{aligned} & \text { ADC1_SE5b/ } \\ & \text { CMPO_IN3 } \end{aligned}$	$\begin{aligned} & \text { ADC1_SE5b/ } \\ & \text { CMPO_N3 } \end{aligned}$	PTC9			$\begin{aligned} & \text { I2SO_RX } \\ & \text { BCLKK } \end{aligned}$	FB_AD6	FTM2_FLTO		
115	C7	PTC10	$\begin{aligned} & \text { ADC1_SE6b/ } \\ & \text { CMPO_IN4 } \end{aligned}$	$\begin{aligned} & \text { ADC1_SE6b/ } \\ & \text { CMPO_IN4 } \end{aligned}$	PTC10	I2C1_SCL		12SO_RX_FS	FB_AD5			
116	B7	PTC11/ LLWU_P11	ADC1_SE7b	ADC1_SE7b	PTC11/ LLWU_P11	I2C1_SDA		12SO_RXD	FB_RW_b			
117	A7	PTC12			PTC12		UART4_RTS_ b		FB_AD27			
118	D6	PTC13			PTC13		$\begin{array}{\|l} \hline \text { UART4_CTS_ } \\ \mathrm{b} \end{array}$		FB_AD26			
119	C6	PTC14			PTC14		UARTT_RX		FB_AD25			
120	B6	PTC15			PTC15		UART4_TX		FB_AD24			
121	-	VSS	VSS	VSS								
122	-	VDD	VDD	VDD								
123	A6	PTC16			PTC16		UART3_RX	$\begin{aligned} & \hline \text { ENETO_1588_ } \\ & \text { TMRO } \end{aligned}$	FB_CS5_b/ FB_TSIZ1/ FB_BE23_16_ b			
124	D5	PTC17			PTC17		UART3_TX	$\begin{aligned} & \text { ENETO_1588_ } \\ & \text { TMR1 } \end{aligned}$	FB_CS4_b/ FB_TSIZO/ FB_BE31_24_ b			
125	C5	PTC18			PTC18		UART3_RTS_ b	$\begin{aligned} & \text { ENETO_1588_ } \\ & \text { TMR2 } \end{aligned}$	FB_TBST_b/ FB_CS2_bl FB_BE15_8_b			
126	B5	PTC19			PTC19		UART3_CTS_ \|b	$\begin{aligned} & \hline \text { ENETO_1588_ } \\ & \text { TMR3 } \end{aligned}$	$\begin{aligned} & \text { FB_CS3_b/ } \\ & \text { FB_BE7_Ob } \end{aligned}$	FB_TA_b		
127	A5	PTDO LLWU_P12			PTDO/ LLWU_P12	SPIO_PCSO	UART2_RTS_ b		FB_ALE/ FB_CS1_b FB_TS_b			
128	D4	PTD1	ADCO_SE5b	ADCO_SE5b	PTD1	SPIO_SCK	UART2_CTS_ b		FB_CSO_b			
129	C4	PTD2 LLWU_P13			PTD2/ LLWU_P13	SPIO_SOUT	UART2_RX		FB_AD4			
130	B4	PTD3			PTD3	SPIO_SIN	UART2_TX		FB_AD3			
131	A4	PTD4 LLWU_P14			PTD4/ LLWU_P14	SP10_PCS1	UARTO_RTS_ b	FTMO_CH4	FB_AD2	EWM_IN		
132	A3	PTD5	ADCO_SE6b	ADCO_SE6b	PTD5	SP10_PCS2	$\begin{aligned} & \text { UARTO_CTS_ } \\ & b \end{aligned}$	FTMO_CH5	FB_AD1	EWM_OUT_b		

$\begin{gathered} 144 \\ \text { LQFP } \end{gathered}$	$\begin{aligned} & 144 \\ & \text { MAP } \\ & \text { BGA } \end{aligned}$	Pin Name	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
133	A2	PTD6/ LLWU_P15	ADCO_SE7b	ADCO_SE7b	PTD6/ LLWU_P15	SPIO_PCS3	UARTO_RX	FTMO_CH6	FB_ADO	FTMO_FLTO		
134	M10	VSS	VSS	VSS								
135	F8	VDD	VDD	VDD								
136	A1	PTD7			PTD7	CMT_IRO	UARTO_TX	FTMO_CH7		FTMO_FLT1		
137	C9	PTD8	DISABLED		PTD8	12 CO _SCL	UART5_RX			FB_A16		
138	B9	PTD9	DISABLED		PTD9	I2CO_SDA	UART5_TX			FB_A17		
139	B3	PTD10	DISABLED		PTD10		UART5_RTS_ b			FB_A18		
140	B2	PTD11	DISABLED		PTD11	SP12_PCSO	$\begin{aligned} & \text { UART5_CTS_ } \\ & b \end{aligned}$	$\begin{aligned} & \hline \text { SDHCO } \\ & \text { CLKIN } \end{aligned}$		FB_A19		
141	B1	PTD12	DISABLED		PTD12	SPI2_SCK		SDHCO_D4		FB_A20		
142	C3	PTD13	DISABLED		PTD13	SPI2_SOUT		SDHCO_D5		FB_A21		
143	C2	PTD14	DISABLED		PTD14	SPI2_SIN		SDHCO_D6		FB_A22		
144	Cl	PTD15	DISABLED		PTD15	SP12_PCS1		SDHCO_D7		FB_A23		

8.2 K52 Pinouts

The below figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section.

rimul

Figure 30. K52 144 LQFP Pinout Diagram

Figure 31. K52 144 MAPBGA Pinout Diagram

9 Revision History

The following table provides a revision history for this document.
Table 58. Revision History

Rev. No.	Date	Substantial Changes
2	$3 / 2011$	Initial public revision

Table continues on the next page...

Table 58. Revision History (continued)

Rev. No.	Date	Substantial Changes
3	3/2011	Added sections that were inadvertently removed in previous revision
4	3/2011	Reworded I_{IC} footnote in "Voltage and Current Operating Requirements" table. Added paragraph to "Peripheral operating requirements and behaviors" section. Added "JTAG full voltage range electricals" table to the "JTAG electricals" section.
5	6/2011	- Changed supported part numbers per new part number scheme - Changed DC injection current specs in "Voltage and current operating requirements" table - Changed Input leakage current and internal pullup/pulldown resistor specs in "Voltage and current operating behaviors" table - Split Low power stop mode current specs by temperature range in "Power consumption operating behaviors" table - Changed typical $I_{D D _V B A T}$ spec in "Power consumption operating behaviors" table - Added ENET and LPTMR clock specs to "Device clock specifications" table - Changed Minimum external reset pulse width in "General switching specifications" table - Changed PLL operating current in "MCG specifications" table - Added footnote to PLL period jitter in "MCG specifications" table - Changed Supply current in "Oscillator DC electrical specifications" table - Changed Crystal startup time in "Oscillator frequency specifications" table - Changed Operating voltage in "EzPort switching specifications" table - Changed title of "FlexBus switching specifications" table and added Output valid and hold specs - Added "FlexBus full range switching specifications" table - Changed ADC asynchronous clock source specs in "16-bit ADC characteristics" table - Changed Gain spec in "16-bit ADC with PGA characteristics" table - Added typical Input DC current to "16-bit ADC with PGA characteristics" table - Changed Input offset voltage and ENOB notes field in "16-bit ADC with PGA characteristics" table - Changed Analog comparator initialization delay in "Comparator and 6-bit DAC electrical specifications" - Changed Code-to-code settling time, DAC output voltage range low, and Temperature coefficient offset voltage in "12-bit DAC operating behaviors" table - Moved Output resistance to "TRIAMP operating behaviors" tables - Changed Supply current, Input offset current, AC input impedance in "TRIAMP operating behaviors" tables - Changed Temperature drift and Load regulation in "VREF full-range operating behaviors" table - Changed Regulator output voltage in "USB VREG electrical specifications" table - Changed ILIM description and specs in "USB VREG electrical specifications" table - Changed DSPI_SCK cycle time specs in "DSPI timing" tables - Changed DSPI_SS specs in "Slave mode DSPI timing (low-speed mode)" table - Changed DSPI_SCK to DSPI_SOUT valid spec in "Slave mode DSPI timing (highspeed mode)" table - Changed Reference oscillator current source base current spec and added Low-power current adder footer in "TSI electrical specifications" table

Table continues on the next page...

Table 58. Revision History (continued)

Rev. No.	Date	Substantial Changes
6	01/2012	- Added AC electrical specifications. - Replaced TBDs with silicon data throughout. - In "Power mode transition operating behaviors" table, removed entry times. - Updated "EMC radiated emissions operating behaviors" to remove SAE level and also added data for 144LQFP. - Clarified "EP7" in "EzPort switching specifications" table and "EzPort Timing Diagram". - Added "ENOB vs. ADC_CLK for 16-bit differential and 16-bit single-ended modes" figures. - Updated $\mathrm{I}_{\mathrm{DD} _ \text {RUN }}$ numbers in 'Power consumption operating behaviors' section. - Clarified 'Diagram: Typical IDD_RUN operating behavior' section and updated 'Run mode supply current vs. core frequency - all peripheral clocks disabled' figure. - In 'Voltage reference electrical specifications' section, updated $\mathrm{C}_{\mathrm{L}}, \mathrm{V}_{\text {tdrift }}$, and $\mathrm{V}_{\text {vdrift }}$ values. - In 'USB electrical specifications' section, updated $V_{D P / S R C}, I_{\text {DDstby }}$, and ${ }^{\prime} V_{\text {Reg33out }}$ values.
7	02/2013	- In "ESD handling ratings", added a note for ILAT. - Updated "Voltage and current operating requirements". - Updated "Voltage and current operating behaviors". - Updated "Power mode transition operating behaviors". - Updated "EMC radiated emissions operating behaviors" to add MAPBGA data. - In "MCG specifications", updated the description of $f_{\text {ints_t. }}$ - In "16-bit ADC operating conditions", updated the max spec of $\mathrm{V}_{\text {ADIN }}$. - In "16-bit ADC electrical characteristics", updated the temp sensor slope and voltage specs. - Updated "I2C switching specifications". - In "SDHC specifications", removed the operating voltage limits and updated the SD1 and SD6 specs. - In "I2S switching specifications", added separate specification tables for the full operating voltage range.

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296380456 (English)
+46 852200080 (English)
+49 8992103559 (German)
+33 169354848 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064
Japan
0120191014 or +81 354379125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 1058798000
support.asia@freescale.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductors products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claims alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.
RoHS-compliant and/or Pb -free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-complaint and/or non- Pb -free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.
Freescale ${ }^{\mathrm{TM}}$ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.
© 2011-2013 Freescale Semiconductor, Inc.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for ARM Microcontrollers - MCU category:

Click to view products by NXP manufacturer:

Other Similar products are found below :

```
R7FS3A77C2A01CLK#AC1 CP8363AT MB96F119RBPMC-GSE1 MB9BF122LPMC1-G-JNE2 MB9BF122LPMC-G-JNE2
MB9BF128SAPMC-GE2 MB9BF218TBGL-GE1 MB9BF529TBGL-GE1 26-21/R6C-AT1V2B/CT 5962-8506403MQA
MB9AF342MAPMC-G-JNE2 MB96F001YBPMC1-GSE1 MB9BF121KPMC-G-JNE2 VA10800-D000003PCA CP8547AT
CY9AF156NPMC-G-JNE2 MB9BF104NAPMC-G-JNE1 ADUCM410BCBZ-RL7 GD32f303RGT6 NHS3152UK/A1Z
MK26FN2M0CAC18R EFM32TG230F32-D-QFN64 EFM32TG232F32-D-QFP64 EFM32TG825F32-D-BGA48 MB9AFB44NBBGL-GE1
MB9BF304RBPMC-G-JNE2 MB9BF416RPMC-G-JNE2 MB9AF155MABGL-GE1 MB9BF306RBPMC-G-JNE2 MB9BF618TBGL-GE1
ATSAMS70N21A-CN MK20DX64VFT5 MK50DX128CMC7 MK51DN256CMD10 MK51DX128CMC7 MK53DX256CMD10
MKL25Z32VFT4 LPC1754FBD80 STM32F030K6T6TR STM32L073VBT6 LPC11U24FET48301, AT91M42800A-33AU AT91SAM7L64-
CU ATSAM3S1BB-MUR ATSAM3N0AA-MU ATSAM3N0CA-CU ATSAM3SD8BA-MU ATSAM4LC2BA-UUR ATSAM4LC4BA-MU
ATSAM4LS2AA-MU
```

