Freescale Semiconductor

Technical Data

Document Number: MMRF1312H Rev. 0, 3/2016

√RoHS

RF Power LDMOS Transistors

High Ruggedness N-Channel Enhancement-Mode Lateral MOSFETs

These RF power devices are designed for pulse applications operating at frequencies from 900 to 1215 MHz. The devices are suitable for use in pulse applications with large duty cycles and long pulses and are ideal for use in high power military and commercial L-Band radar applications such as IFF and DME/TACAN.

Typical Short Pulse Performance: In 900–1215 MHz reference circuit, $V_{DD} = 52$ Vdc, $I_{DQ(A+B)} = 100$ mA

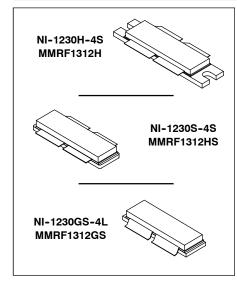
Frequency (MHz)	Signal Type	P _{out} (W)	G _{ps} (dB)	η _D (%)
900	Pulse (128 μsec, 10% Duty Cycle)	1615 Peak	15.2	54.0
960	(126 µsec, 10% buty Gycle)	1560 Peak	17.3	55.7
1030		1500 Peak	17.8	53.8
1090		1530 Peak	18.0	54.5
1215		1200 Peak	19.2	58.5

Load Mismatch/Ruggedness

Frequency (MHz)	Signal Type	VSWR	P _{in} (W)	Test Voltage	Result
1030 (1)	Pulse (128 μsec, 10% Duty Cycle)	> 20:1 at all Phase Angles	20.2 Peak (3 dB Overdrive)	52	No Device Degradation

1. Measured in 1030 MHz narrowband reference circuit.

Features


- · Internally input and output matched for broadband operation and ease of use
- Device can be used in a single-ended, push-pull or quadrature configuration
- Qualified up to a maximum of 52 V_{DD} operation
- High ruggedness, handles > 20:1 VSWR
- Integrated ESD protection with greater negative voltage range for improved Class C operation and gate voltage pulsing
- · Characterized with series equivalent large-signal impedance parameters

Typical Applications

- Air traffic control systems (ATC), including ground-based secondary radars such as IFF interrogators or transponders
- Distance measuring equipment (DME)
- · Tactical air navigation (TACAN)

MMRF1312H MMRF1312HS MMRF1312GS

900–1215 MHz, 1000 W PEAK, 52 V AIRFAST RF POWER LDMOS TRANSISTORS

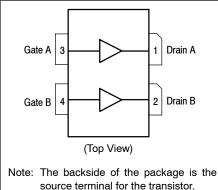


Figure 1. Pin Connections

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +112	Vdc
Gate-Source Voltage	V _{GS}	-6.0, +10	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature Range	T _C	-40 to 150	°C
Operating Junction Temperature Range (1)	T _J	-40 to 225	°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	1053 5.26	W W/°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value ⁽²⁾	Unit
Thermal Impedance, Junction to Case	$Z_{\theta JC}$		°C/W
Pulse: Case Temperature 64°C, 1000 W Peak, 128 μsec Pulse Width,			
10% Duty Cycle, 50 Vdc, I _{DQ} = 100 mA, 1030 MHz		0.017	

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	2, passes 2500 V
Machine Model (per EIA/JESD22-A115)	B, passes 250 V
Charge Device Model (per JESD22-C101)	IV, passes 2000 V

Table 4. Electrical Characteristics (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics (3)					
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	1	μAdc
Drain-Source Breakdown Voltage (V_{GS} = 0 Vdc, I_D = 10 μ A)	V _{(BR)DSS}	112	_	_	Vdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 50 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	1	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 112 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	10	μAdc
On Characteristics					
Gate Threshold Voltage $^{(3)}$ ($V_{DS} = 10 \text{ Vdc}$, $I_D = 520 \mu\text{Adc}$)	V _{GS(th)}	1.3	1.8	2.3	Vdc
Gate Quiescent Voltage (4) (V _{DD} = 50 Vdc, I _D = 100 mAdc, Measured in Functional Test)	V _{GS(Q)}	1.5	2.0	2.5	Vdc
Drain-Source On-Voltage (3) (V _{GS} = 10 Vdc, I _D = 2.6 Adc)	V _{DS(on)}	0.05	0.17	0.35	Vdc
Dynamic Characteristics ⁽³⁾	·			•	-
Reverse Transfer Capacitance (V _{DS} = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{rss}	_	2.5	_	pF

- 1. Continuous use at maximum temperature will affect MTTF.
- 2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.
- 3. Each side of device measured separately.
- 4. Measurement made with device in push-pull configuration.

(continued)

Table 4. Electrical Characteristics (T_A = 25°C unless otherwise noted) (continued)

Characteristic	Symbol	Min	Тур	Max	Unit
Functional Tests (1,2) (In Freescale Narrowband Production Test Fixture, 50) ohm system) V _{DD} = 50 V ₀	dc. Ino(A : B) =	100 mA. Pau	+ = 1000 W

Functional Tests (1,2) (In Freescale Narrowband Production Test Fixture, 50 ohm system) V_{DD} = 50 Vdc, $I_{DQ(A+B)}$ = 100 mA, P_{out} = 1000 W Peak (100 W Avg.), f = 1030 MHz, 128 µsec Pulse Width, 10% Duty Cycle

Power Gain	G _{ps}	18.5	19.6	22.0	dB
Drain Efficiency	η_{D}	55.5	59.7	_	%
Input Return Loss	IRL	_	-15	-9	dB

$\textbf{Table 5. Load Mismatch/Ruggedness} \text{ (In Freescale Narrowband Production Test Fixture, 50 ohm system) } \\ I_{DQ(A+B)} = 100 \text{ mA} \\ \textbf{Matter State Narrowband Production Test Fixture, 50 ohm system)} \\ \textbf{Matter State Narrowband Production Test Fixture, 50 ohm system)} \\ \textbf{Matter State Narrowband Production Test Fixture, 50 ohm system)} \\ \textbf{Matter State Narrowband Production Test Fixture, 50 ohm system)} \\ \textbf{Matter State Narrowband Production Test Fixture, 50 ohm system)} \\ \textbf{Matter State Narrowband Production Test Fixture, 50 ohm system)} \\ \textbf{Matter State Narrowband Production Test Fixture, 50 ohm system)} \\ \textbf{Matter State Narrowband Production Test Fixture, 50 ohm system)} \\ \textbf{Matter State Narrowband Production Test Fixture, 50 ohm system)} \\ \textbf{Matter State Narrowband Production Test Fixture, 50 ohm system)} \\ \textbf{Matter State Narrowband Production Test Fixture, 50 ohm system)} \\ \textbf{Matter State Narrowband Production Test Fixture, 50 ohm system)} \\ \textbf{Matter State Narrowband Production Test Fixture, 50 ohm system)} \\ \textbf{Matter State Narrowband Production Test Fixture, 50 ohm system)} \\ \textbf{Matter State Narrowband Production Test Fixture, 50 ohm system)} \\ \textbf{Matter State Narrowband Production Test Fixture, 50 ohm system)} \\ \textbf{Matter State Narrowband Production Test Fixture, 50 ohm system)} \\ \textbf{Matter State Narrowband Production Test Fixture, 50 ohm system)} \\ \textbf{Matter State Narrowband Production Test Fixture, 50 ohm system)} \\ \textbf{Matter State Narrowband Production Test Fixture, 50 ohm system)} \\ \textbf{Matter State Narrowband Production Test Fixture, 50 ohm system)} \\ \textbf{Matter State Narrowband Production Test Fixture, 50 ohm system)} \\ \textbf{Matter State Narrowband Production Test Fixture, 50 ohm system)} \\ \textbf{Matter State Narrowband Production Test Fixture, 50 ohm system)} \\ \textbf{Matter State Narrowband Production Test Fixture, 50 ohm system)} \\ \textbf{Matter State Narrowband Production Test Fixture, 50 ohm system)} \\ \textbf{Matter State Narrowband Production Test Fixture, 50 ohm system)} \\ \textbf{Matter State Narrowband Production Test Fix$

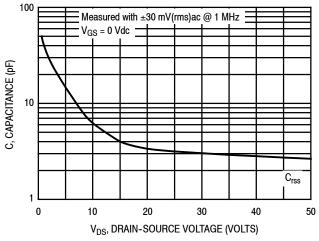
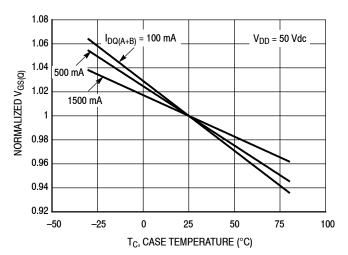

Frequency (MHz)	Signal Type	VSWR	P _{in} (W)	Test Voltage, V _{DD}	Result
1030	Pulse (128 μsec, 10% Duty Cycle)	> 20:1 at all Phase Angles	20.2 Peak (3 dB Overdrive)	52	No Device Degradation

Table 6. Ordering Information

Device	Tape and Reel Information	Package
MMRF1312HR5	R5 Suffix = 50 Units, 56 mm Tape Width, 13-inch Reel	NI-1230H-4S, Eared
MMRF1312HSR5		NI-1230S-4S, Earless
MMRF1312GSR5		NI-1230GS-4L, Gull Wing


- 1. Measurement made with device in push-pull configuration.
- 2. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing (GS) parts.

TYPICAL CHARACTERISTICS

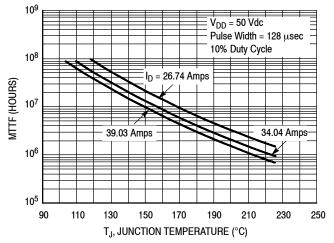
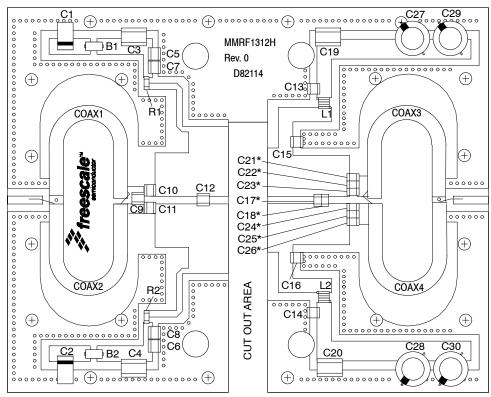

Note: Each side of device measured separately.

Figure 2. Capacitance versus Drain-Source Voltage

I _{DQ} (mA)	Slope (mV/°C)
100	-2.36
500	-2.26
1500	-1.84


Figure 3. Normalized V_{GS} versus Quiescent Current and Case Temperature

Note: MTTF value represents the total cumulative operating time under indicated test conditions.

Figure 4. MTTF versus Junction Temperature — Pulse

1030 MHz NARROWBAND PRODUCTION TEST FIXTURE — 4.0" × 5.0" (10.2 cm × 12.7 cm)

^{*} C17, C18, C21, C22, C23, C24, C25 and C26 are mounted vertically.

Figure 5. MMRF1312H(HS) Narrowband Test Circuit Component Layout — 1030 MHz

Table 7. MMRF1312H(HS) Narrowband Test Circuit Component Designations and Values — 1030 MHz

Part	Description	Part Number	Manufacturer
B1, B2	Short RF Bead	2743019447	Fair-Rite
C1, C2	22 μF, 35 V Tantalum Capacitors	T491X226K035AT	Kemet
C3, C4	2.2 μF Chip Capacitors	C1825C225J5RACTU	Kemet
C5, C6	0.1 μF Chip Capacitors	CDR33BX104AKWS	AVX
C7, C8	36 pF Chip Capacitors	ATC100B360JT500XT	ATC
C9	2.7 pF Chip Capacitor	ATC100B2R7CT500XT	ATC
C10, C11	30 pF Chip Capacitors	ATC100B300JT500XT	ATC
C12	8.2 pF Chip Capacitor	ATC100B8R2CT500XT	ATC
C13, C14	36 pF Chip Capacitors	ATC100B360JT500XT	ATC
C15, C16	7.5 pF Chip Capacitors	ATC100B7R5CT500XT	ATC
C17	4.7 pF Chip Capacitor	ATC100B4R7CT500XT	ATC
C18	4.3 pF Chip Capacitor	ATC100B4R3CT500XT	ATC
C19, C20	0.01 μF Chip Capacitors	C1825C103K1GACTU	Kemet
C21, C22, C23, C24, C25, C26	43 pF Chip Capacitors	ATC100B430JT500XT	ATC
C27, C28, C29, C30	470 μF, 63 V Electrolytic Capacitors	MCGPR63V477M13X26-RH	Multicomp
Coax1, Coax2, Coax3, Coax4	35 Ω Flex Cable 1.98"	HSF-141C-35	Hongsen Cable
L1, L2	12 ηH, 3 Turn Inductors	GA3094-ALC	Coilcraft
R1, R2	1.1 kΩ, 1/4 W Chip Resistors	CRCW12061K10FKEA	Vishay
PCB	Arlon, AD255A, 0.03", ε _r = 2.55	D82114	MTL

TYPICAL CHARACTERISTICS — 1030 MHz NARROWBAND PRODUCTION TEST FIXTURE

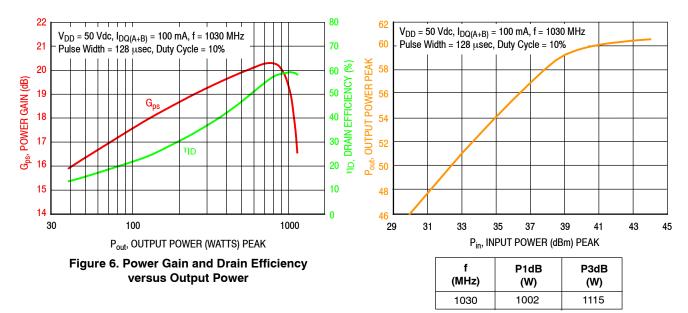


Figure 7. Output Power versus Input Power

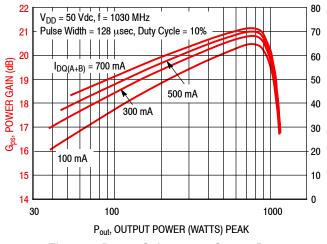


Figure 8. Power Gain versus Output Power

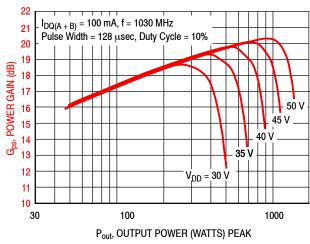


Figure 9. Power Gain versus Output Power

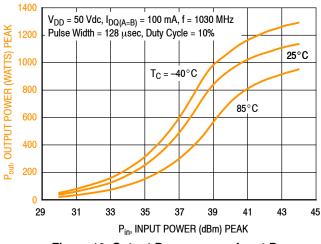
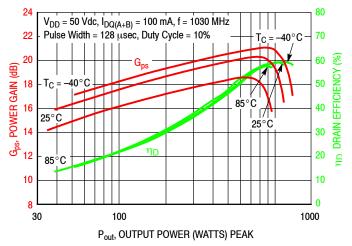
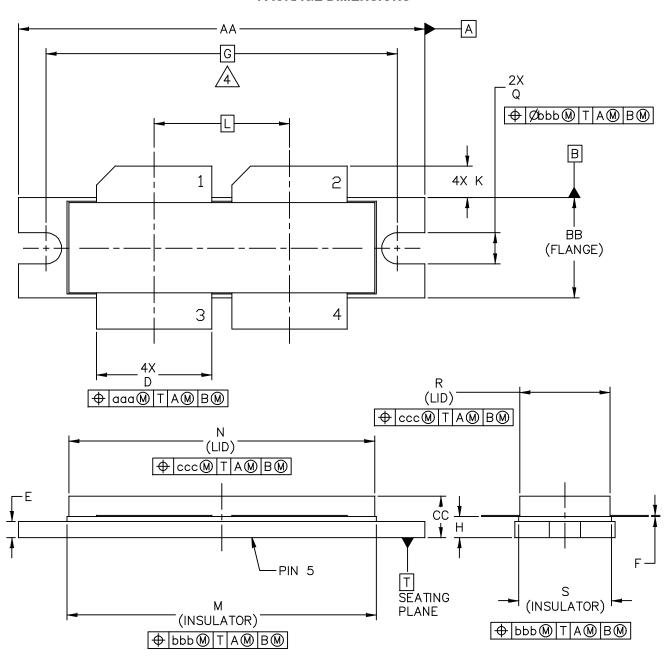


Figure 10. Output Power versus Input Power



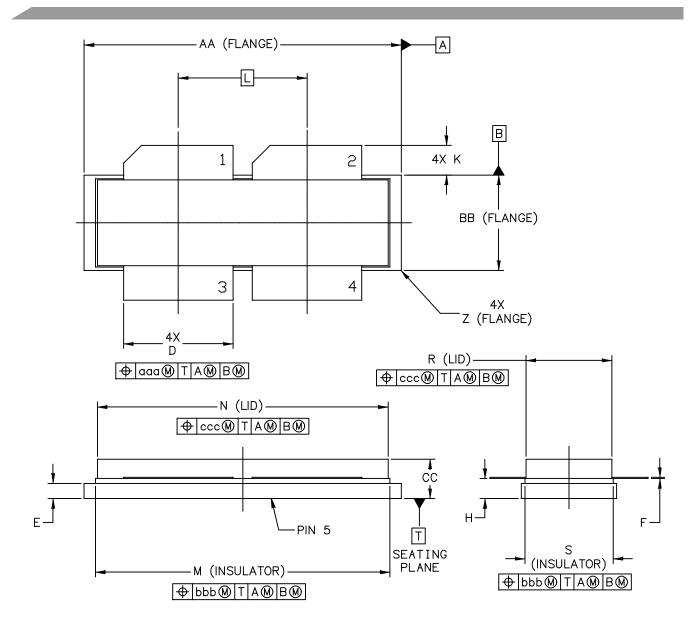

Figure 11. Power Gain and Drain Efficiency versus
Output Power

1030 MHz NARROWBAND PRODUCTION TEST FIXTURE

	f MHz	$Z_{source} \ \Omega$	Z _{load} Ω	
	1030	2.40 - j3.73	1.9 + j1.00	
	000.00	Test circuit impedance gate to gate, balance		1
	iouu	Test circuit impedand from drain to drain, b		on.
5 1	t ching work	Device + Under Test	Output Matchi Netwo	ng 🗖
=	Z	source	Z _{load}	=

Figure 12. Narrowband Series Equivalent Source and Load Impedance — 1030 MHz

PACKAGE DIMENSIONS



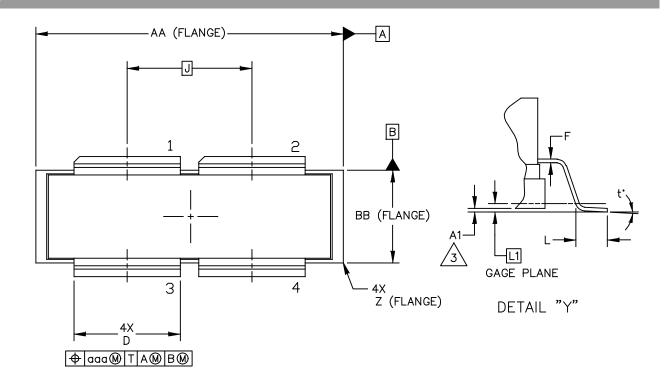
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OU	TLINE	PRINT VERSION NOT TO SCALE
TITLE:		DOCUME	NT NO: 98ASB16977C REV: F
NI-1230-4H		STANDAF	RD: NON-JEDEC
			28 FEB 2013

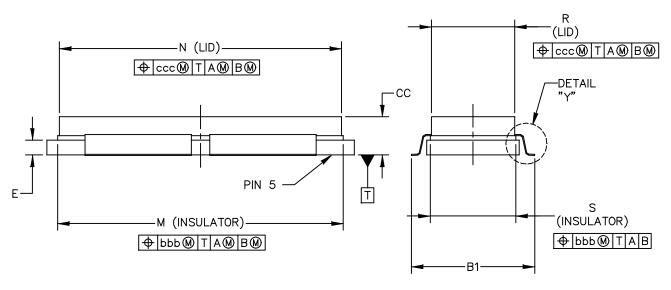
NOTES:

- 1. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH
- 3. DIMENSION H IS MEASURED . 030 INCH (0.762 MM) AWAY FROM PACKAGE BODY.
- RECOMMENDED BOLT CENTER DIMENSION OF 1.52 INCH (38.61 MM) BASED ON M3 SCREW.

	ING	CH	MIL	LIMETER		INCH		MILLIN	METER
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
AA	1.615	1.625	41.02	41.28	Ν	1.218	1.242	30.94	31.55
BB	.395	.405	10.03	10.29	Q	.120	.130	3.05	3.30
cc	.170	.190	4.32	4.83	R	.355	.365	9.02	9.27
D	.455	.465	11.56	11.81	S	.365	.375	9.27	9.53
Е	.062	.066	1.57	1.68					
F	.004	.007	0.10	0.18					
G	1.400	BSC	35	.56 BSC	aaa		.013	0.33	
Н	.082	.090	2.08	2.29	bbb		.010	0.25	
K	.117	.137	2.97	3.48	ccc		.020	0.	.51
L	.540	BSC	13.	.72 BSC					
М	1.219	1.241	30.96	31.52					
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.			INC.	MECHANICAL OU		TLINE	PRINT VERS	SION NOT T	O SCALE
TITLE:						DOCUMEN	IT NO: 98ASB1	6977C	REV: F
NI-1230-4H						STANDAR	D: NON-JEDEC	C	
								28	FEB 2013

© NXP SEMICONDUCTORS N. V. ALL RIGHTS RESERVED	MECHANICAL OUTLINE		PRINT VERSION NO	T TO SCALE
TITLE:		DOCUME	NT NO: 98ARB18247C	REV: H
NI-1230-4S		STANDAF	RD: NON-JEDEC	
		S0T1829	9–1	19 FEB 2016


NOTES:


1. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.

2. CONTROLLING DIMENSION: INCH

3. DIMENSION H IS MEASURED .030 INCH (0.762 MM) AWAY FROM PACKAGE BODY

DIM	INC MIN	HES MAX	MILL MIN	IMETERS MAX	DIM	NIM I	INCHES MAX		METERS MAX	
АА	1.265	1.275	32.13	32.39	R	.355	.365	9.02	9.27	
BB	.395	.405	10.03	10.29	S	.365	.375	9.27	9.53	
СС	.170	.190	4.32	4.83	Z	R.000	R.040	R0.00	R1.02	
D	.455	.465	11.56	11.81						
Е	.062	.066	1.57	1.68	aaa		.013	0.	.33	
F	.004	.007	0.10	0.18	bbb		.010	0.	.25	
Н	.082	.090	2.08	2.29	ccc		.020		.51	
K	.117	.137	2.97	3.48						
L	.540	BSC	13.	72 BSC						
М	1.219	1.241	30.96	31.52						
N	1.218	1.242	30.94	31.55						
©	© NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED			MECHANICAL OUT		JTLINE PRINT VERSION NOT TO		TO SCALE		
TITLE:	TITLE:						DOCUMENT NO: 98ARB18247C REV: H			
		NI-1230)-4S			STANDARD: NON-JEDEC				
						S0T1829)—1	1	9 FEB 2016	

© NXP SEMICONDUCTORS N. V. ALL RIGHTS RESERVED	MECHANICAL OUTLINE		PRINT VERSION	NOT TO SCALE
TITLE:		DOCUMEN	NT NO: 98ASA00459	D REV: B
NI-1230-4S GU	STANDAF	RD: NON-JEDEC		
		S0T1806	5–2	23 FEB 2016

NOTES:

- 1. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH

DIMENSION A1 IS MEASURED WITH REFERENCE TO DATUM T. THE POSITIVE VALUE IMPLIES THAT THE PACKAGE BOTTOM IS HIGHER THAN THE LEAD BOTTOM.

DIM	INC MIN	HES MAX	MIL MIN	LIMETERS MAX	DIM	NIN IN	ICHES MAX	MILLIN MIN	METERS MAX
AA	1.265	1.275	32.13	32.39	R	.355	.365	9.02	9.27
A1	001	.011	-0.03	0.28	S	.365	.375	9.27	9.53
ВВ	.395	.405	10.03	10.29	Z	R.000	R.040	R0.00	R1.02
B1	.564	.574	14.32	14.58	ť.	0.	8.	0.	8.
cc	.170	.190	4.32	4.83					
D	.455	.465	11.56	11.81	aaa		.013	0.33	
E	.062	.066	1.57	1.68	bbb		.010	0.25	
F	.004	.007	0.10	0.18	ccc		.020	0.51	
J	.540	BSC	13.	.72 BSC					
L	.038	.046	0.97	1.17					
L1	.01	BSC	0.	.25 BSC					
М	1.219	1.241	30.96	31.52					
N	1.218	1.242	30.94	31.55					
© NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED MECHANIO				MECHANICA	L OUT	LINE	PRINT VER	RSION NOT	TO SCALE
TITLE:	TITLE:						NT NO: 98ASA	.00459D	REV: B
	N	II-1230-	-4S Gl	JLL		STANDARD: NON-JEDEC			
						S0T1806	-2	23	3 FEB 2016

PRODUCT DOCUMENTATION

Refer to the following resources to aid your design process.

Application Notes

- AN1908: Solder Reflow Attach Method for High Power RF Devices in Air Cavity Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

To Download Resources Specific to a Given Part Number:

- 1. Go to http://www.nxp.com/RF
- 2. Search by part number
- 3. Click part number link
- 4. Choose the desired resource from the drop down menu

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description	
0	Mar. 2016	Initial Release of Data Sheet	

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© 2016 Freescale Semiconductor, Inc.

Document Number: MMRF1312H

Rev. 0, 3/2016

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF MOSFET Transistors category:

Click to view products by NXP manufacturer:

Other Similar products are found below:

MRF492 MRFE8VP8600HR5 ARF1511 ARF465BG BF 2030 E6814 BLF861A DU1215S DU28200M UF28100M DU2820S

MHT1008NT1 MMRF1014NT1 MRF426 ARF468AG ARF468BG MAPHST0045 DU2860U MRFE6VP5300NR1 BF2040E6814HTSA1

MRFE6VP5150GNR1 LET9060S MRF136Y BF999E6327HTSA1 SD2931-12MR BF998E6327HTSA1 MRF141 MRF171 MRF172

MRF174 SD2942 QPD1020SR BF 1005S E6327 MRF134 MRF136 MRF137 MRF141G MRF151A MRF151G MRF157 MRF158

MRF160 MRF166C MRF171A MRF177 UF2840G TGF3021-SM ARF1510 ARF448BG ARF449AG ARF466BG