RF Power GaN Transistor

This 125 W CW RF power transistor is optimized for wideband operation up to 2700 MHz and includes input matching for extended bandwidth performance. With its high gain and high ruggedness, this device is ideally suited for CW, pulse and wideband RF applications.

This part is characterized and performance is guaranteed for applications operating in the 1-2700 MHz band. There is no guarantee of performance when this part is used in applications designed outside of these frequencies.

Typical Narrowband Performance: V_{DD} = 50 Vdc, I_{DQ} = 350 mA, T_A = 25°C

Frequency (MHz)	Signal Type	P _{out} (W)	G _{ps} (dB)	η _D (%)
2500 (1)	CW	125 CW	16.0	64.2
2500 (1)	Pulse (100 μsec, 20% Duty Cycle)	125 Peak	18.0	66.8

Typical Wideband Performance: V_{DD} = 50 Vdc, T_A = 25°C

Frequency (MHz)	Signal Type	P _{out} (W)	G _{ps} ⁽²⁾ (dB)	η _D ⁽²⁾ (%)
200–2500 (3)	CW	100 CW	12.0	40.0
1300–1900 (4)	CW	125 CW	14.5	45.0

Load Mismatch/Ruggedness

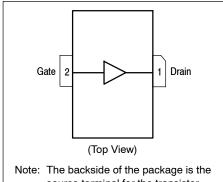
Frequency (MHz)	Signal Type	VSWR	P _{in} (W)	Test Voltage	Result
2500 (1)	Pulse (100 μsec, 20% Duty Cycle)	> 20:1 at All Phase Angles	5.0 Peak (3 dB Overdrive)	50	No Device Degradation

- 1. Measured in 2500 MHz narrowband test circuit.
- 2. The values shown are the minimum measured performance numbers across the indicated frequency range.
- 3. Measured in 200-2500 MHz broadband reference circuit.
- 4. Measured in 1300-1900 MHz broadband reference circuit.

Features

- Advanced GaN on SiC, offering high power density
- Decade bandwidth performance
- Low thermal resistance
- Input matched for extended wideband performance
- High ruggedness: > 20:1 VSWR

Typical Applications


- · Ideal for military end-use applications, including the following:
 - Narrowband and multi-octave wideband amplifiers
 - Radar
 - Jammers
 - EMC testing

- · Also suitable for commercial applications, including the following:
 - Public mobile radios, including emergency service radios
 - Industrial, scientific and medical
 - Wideband laboratory amplifiers
 - Wireless cellular infrastructure

MMRF5014H

1-2700 MHz, 125 W CW, 50 V **WIDEBAND RF POWER GaN TRANSISTOR**

source terminal for the transistor.

Figure 1. Pin Connections

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	125	Vdc
Gate-Source Voltage	V _{GS}	-8, 0	Vdc
Operating Voltage	V_{DD}	0 to +50	Vdc
Maximum Forward Gate Current @ T _C = 25°C	I _{GMAX}	18	mA
Storage Temperature Range	T _{stg}	−65 to +150	°C
Case Operating Temperature Range	T _C	-55 to +150	°C
Operating Junction Temperature Range	T _J	-55 to +225	°C
Absolute Maximum Channel Temperature (1)	T _{MAX}	350	°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	232 1.16	W W/°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance by Infrared Measurement, Active Die Surface-to-Case CW: Case Temperature 82°C, 125 W CW, 50 Vdc, I _{DQ} = 350 mA, 2500 MHz	R _{θJC} (IR)	0.86 (2)	°C/W
Thermal Resistance by Finite Element Analysis, Channel-to-Case Case Temperature 85°C, P _D = 85 W	R _{0CHC} (FEA)	1.48 (3)	°C/W
Thermal Impedance by Infrared Measurement, Junction-to-Case Pulse: Case Temperature 58°C, 125 W Peak, 100 µsec Pulse Width, 20% Duty Cycle, 50 Vdc, I _{DQ} = 350 mA, 2500 MHz	Z _{θJC} (IR)	0.21	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	1B, passes 500 V
Machine Model (per EIA/JESD22-A115)	A, passes 100 V
Charge Device Model (per JESD22-C101)	IV, passes 2000 V

Table 4. Electrical Characteristics ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics					
Drain Leakage Current (V _{GS} = -8 Vdc, V _{DS} = 10 Vdc)	I _{DSS}	_	_	5	mAdc
Drain-Source Breakdown Voltage (V _{GS} = -8 Vdc, I _D = 25 mAdc)	V _{(BR)DSS}	150	_	_	Vdc
On Characteristics	•		•	•	
Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 25 mAdc)	V _{GS(th)}	-3.8	-2.9	-2.3	Vdc
Gate Quiescent Voltage (V _{DS} = 50 Vdc, I _D = 350 mAdc, Measured in Functional Test)	V _{GS(Q)}	-3.2	-2.7	-2.2	Vdc
Dynamic Characteristics	•		•	•	•
Reverse Transfer Capacitance (V _{DS} = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = -4 Vdc)	C _{rss}	_	1.0	_	pF
Output Capacitance (V _{DS} = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = -4 Vdc)	C _{oss}	_	7.7	_	pF
Input Capacitance ⁽⁴⁾ (V _{DS} = 50 Vdc, V _{GS} = -4 Vdc ± 30 mV(rms)ac @ 1 MHz)	C _{iss}	_	51.0	_	pF

- 1. Reliability tests were conducted at 225 $^{\circ}$ C. Operation with T_{MAX} at 350 $^{\circ}$ C will reduce median time to failure.
- $2. \ \ Refer to \ AN1955, \textit{Thermal Measurement Methodology of RF Power Amplifiers}. \ Go \ to \ \underline{\text{http://www.nxp.com/RF}} \ and \ search \ for \ AN1955.$
- 3. $R_{\theta,JC}$ (FEA) must be used for purposes related to reliability and limitations on maximum junction temperature. MTTF may be estimated by the expression MTTF (hours) = $10^{[A+B/(T+273)]}$, where T is the junction temperature in degrees Celsius, A = -8.44 and B = 7210.
- 4. Part internally input matched.

(continued)

Table 4. Electrical Characteristics (T_A = 25°C unless otherwise noted) (continued)

Characteristic	Symbol	Min	Тур	Max	Unit
Functional Tests (In NXP Test Fixture, 50 ohm system) V _{DD} = 50 Vdc, I _{DQ} = 350 mA, P _{out} = 125 W Peak (25 W Avg.), f = 2500 MHz, 100					

μsec Pulse Width, 20% Duty Cycle. [See note on correct biasing sequence.]

Power Gain	G _{ps}	17.0	18.0	20.0	dB
Drain Efficiency	η_{D}	64.3	66.8		%
Input Return Loss	IRL	_	-12	-9	dB

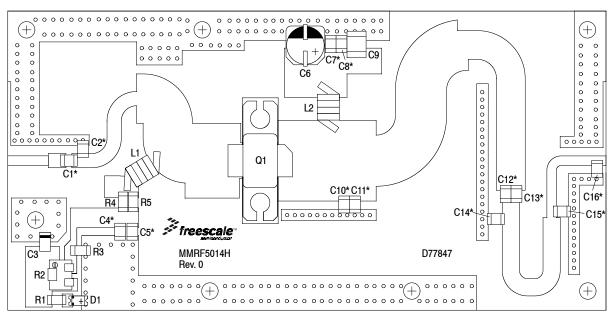
Load Mismatch/Ruggedness (In NXP Test Fixture, 50 ohm system) $I_{DQ} = 350 \text{ mA}$

Frequency (MHz)	Signal Type	VSWR	P _{in} (W)	Test Voltage, V _{DD}	Result
2500	Pulse (100 μsec, 20% Duty Cycle)	> 20:1 at All Phase Angles	5.0 Peak (3 dB Overdrive)	50	No Device Degradation

Table 5. Ordering Information

Device	Tape and Reel Information	Package
MMRF5014HR5	R5 Suffix = 50 Units, 32 mm Tape Width, 13-inch Reel	NI-360H-2SB

NOTE: Correct Biasing Sequence for GaN Depletion Mode Transistors


Turning the device ON

- 1. Set V_{GS} to -5 V
- 2. Turn on V_{DS} to nominal supply voltage (50 V)
- 3. Increase V_{GS} until I_{DS} current is attained
- 4. Apply RF input power to desired level

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce $V_{\mbox{\footnotesize GS}}$ down to $-5~\mbox{\footnotesize V}$
- 3. Reduce V_{DS} down to 0 V (Adequate time must be allowed for V_{DS} to reduce to 0 V to prevent severe damage to device.)
- 4. Turn off V_{GS}

500–2500 MHz WIDEBAND REFERENCE CIRCUIT — $2.0" \times 4.0"$ (5.1 cm \times 10.2 cm)

*C1, C2, C4, C5, C7, C8, C10, C11, C12, C13, C14, C15 and C16 are mounted vertically.

Figure 2. MMRF5014H Wideband Reference Circuit Component Layout — 500-2500 MHz

Table 6. MMRF5014H Wideband Reference Circuit Component Designations and Values — 500–2500 MHz

Part	Description	Part Number	Manufacturer
C1, C5, C7	33 pF Chip Capacitors	ATC800B330JT500XT	ATC
C2	0.4 pF Chip Capacitor	ATC800B0R4BT500XT	ATC
C3	2.2 μF, 16 V Tantalum Capacitor	T491A225K016AT	Kemet
C4, C8	1000 pF Chip Capacitors	ATC800B102JT50XT	ATC
C6	220 μF, 50 V Electrolytic Capacitor	EEV-HA1H221P	Panasonic-ECG
C9	2.2 μF Chip Capacitor	HMK432B7225KM-T	Taiyo Yuden
C10, C11	0.8 pF Chip Capacitors	ATC800B0R8BT500XT	ATC
C12, C13	9.1 pF Chip Capacitors	ATC800B9R1BT500XT	ATC
C14, C16	0.5 pF Chip Capacitors	ATC800B0R5BT500XT	ATC
C15	0.2 pF Chip Capacitor	ATC800B0R2BT500XT	ATC
D1	LED Green Diffused 1206, SMD	LGN971-KN-1	OSRAM
L1	33 nH Inductor	1812SMS-33NJLC	Coilcraft
L2	17.5 nH Inductor, 5 Turns	GA3095-ALC	Coilcraft
Q1	RF Power GaN Transistor	MMRF5014H	NXP
R1	75 Ω, 1/4 W Chip Resistor	CRCW120675R0FKEA	Vishay
R2	500 Ω Trimming Potentiometer, 11 Turns	3224W-1-501E	Bourns
R3	470 Ω, 1/4 W Chip Resistor	CRCW1206470RFKEA	Vishay
R4, R5	39 Ω, 1/4 W Chip Resistors	CRCW120639R0FKEA	Vishay
PCB	Rogers RO4350B 0.030", $\epsilon_{\rm r} = 3.66$	D77847	MTL

Note: Refer to MMRF5014H's printed circuit boards and schematics to download the 500-2500 MHz heatsink drawing.

TYPICAL CHARACTERISTICS — 500–2500 MHz WIDEBAND REFERENCE CIRCUIT

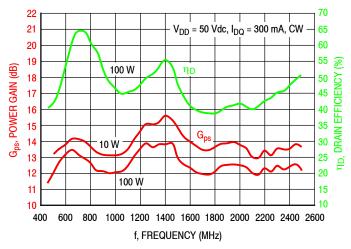


Figure 3. 500-2500 MHz Wideband Circuit Performance

200–2500 MHz WIDEBAND REFERENCE CIRCUIT — $4.0" \times 5.0"$ (10.2 cm \times 12.7 cm)

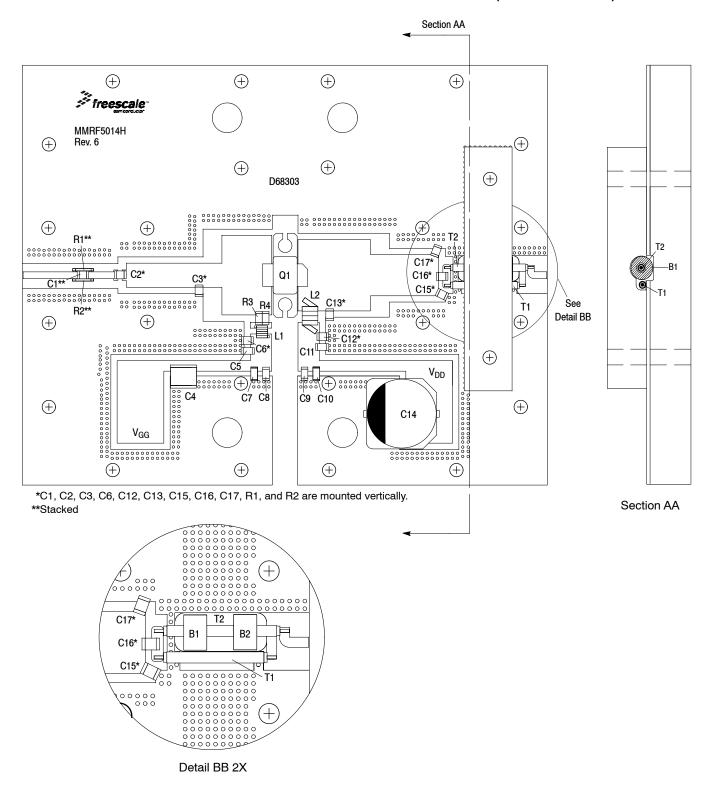


Figure 4. MMRF5014H Wideband Reference Circuit Component Layout — 200-2500 MHz

Table 7. MMRF5014H Wideband Reference Circuit Component Designations and Values — 200-2500 MHz

Part	Description	Part Number	Manufacturer	
B1, B2	Ferrite Beads	T22-6	Micro Metals	
C1	56 pF Chip Capacitor	ATC800B560JT500XT	ATC	
C2	75 pF Chip Capacitor	ATC800B750JT500XT	ATC	
C3	1.6 pF Chip Capacitor	ATC800B1R6BT500XT	ATC	
C4	6.8 μF Chip Capacitor	C4532X7R1H685K	TDK	
C5, C8, C9, C11	0.015 μF Chip Capacitors	GRM319R72A153KA01D	Murata	
C6, C12	5.6 pF Chip Capacitors	ATC800B5R6BT500XT	ATC	
C7, C10	1 μF Chip Capacitors	GRM31CR72A105KAO1L	Murata	
C13	1.4 pF Chip Capacitor	ATC800B1R4BT500XT	ATC	
C14	220 μF, 100 V Electrolytic Capacitor	EEV-FK2A221M	Panasonic-ECG	
C15, C17	0.9 pF Chip Capacitors	ATC800B0R9BT500XT	ATC	
C16	47 pF Chip Capacitor	ATC800B470JT500XT	ATC	
L1	12.5 nH Inductor, 4 Turns	A04TJLC	Coilcraft	
L2	22 nH Inductor	1812SMS-22NJLC	Coilcraft	
Q1	RF Power GaN Transistor	MMRF5014H	NXP	
R1, R2	10 Ω, 3/4 W Chip Resistors	CRCW201010R0FKEF	Vishay	
R3, R4	39 Ω, 1/4 W Chip Resistors	CRCW120639R0FKEA	Vishay	
T1	25 $Ω$ Semi Rigid Coax, 0.770" Shield Length	UT-070-25	Micro-Coax	
T2	25 $Ω$ Semi Rigid Coax, 0.850" Shield Length	UT-070-25	Micro-Coax	
PCB	Rogers RO4350B, 0.030", ε _r = 3.66	D68303	MTL	

Note: Refer to MMRF5014H's printed circuit boards and schematics to download the 200-2500 MHz heatsink drawing.

TYPICAL CHARACTERISTICS — 200–2500 MHz WIDEBAND REFERENCE CIRCUIT

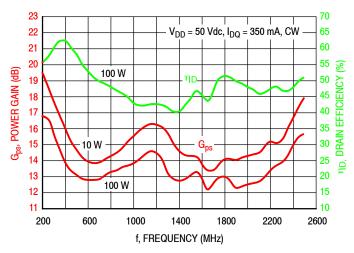


Figure 5. 200-2500 MHz Wideband Circuit Performance

TYPICAL CHARACTERISTICS — OPTIMIZED NARROWBAND PERFORMANCE

Narrowband Performance and Impedance Information ($T_C = 25^{\circ}C$)

The measured input and output impedances are presented to the input of the device at the package reference plane. Measurements are performed in NXP narrowband fixture tuned at 500, 1000, 1500, 2000 and 2500 MHz.

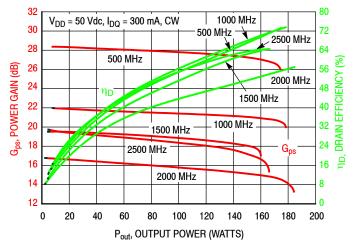


Figure 6. Power Gain and Drain Efficiency versus CW Output Power

f MHz	Z _{source} Ω	Z _{load} Ω
500	1.3 + j3.9	5.9 + j3.5
1000	1.0 + j0.3	5.5 + j2.9
1500	0.8 – j0.5	3.4 + j2.0
2000	1.2 – j2.0	4.7 + j0.3
2500	2.7 – j3.8	3.7 + j1.4

Z_{source} = Test circuit impedance as measured from gate to ground.

Z_{load} = Test circuit impedance as measured from drain to ground.

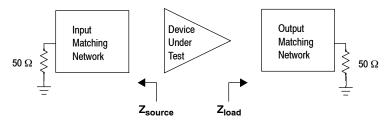
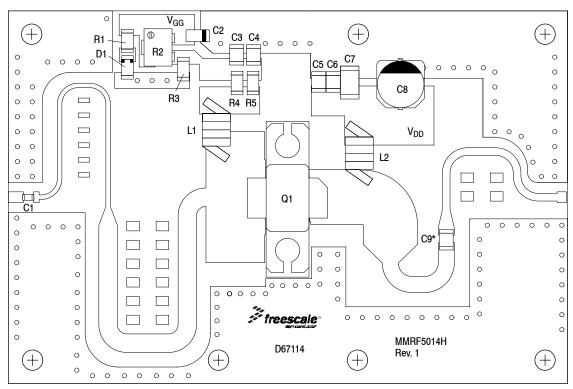



Figure 7. Narrowband Fixtures: Series Equivalent Source and Load Impedances

1300–1900 MHz WIDEBAND REFERENCE CIRCUIT — $2.0" \times 3.0"$ (5.1 cm \times 7.6 cm)

^{*}C9 is mounted vertically.

Figure 8. MMRF5014H Wideband Reference Circuit Component Layout — 1300-1900 MHz

Table 8. MMRF5014H Wideband Reference Circuit Component Designations and Values — 1300–1900 MHz

Part	Description	Part Number	Manufacturer	
C1	18 pF Chip Capacitor	ATC600S180CT250XT	ATC	
C2	2.2 μF Tantalum Capacitor	T491A225K016AT	Kemet	
C3, C6	1000 pF Chip Capacitors	ATC800B102JT50XT	ATC	
C4, C5	33 pF Chip Capacitors	ATC800B330JT500XT	ATC	
C7	2.2 μF Chip Capacitor	HMK432B7225KM-T	Taiyo Tuden	
C8	47 μF, 100 V Electrolytic Capacitor	476KXM050M	Panasonic-ECG	
C9	9.1 pF Chip Capacitor	ATC800B9R1BT500XT	ATC	
D1	LED Green Diffused 1206, SMD	LGN971-KN-1	OSRAM	
Q1	RF Power GaN Transistor	MMRF5014H	NXP	
R1	75 Ω, 1/4 W Chip Resistor	CRCW120675R0FKEA	Vishay	
R2	5 kΩ Trimming Potentiometer, 11 Turns	3224W-1-502E	Bourns	
R3	5 kΩ, 1/4 W Chip Resistor	CRCW12065K00FKEA	Vishay	
R4, R5	39 Ω, 1/4 W Chip Resistors	CRCW120639R0FKEA	Vishay	
L1, L2	33 nH Inductors	1812SMS-33NJLC	Coilcraft	
PCB	Rogers 3010, 0.025", $\varepsilon_r = 10.2$	D67114	MTL	

TYPICAL CHARACTERISTICS — 1300–1900 MHz WIDEBAND REFERENCE CIRCUIT

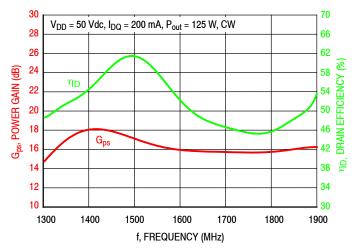


Figure 9. Power Gain and Drain Efficiency versus Frequency



Figure 10. Power Gain and Drain Efficiency versus CW Output Power

2500 MHz NARROWBAND PRODUCTION TEST FIXTURE — $4.0" \times 5.0"$ (10.2 cm \times 12.7 cm)

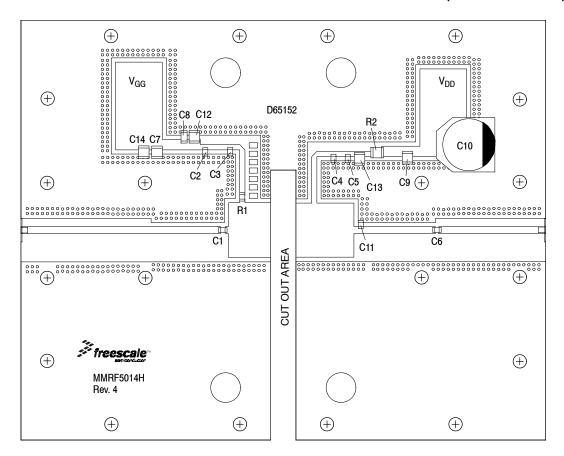


Figure 11. MMRF5014H Narrowband Test Circuit Component Layout — 2500 MHz

Table 9. MMRF5014H Narrowband Test Circuit Component Designations and Values — 2500 MHz

Part Description		Part Number	Manufacturer	
C1	3.9 pF Chip Capacitor	ATC600F3R9BT250XT	ATC	
C2, C3, C4, C5, C6	12 pF Chip Capacitors	ATC600F120JT250XT	ATC	
C7, C14	4.7 μF Chip Capacitors	C4532X7R1H475K200KB	TDK	
C8	0.1 μF Chip Capacitor	GRM319R72A104KA01D	Murata	
C9	1.0 μF Chip Capacitor	GRM32CR72A105KA35L	Murata	
C10	220 μF, 100 V Electrolytic Capacitor	EEV-FK2A221M	Panasonic-ECG	
C11	1 pF Chip Capacitor	ATC600F1R0BT250XT	ATC	
C12, C13	1000 pF Chip Capacitors	ATC800B102JT50XT	ATC	
R1	56 Ω, 1/4 W Chip Resistor	CRCW120656R0FKEA	Vishay	
R2	0 Ω, 5 A Chip Resistor	CRCW12100000Z0EA	Vishay	
PCB	Rogers RO4350B, 0.030", ε _r = 3.66	D65152	MTL	

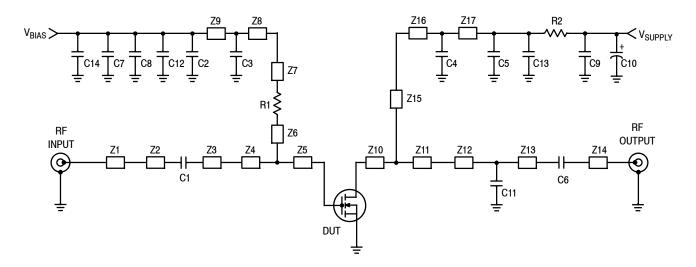


Figure 12. MMRF5014H Narrowband Test Circuit Schematic — 2500 MHz

Table 10. MMRF5014H Narrowband Test Circuit Microstrips — 2500 MHz

Microstrip	Description
Z1	1.870" × 0.064" Microstrip
Z2, Z3	0.030" × 0.070" Microstrip
Z4	0.105" × 0.525" Microstrip
Z5*	0.240" × 0.525" Microstrip
Z6	0.037" × 0.050" Microstrip
Z7	0.465" × 0.050" Microstrip
Z8	0.090" × 0.050" Microstrip
Z9	0.190" × 0.050" Microstrip

Microstrip	Description
Z10	0.145" × 0.515" Microstrip
Z11	0.353" × 0.515" Microstrip
Z12	0.040" × 0.064" Microstrip
Z13	0.687" × 0.064" Microstrip
Z14	1.020" × 0.064" Microstrip
Z15	0.468" × 0.050" Microstrip
Z16	0.158" × 0.050" Microstrip
Z17	0.078" × 0.050" Microstrip

^{*} Line length include microstrip bends

TYPICAL CHARACTERISTICS — 2500 MHz

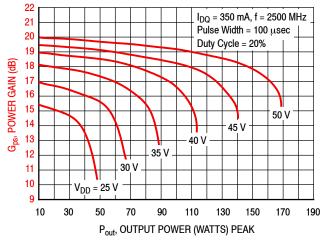


Figure 13. Power Gain versus Output Power and Drain Voltage ⁽¹⁾

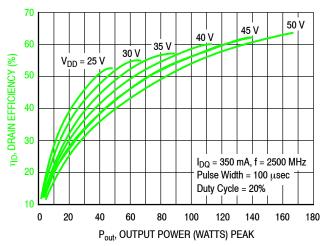


Figure 14. Drain Efficiency versus Output Power and Drain Voltage ⁽¹⁾

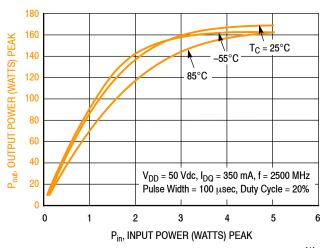


Figure 15. Output Power versus Input Power (1)

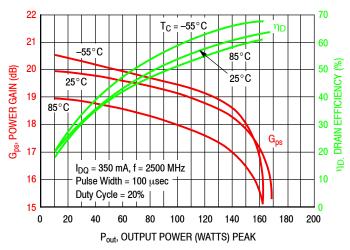


Figure 16. Power Gain and Drain Efficiency versus Output Power (1)

1. Circuit tuned for maximum power.

PACKAGE DIMENSIONS

NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED	MECHANICAL OUTLINE		PRINT VERSION NO	T TO SCALE
TITLE:		DOCUME	NT NO: 98ASA00795D	REV: A
NI-360H-2S	В	STANDAF	RD: NON-JEDEC	
		SOT1791		17 FEB 2016

Pin 1. Drain

2. Gate

3. Source

NOTES:

- 1. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH

<u>/3.</u>

 $_{\rm L}$ DIMENSION H IS MEASURED .030 INCH (0.762 MM) AWAY FROM THE FLANGE TO CLEAR THE EPOXY FLOW OUT REGION PARALLEL TO DATUM B.

	INCH		MII	ILLIMETER		INCH		MILLIMETER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
AA	.795	.805	20.19	20.45	N	.357	.363	9.07	9.22
BB	.225	.235	5.72	5.97	Q	.125	.135	3.18	3.43
CC	.125	.175	3.18	4.45	R	.227	.233	5.77	5.92
D	.210	.220	5.33	5.59	S	.225	.235	5.72	5.97
E	.055	.065	1.40	1.65					
F	.004	.006	0.10	0.15	aaa		.005	0.13	
G	.562	BSC	14	.28 BSC	bbb		.010	0.25	
Н	.077	.087	1.96	2.21	ccc	.015		0.38	
K	.085	.115	2.16	2.92					
L	.040	.050	1.02	1.27					
М	.355	.365	9.02	9.27					
© NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED MECHANICAL (L 0U1	LINE	PRINT VERS	SION NOT T	O SCALE		
TITLE:	TITLE:					DOCUMEN	NT NO: 98ASAC	00795D	REV: A
	NI-360H-2SB					STANDARD: NON-JEDEC			
						SOT1791	-1	17	FEB 2016

PRODUCT DOCUMENTATION AND TOOLS

Refer to the following resources to aid your design process.

Application Notes

• AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Development Tools

· Printed Circuit Boards

To Download Resources Specific to a Given Part Number:

- 1. Go to http://www.nxp.com/RF
- 2. Search by part number
- 3. Click part number link
- 4. Choose the desired resource from the drop down menu

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	May 2015	Initial Release of Data Sheet
1	Sept. 2015	Table 1, Maximum Ratings: added Maximum Forward Gate Current, p. 2 Table 4, Electrical Characteristics: changed Load Mismatch/Ruggedness signal type to pulse to reflect correct modulation signal, p. 3
2	Apr. 2017	Biasing sequence for GaN depletion mode transistors: revised note to clarify correct biasing sequence for GaN parts, p. 3 500–2500 MHz wideband reference circuit: added performance data and graph, reference circuit component layout and component designations, pp. 4–5
3	May 2018	Table 2, Thermal Characteristics: updated to include R _{0CHC} (FEA) data, p. 2

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, Freescale, and the Freescale logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2015, 2017–2018 NXP B.V.

Document Number: MMRF5014H

Rev. 3, 05/2018

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Development Tools category:

Click to view products by NXP manufacturer:

Other Similar products are found below:

MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB
MAAM-009633-001SMB MASW-000936-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3
EV1HMC520ALC4 EV1HMC244AG16 EV1HMC539ALP3 EV1HMC6789BLC5A MAX2614EVKIT# 124694-HMC742ALP5
SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT# MAX2692EVKIT# EV1HMC629ALP4E SKY12343-364LF-EVB
108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E 119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ
MAX2371EVKIT# 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT
MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1