NXP Semiconductors

Technical Data

RF Power GaN Transistors

These 300 W CW GaN transistors are designed for industrial, scientific and medical (ISM) applications at 2450 MHz. These devices are suitable for use in CW, pulse, cycling and linear applications. These high gain, high efficiency devices are easy to use and will provide long life in even the most demanding environments.

These parts are characterized and performance is guaranteed for applications operating in the 2400 to 2500 MHz band. There is no guarantee of performance when these parts are used in applications designed outside of these frequencies.

Typical Performance: In 2400–2500 MHz MRF24G300HS reference circuit, $V_{DD} = 48 \text{ Vdc}, V_{GS(A+B)} = -5 \text{ Vdc}$ (1)

Frequency (MHz)	Signal Type	P _{in} (W)	P _{out} (W)	G _{ps} (dB)	η _D (%)
2400	CW	10.0	336	15.3	70.4
2450		10.0	332	15.2	73.0
2500		10.0	307	14.9	74.4

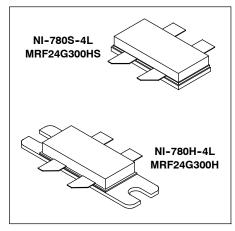
1. All data measured in fixture with device soldered to heatsink.

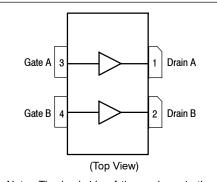
Load Mismatch/Ruggedness

Frequency (MHz)	Signal Type	VSWR	P _{in} (W)	Test Voltage	Result
2450	Pulse (100 μsec, 20% Duty Cycle)	> 20:1 at All Phase Angles	12.6 Peak	55	No Device Degradation

Features

- Advanced GaN on SiC, for optimal thermal performance
- Characterized for CW, long pulse (up to several seconds) and short pulse
- Device can be used in a single-ended or push-pull configuration
- Input matched for simplified input circuitry
- Qualified up to 55 V
- Suitable for linear application


Typical Applications


- Industrial heating
- Welding and heat sealing
- Plasma generation
- Liahtina
- Scientific instrumentation
- Medical
 - Microwave ablation
 - Diathermy

Document Number: MRF24G300HS Rev. 0, 09/2019

MRF24G300HS MRF24G300H

2400-2500 MHz, 300 W CW, 50 V **WIDEBAND** RF POWER GaN TRANSISTORS

Note: The backside of the package is the source terminal for the transistor.

Figure 1. Pin Connections

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	125	Vdc
Gate-Source Voltage	V _{GS}	-8, 0	Vdc
Operating Voltage	V _{DD}	0 to +55	Vdc
Maximum Forward Gate Current, I _{G (A+B)} , @ T _C = 25°C	I _{GMAX}	42	mA
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature Range	T _C	-55 to +150	°C
Maximum Channel Temperature (1)	T _{CH}	350	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance by Infrared Measurement, Active Die Surface-to-Case Case Temperature 125°C, P _D = 118 W	R _{θJC} (IR)	0.52 (2)	°C/W
Thermal Resistance by Finite Element Analysis, Channel-to-Case Case Temperature 125°C, P _D = 118 W	R _{0CHC} (FEA)	0.72 (3)	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class		
Human Body Model (per JS-001-2017)	1B, passes 900 V		
Charge Device Model (per JS-002-2014)	3, passes 1200 V		

Table 4. Electrical Characteristics (T_A = 25°C unless otherwise noted)

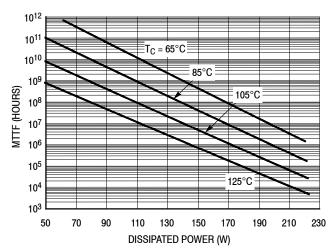
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	,				
Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics ⁽⁴⁾	<u>.</u>				
Drain-Source Breakdown Voltage (V _{GS} = -8 Vdc, I _D = 24.3 mAdc)	V _{(BR)DSS}	150	_	_	Vdc
On Characteristics ⁽⁴⁾	<u>.</u>				
Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 22 mAdc)	V _{GS(th)}	-3.8	-3.16	-2.3	Vdc
Gate-Source Leakage Current (V _{DS} = 0 Vdc, V _{GS} = -5 Vdc)	I _{GSS}	-10.0	_	_	mAdc

Table 5. Ordering Information

Device	Tape and Reel Information	Package
MRF24G300HSR5	R5 Suffix = 50 Units, 32 mm Tape Width, 13-inch Reel	NI-780S-4L
MRF24G300HR5	R5 Suffix = 50 Units, 56 mm Tape Width, 13-inch Reel	NI-780H-4L

- 1. Reliability tests were conducted at 225 $^{\circ}$ C. Operation with T_{CH} at 350 $^{\circ}$ C will reduce median time to failure.
- 2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.
- 3. $R_{\theta CHC}$ (FEA) must be used for purposes related to reliability and limitations on maximum channel temperature. MTTF may be estimated by the expression MTTF (hours) = $10^{[A + B/(T + 273)]}$, where T is the channel temperature in degrees Celsius, A = -10.3 and B = 8263.
- 4. Each side of device measured separately.

NOTE: Correct Biasing Sequence for GaN Depletion Mode Transistors


Turning the device ON

- 1. Set V_{GS} to -5 V
- 2. Turn on V_{DS} to nominal supply voltage (48 V)
- 3. For Class AB operations increase $V_{\mbox{\footnotesize GS}}$ until desired $I_{\mbox{\footnotesize DS}}$ current is attained
- 4. Apply RF input power to desired level

Turning the device OFF

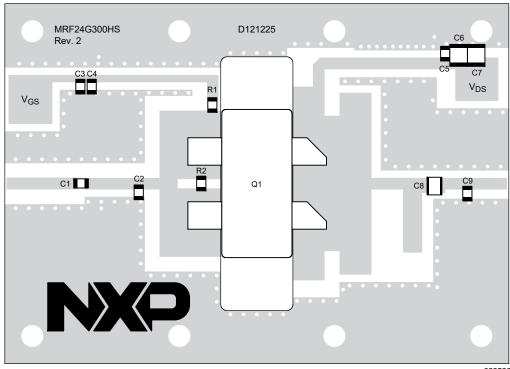
- 1. Turn RF power off
- 2. Reduce V_{GS} down to $-5\ V$
- 3. Reduce V_{DS} down to 0 V (Adequate time must be allowed for V_{DS} to reduce to 0 V to prevent severe damage to device.)
- 4. Turn off V_{GS}

TYPICAL CHARACTERISTICS

Note: MTTF value represents the total cumulative operating time under indicated test conditions.

MTTF calculator available at http://www.nxp.com.

Figure 2. MTTF versus Dissipated Power and Case Temperature — CW


MRF24G300HS 2400–2500 MHz REFERENCE CIRCUIT — 5.0 cm \times 7.0 cm (2.0" \times 2.8")

 $\begin{tabular}{ll} \textbf{Table 6. 2400-2500 MHz Performance} \begin{tabular}{ll} \textbf{(1)} & \textbf{(In NXP MRF24G300HS Reference Circuit, 50 ohm system)} \\ \textbf{V}_{DD} = 48 \ \mbox{Vdc}, \ \mbox{V}_{GS(A+B)} = -5 \ \mbox{Vdc}, \ \mbox{P}_{in} = 10 \ \mbox{W}, \ \mbox{CW} \\ \end{tabular}$

Frequency (MHz)	P _{out} (W)	G _{ps} (dB)	η _D (%)
2400	336	15.3	70.4
2450	332	15.2	73.0
2500	307	14.9	74.4

^{1.} All data measured in fixture with device soldered to heatsink.

MRF24G300HS 2400–2500 MHz REFERENCE CIRCUIT — 5.0 cm \times 7.0 cm (2.0" \times 2.8")

Note: All data measured in fixture with device soldered to heatsink.

aaa-033536

Figure 3. MRF24G300HS Reference Circuit Component Layout — 2400–2500 MHz

Table 7. MRF24G300HS Reference Circuit Component Designations and Values — 2400–2500 MHz

Part	Description	Part Number	Manufacturer
C1, C4	20 pF Chip Capacitor	600F200JT250XT	ATC
C2	1.2 pF Chip Capacitor	600F1R2BT250XT	ATC
С3	1.0 μF Chip Capacitor	GCM21BR71H105KA03L	Murata
C5	27 pF Chip Capacitor	600F270JT250XT	ATC
C6, C7	10 μF Chip Capacitor	GRM32EC72A106KE05L	Murata
C8	10 pF Chip Capacitor	800R100JT500XT	ATC
C9	0.1 pF Chip Capacitor	600F0R1BT250XT	ATC
Q1	RF Power GaN Transistor	MRF24G300HS	NXP
R1	10 Ω, 1/4 W Chip Resistor	CRCW120610R0JNEA	Vishay
R2	5.1 Ω, 1/8 W Chip Resistor	CRCW08055R10JNEA	Vishay
PCB	Rogers RT6035HTC, 0.030", ε_{r} = 3.5, 2 oz. Copper	D121225	MTL

TYPICAL CHARACTERISTICS — 2400–2500 MHz MRF24G300HS REFERENCE CIRCUIT

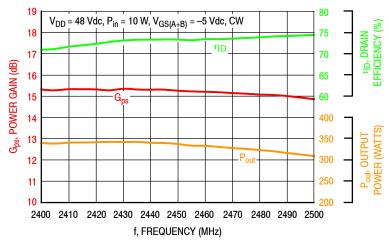


Figure 4. Power Gain, Drain Efficiency and CW Output Power versus Frequency at a Constant Input Power

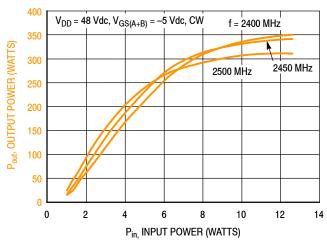
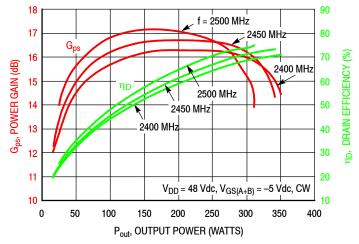
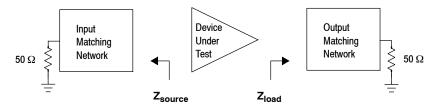


Figure 5. CW Output Power versus Input Power and Frequency

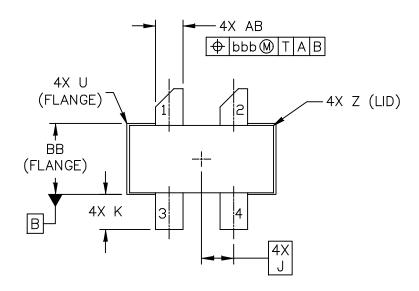


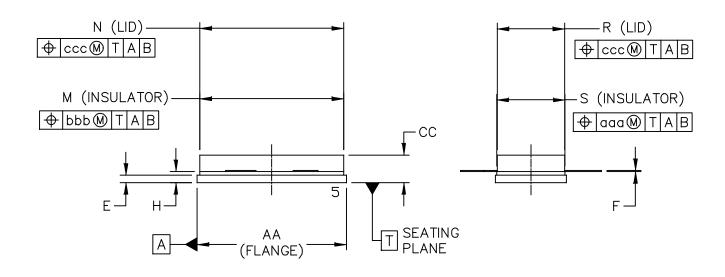

Figure 6. Power Gain and Drain Efficiency versus CW Output Power and Frequency

2400-2500 MHz REFERENCE CIRCUIT

f (MHz)	Z _{source} (Ω)	Z _{load} (Ω)
2400	2.55 – j2.96	2.41 – j3.12
2450	2.55 – j2.72	2.13 – j2.98
2500	2.56 – j2.49	1.88 – j2.80

Z_{source} = Test circuit impedance as measured from gate to ground.

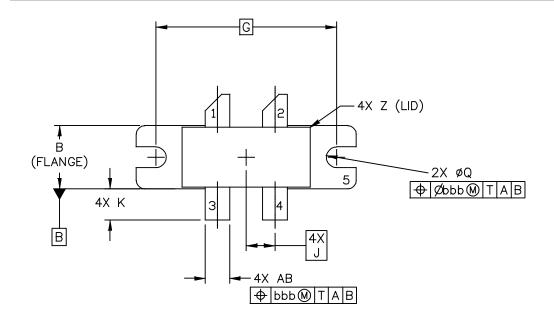

Z_{load} = Test circuit impedance as measured from drain to ground.

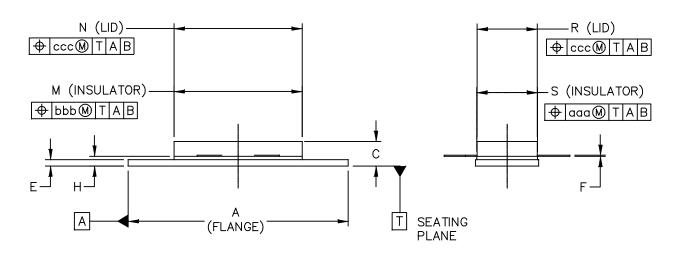


Note: Side A and Side B are tied together for these measurements.

Figure 7. Series Equivalent Source and Load Impedance — 2400–2500 MHz

PACKAGE DIMENSIONS




©	NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED	MECHANICAL OU	TLINE	PRINT VERSION NO	T TO SCALE
TITLE:			DOCUMEN	NT NO: 98ASA10718D	REV: C
	NI-780S-4L	-	STANDAR	RD: NON-JEDEC	
			SOT1826	- 1	01 AUG 2016

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DELETED
- 4. DIMENSION H IS MEASURED .030 (0.762) AWAY FROM FLANGE TO CLEAR EPOXY FLOW OUT PARALLEL TO DATUM B.

	IN	CH	MILI	LIMETER			INCH	MILI	_IMET	「ER
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN		MAX
AA	.805	.815	20.45	20.70	U		.040			1.02
BB	.382	.388	9.70	9.86	Z		.030			0.76
cc	.125	.170	3.18	4.32	AB	. 145	. 155	3. 68	_	3. 94
E	.035	.045	0.89	1.14						
F	.003	.006	0.08	0.15	aaa		.005		0.127	
H	.057	.067	1.45	1.70	bbb		.010		0.254	
J	. 175	BSC	4. 4	44 BSC	ccc	.015		.015 0.381		
K	.170	.210	4.32	5.33						
M	.774	.786	19.61	20.02						
N	.772	.788	19.61	20.02						
R	.365	.375	9.27	9.53						
S	.365	.375	9.27	9.52						
© NXP SEMICONDUCTORS N. V. ALL RIGHTS RESERVED MECHANICAL OUTLI					LINE	PRINT VERS	SION NOT	TO 9	SCALE	
TITL	TITLE:					DOCUMEN	IT NO: 98ASA1	10718D	R	EV: C
NI-780S-4L					STANDARD: NON-JEDEC					
						S0T1826	5-1	0	1 AUG	2016

NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE		
TITLE:		DOCUMEN	NT NO: 98ASA10793D	REV: A	
NI 780-4	STANDARD: NON-JEDEC				
		S0T1827	- 1	17 MAR 2016	

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSION H IS MEASURED . 030 (0.762) AWAY FROM PACKAGE BODY.

STYLE 1:

PIN 1. DRAIN

- 2. DRAIN
- 3. GATE
- 4. GATE
- 5. SOURCE

	INCH		MILLIMETER			INCH		MILLIMETER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
Α	1.335	1.345	33.91	34.16	R	.365	.375	9.27	9.53
В	.380	.390	9.65	9.91	S	.365	.375	9.27	9.52
С	.125	.170	3.18	4.32	U		.040		1.02
E	.035	.045	0.89	1.14	Z		.030		0.76
F	.003	.006	0.08	0.15	AB	. 145	. 155	3. 68	3. 94
G 1. 100 BSC		27. 94 BSC							
Н	.057	.067	1.45	1.7	aaa	.005		0.127	
J	J . 175 BSC 4		4.	44 BSC	.010 bbb		0.254		
K	.170	.210	4.32	5.33	ccc	.015		0.381	
М	.774	.786	19.61	20.02					
N	.772	.788	19.61	20.02					
Q	ø.118	ø.138	ø3	ø3.51					
© NXP SEMICONDUCTORS N. V. ALL RIGHTS RESERVED MEC			MECHANICA	AL OUTLINE PRINT VER		SION NOT TO SCALE			
TITL	TITLE:					DOCUMENT NO: 98ASA10793D REV: A			
	NI 780-4					STANDARD: NON-JEDEC			
						SOT1827-1 17 MAR 2016			

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following resources to aid your design process.

Application Notes

- · AN1908: Solder Reflow Attach Method for High Power RF Devices in Air Cavity Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

- · RF High Power Model
- .s2p File (Each side of device measured separately.)

Development Tools

· Printed Circuit Boards

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description			
0	Sept. 2019	Initial release of data sheet			

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners.

© 2019 NXP B.V.

Document Number: MRF24G300HS

Rev. 0, 09/2019

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF MOSFET Transistors category:

Click to view products by NXP manufacturer:

Other Similar products are found below:

MRF492 MRFE8VP8600HR5 ARF1511 ARF465BG BF 2030 E6814 BLF861A DU1215S DU28200M UF28100M DU2820S

MHT1008NT1 MMRF1014NT1 MRF426 ARF468AG ARF468BG MAPHST0045 MRFE6VP61K25NR6 DU2860U MRFE6VP5300NR1

BF2040E6814HTSA1 MRFE6VP5150GNR1 LET9060S MRF136Y BF999E6327HTSA1 SD2931-12MR BF998E6327HTSA1

AFV10700HR5 MRF141 MRF171 MRF172 MRF174 QPD1020SR BF 1005S E6327 MRF134 MRF136 MRF137 MRF141G MRF151A

MRF151G MRF157 MRF158 MRF160 MRF171A MRF177 UF2840G TGF3021-SM ARF1510 ARF448BG ARF449AG ARF466BG