NXP Semiconductors

Technical Data

RF Power LDMOS Transistor

High Ruggedness N-Channel Enhancement-Mode Lateral MOSFET

This high ruggedness device is designed for use in high VSWR industrial, medical, broadcast, aerospace and mobile radio applications. Its unmatched input and output design supports frequency use from 1.8 to 512 MHz.

Typical Performance: V_{DD} = 65 Vdc

Frequency (MHz)	Signal Type	P _{out} (W)	G _{ps} (dB)	η _D (%)
1.8–54 (1,2)	CW	32 CW	24.1	58.1
30–400 (2)	CW	26 CW	15.1	42.3
230 (3)	CW	35 CW	24.8	75.8

Load Mismatch/Ruggedness

Frequency (MHz)	Signal Type	VSWR	P _{in} (dBm)	Test Voltage	Result
230 (3)	CW	> 65:1 at all Phase	23.5 (3 dB	65	No Device Degradation
		Angles	Overdrive)		

- 1. Measured in 1.8-54 MHz broadband reference circuit (page 5).
- The values shown are the minimum measured performance numbers across the indicated frequency range.
- 3. Measured in 230 MHz production test fixture (page 10).

Features

- · Unmatched input and output allowing wide frequency range utilization
- 50 ohm native output impedance
- Qualified up to a maximum of 65 V_{DD} operation
- Characterized from 30 to 65 V for extended power range
- High breakdown voltage for enhanced reliability
- · Suitable for linear application with appropriate biasing
- Integrated ESD protection with greater negative gate-source voltage range for improved Class C operation
- Included in NXP product longevity program with assured supply for a minimum of 15 years after launch

Typical Applications

- · Industrial, scientific, medical (ISM)
 - Laser generation
 - Plasma generation
 - Particle accelerators
 - MRI, RF ablation and skin treatment
 - Industrial heating, welding and drying systems
- · Radio and VHF TV broadcast
- Aerospace
 - HF communications
 - Radar
- · Mobile radio
 - HF and VHF communications
 - PMR base stations

Document Number: MRFX035H Rev. 0, 12/2018

VRoHS

MRFX035H

1.8-512 MHz, 35 W CW, 65 V WIDEBAND RF POWER LDMOS TRANSISTOR

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +179	Vdc
Gate-Source Voltage	V _{GS}	-6.0, +10	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature Range	T _C	-40 to +150	°C
Operating Junction Temperature Range (1,2)	T _J	-40 to +225	°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	154 0.769	W W/°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value (2,3)	Unit
Thermal Resistance, Junction to Case CW: Case Temperature 74.2°C, 35 W CW, 65 Vdc, I _{DQ} = 15 mA, 230 MHz	$R_{ heta JC}$	1.3	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JS-001-2017)	2, passes 2500 V
Charge Device Model (per JS-002-2014)	C3, passes 1200 V

Table 4. Electrical Characteristics (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics	·				
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	400	nAdc
Drain-Source Breakdown Voltage (V _{GS} = 0 Vdc, I _D = 250 μAdc)	V _{(BR)DSS}	179	193	_	Vdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 65 Vdc, V _{GS} = 0 Vdc)	I _{DSS}		_	10	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 179 Vdc, V _{GS} = 0 Vdc)	I _{DSS}		_	300	μAdc
On Characteristics	<u> </u>				
Gate Threshold Voltage (V_{DS} = 10 Vdc, I_{D} = 640 μ Adc)	V _{GS(th)}	1.7	2.75	3.0	Vdc
Gate Quiescent Voltage (V _{DD} = 65 Vdc, I _D = 15 mAdc, Measured in Functional Test)	V _{GS(Q)}	2.5	3.0	3.5	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 100 mAdc)	V _{DS(on)}	_	0.17	—	Vdc
Dynamic Characteristics			•		
Reverse Transfer Capacitance (V _{DS} = 65 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{rss}	_	0.13	_	pF
Output Capacitance (V _{DS} = 65 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{oss}		13.7	_	pF
Input Capacitance (V _{DS} = 65 Vdc, V _{GS} = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)	C _{iss}	_	42.8	_	pF

- 1. Continuous use at maximum temperature will affect MTTF.
- 2. MTTF calculator available at http://www.nxp.com/RF/calculators.
- $3. \ \ Refer to \ AN1955, \textit{Thermal Measurement Methodology of RF Power Amplifiers}. \ Go \ to \ \underline{\text{http://www.nxp.com/RF}} \ and \ search \ for \ AN1955.$

(continued)

Table 4. Electrical Characteristics $(T_A = 25^{\circ}C \text{ unless otherwise noted})$ (continued)

Characteristic	Symbol	Min	Тур	Max	Unit
Functional Tests (In NXP Production Test Fixture, 50 ohm system) V _{DD} = 65 Vdc, I _{DQ} = 15 mA, P _{out} = 35 W CW, f = 230 MHz					
Power Gain	G _{ps}	23.5	24.8	26.5	dB
Drain Efficiency	η_{D}	72.0	75.8	_	%
Input Return Loss	IRL	_	-16	-11	dB

Frequency (MHz)	Signal Type	VSWR	P _{in} (dBm)	Test Voltage, V _{DD}	Result
230	CW	> 65:1 at all Phase Angles	23.5 (3 dB Overdrive)	65	No Device Degradation

Table 5. Ordering Information

Device	Tape and Reel Information	Package
MRFX035HR5	R5 Suffix = 50 Units, 32 mm Tape Width, 13-inch Reel	NI-360H-2SB

TYPICAL CHARACTERISTICS

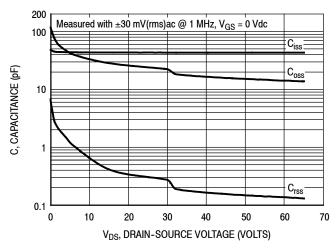
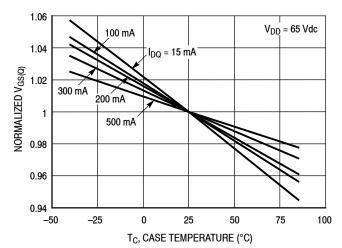
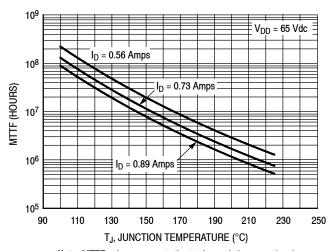




Figure 2. Capacitance versus Drain-Source Voltage

I _{DQ} (mA)	Slope (mV/°C)
15	-2.88
100	-2.32
200	-2.16
300	-1.76
500	-1.36

Figure 3. Normalized V_{GS} versus Quiescent Current and Case Temperature

Note: MTTF value represents the total cumulative operating time under indicated test conditions.

MTTF calculator available at http://www.nxp.com/RF/calculators.

Figure 4. MTTF versus Junction Temperature — CW

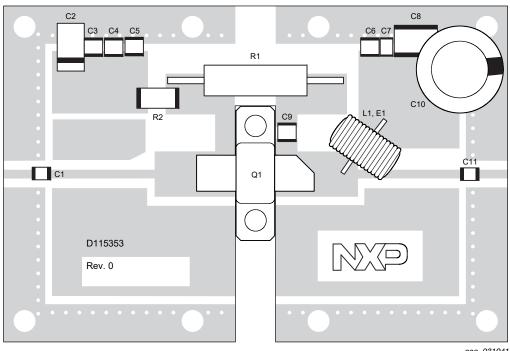

1.8–54 MHz BROADBAND REFERENCE CIRCUIT — 2.0" \times 3.0" (5.1 cm \times 7.6 cm)

Table 6. 1.8–54 MHz HF Broadband Performance (In NXP Reference Circuit, 50 ohm system)

 V_{DD} = 65 Vdc, I_{DQ} = 25 mA, P_{in} = 22 dBm, CW

Frequency (MHz)	P _{out} (W)	G _{ps} (dB)	η _D (%)
1.8	39	24.9	65.7
7.2	42	25.2	69.3
14.2	43	25.3	70.3
54	32	24.1	58.1

1.8–54 MHz BROADBAND REFERENCE CIRCUIT — $2.0'' \times 3.0''$ (5.1 cm \times 7.6 cm)

aaa-031941

Figure 5. MRFX035H Broadband Reference Circuit Component Layout — 1.8–54 MHz

Table 7. MRFX035H Broadband Reference Circuit Component Designations and Values — 1.8-54 MHz

Part	Description	Part Number	Manufacturer
C1, C5, C6, C9, C11	22 nF Chip Capacitor	C3216NP02A223J160AA	TDK
C2	10 μF, 35 V Tantalum Capacitor	T491D106K035AT	Kemet
C3	0.1 μF Chip Capacitor	C1206C104K1RACTU	Kemet
C4	2.2 μF Chip Capacitor	C3225X7R1H225K	TDK
C7	0.1 μF Chip Capacitor	C3216C0G2A104J160AE	TDK
C8	2.2 μF Chip Capacitor	G2225X7R225KT3AB	ATC
C10	220 μF, 100 V Electrolytic Capacitor	MCGPR100V227M16X26	Multicomp
E1	61 Ferrite Toroid	5961001101	Fair-Rite
L1	26 Turns, 23 AWG, Toroid Transformer with Ferrite E1	MW0454 Copper Magnet Wire	Temco
Q1	RF Power LDMOS Transistor	MRFX035H	NXP
R1	1 kΩ, 3 W Axial Leaded Resistor	CPF31K0000FKE14	Vishay
R2	330 Ω, 1 W Chip Resistor	RMCF2512JT330R	Stackpole Electronics
PCB	FR4 0.30", ε_r = 4.8, 1 oz. Copper	D115353	MTL

TYPICAL CHARACTERISTICS — 1.8–54 MHz BROADBAND REFERENCE CIRCUIT

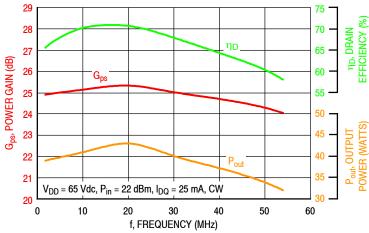


Figure 6. Power Gain, Drain Efficiency and CW Output Power versus Frequency at a Constant Input Power

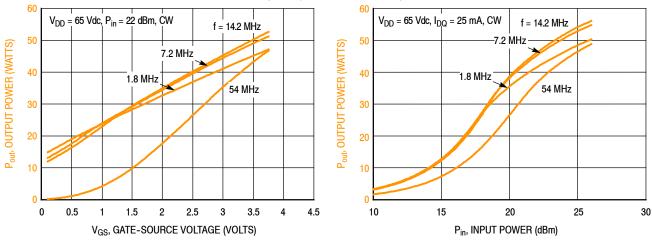


Figure 7. CW Output Power versus Gate-Source Voltage at a Constant Input Power

f (MHz)	P1dB (W)	P3dB (W)
1.8	36.4	44.6
7.2	43.7	51.3
14.2	44.5	52.4
54	38.7	47.7

Figure 8. CW Output Power versus Input Power

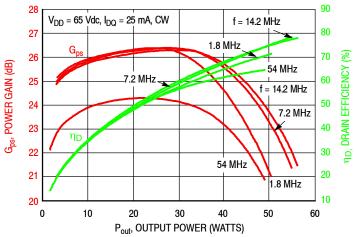


Figure 9. Power Gain and Drain Efficiency versus CW Output Power and Frequency

MRFX035H

TYPICAL CHARACTERISTICS — 1.8–54 MHz BROADBAND REFERENCE CIRCUIT — TWO-TONE (1)

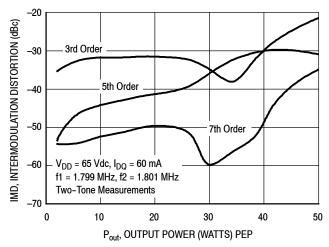


Figure 10. Intermodulation Distortion Products versus Output Power — 1.8 MHz

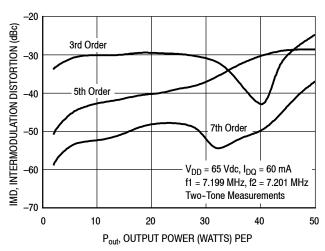


Figure 11. Intermodulation Distortion Products versus Output Power — 7.2 MHz

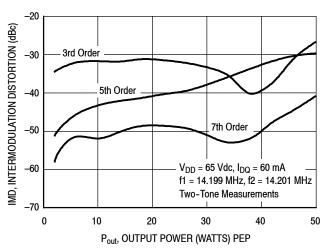


Figure 12. Intermodulation Distortion Products versus Output Power — 14.2 MHz

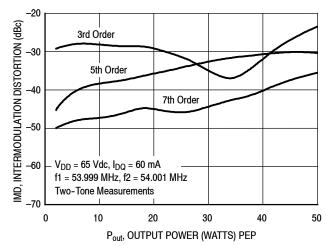


Figure 13. Intermodulation Distortion Products versus Output Power — 54 MHz

1. The distortion products are referenced to one of the two tones and the peak envelope power (PEP) is 6 dB above the power in a single tone.

1.8-54 MHz BROADBAND REFERENCE CIRCUIT

f MHz	Z _{source} Ω	Z _{load} Ω
1.8	42.6 – j2.98	48.8 + j0.18
7.2	42.5 – j1.78	48.5 – j1.37
14.2	42.4 – j2.46	48.3 – j2.80
54	41.3 – j8.14	46.5 – j10.59

Z_{source} = Test circuit impedance as measured from gate to ground.

 $Z_{load} \quad = \text{ Test circuit impedance as measured from} \\ \quad \quad \text{drain to ground.}$

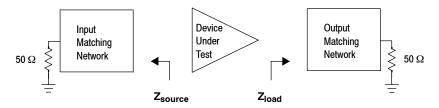


Figure 14. Broadband Series Equivalent Source and Load Impedance — 1.8-54 MHz

230 MHz PRODUCTION TEST FIXTURE — $3.0'' \times 5.0''$ (7.6 cm \times 12.7 cm)

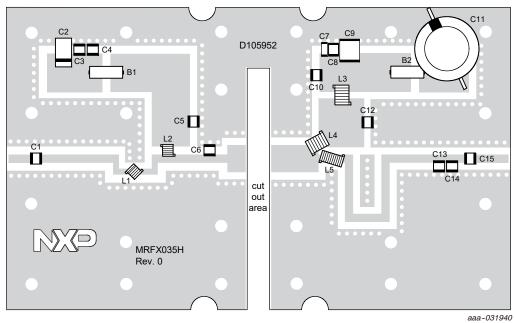


Figure 15. MRFX035H Production Test Fixture Component Layout — 230 MHz

Table 8. MRFX035H Production Test Fixture Component Designations and Values — 230 MHz

Part	Description	Part Number	Manufacturer	
B1, B2	Long RF Bead	2743021447	Fair-Rite	
C1	15 pF Chip Capacitor	ATC100B150JT500XT	ATC	
C2	22 μF, 35 V Tantalum Capacitor	T491X226K035AT	Kemet	
C3	2.2 μF Chip Capacitor	C3225X7R1H225K250AB	TDK	
C4	0.1 μF Chip Capacitor	CDR33BX104AKWS	AVX	
C5, C10, C12, C15	1000 pF Chip Capacitor	ATC100B102JT50XT	ATC	
C6	5.1 pF Chip Capacitor	ATC100B5R1CT500XT	ATC	
C7	0.1 μF Chip Capacitor	C1206C104K1RACTU	Kemet	
C8	1 μF Chip Capacitor	C3225JB2A105K200AA	TDK	
C9	15 μF Chip Capacitor	C5750X7S2A156M230KB	TDK	
C11	470 μF, 100 V Electrolytic Capacitor	MCGPR100V477M16X32	Multicomp	
C13, C14	5.6 pF Chip Capacitor	ATC100B5R6C500XT	ATC	
L1	5.0 nH, 2 Turn Inductor	A02TJLC	Coilcraft	
L2	8.0 nH, 3 Turn Inductor	A03TJLC	Coilcraft	
L3	120 nH Inductor	1812SMS-R12JLC	Coilcraft	
L4	100 nH Inductor	1812SMS-R10JLC	Coilcraft	
L5	28 nH, 8 Turn Inductor	B08TJLC	Coilcraft	
PCB	Rogers AD255C, 0.030", ε _r = 2.55, 1 oz. Copper D105952 MTL			

TYPICAL CHARACTERISTICS — 230 MHz, $T_C = 25$ °C PRODUCTION TEST FIXTURE

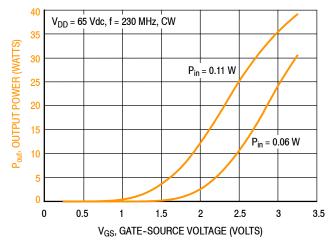
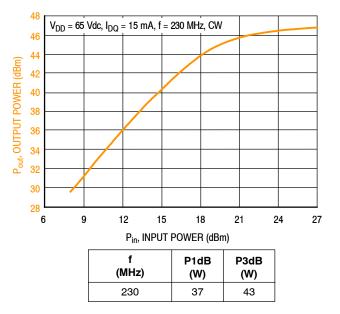



Figure 16. Output Power versus Gate-Source Voltage at a Constant Input Power

90 V_{DD} = 65 Vdc, f = 230 MHz, CW Gps 80 28 $I_{DQ} = 150 \text{ mA}$ 100 mA 26 POWER GAIN (dB) 50 mA DRAIN EFFICIENCY η_D 22 50 15 mA 20 150 mA 18 30 _ ജ `100 <u>mA</u> 20 50 mA 15 mA 10 12 0 10 100 1 Pout, OUTPUT POWER (WATTS)

Figure 18. Power Gain and Drain Efficiency versus Output Power and Quiescent Current

Figure 17. Output Power versus Input Power

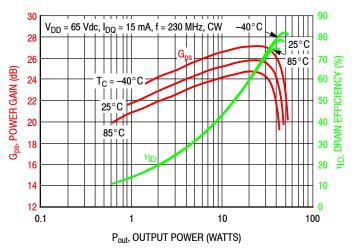


Figure 19. Power Gain and Drain Efficiency versus Output Power

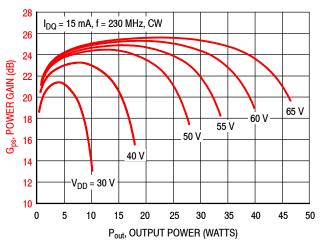


Figure 20. Power Gain versus Output Power and Drain-Source Voltage

MRFX035H

230 MHz PRODUCTION TEST FIXTURE

f	Z _{source}	Z _{load}	
MHz	Ω	Ω	
230	3.1 + j27.0	16.2 + j39.5	

 Z_{source} = Test circuit impedance as measured from gate to ground.

Z_{load} = Test circuit impedance as measured from drain to ground.

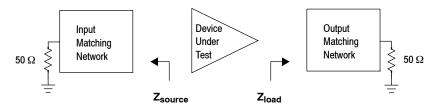
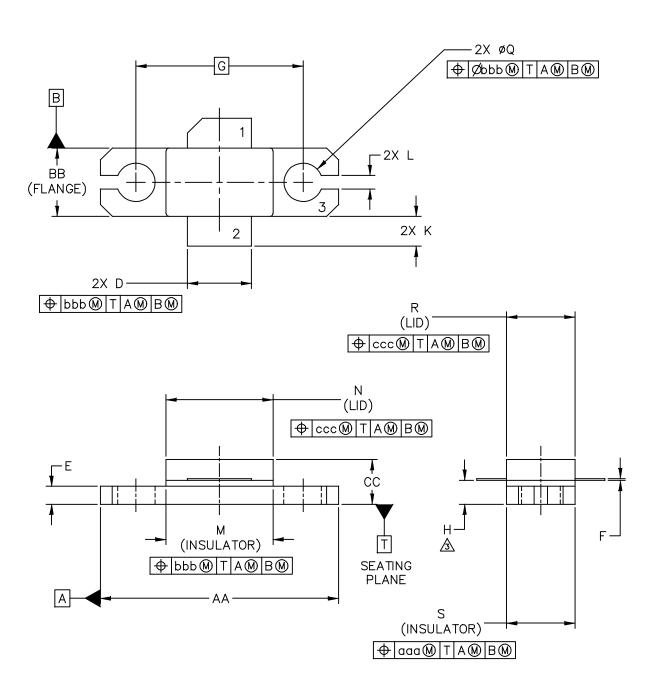



Figure 21. Series Equivalent Source and Load Impedance — 230 MHz

PACKAGE DIMENSIONS

©	NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED	MECHANICAL OUTLINE		PRINT VERSION NO	T TO SCALE
TITLE:			DOCUME	NT NO: 98ASA00795D	REV: A
	NI-360H-2SE	3	STANDAF	RD: NON-JEDEC	
			SOT1791		17 FEB 2016

NOTES:

- 1. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH

<u>3.</u>

 $_{\rm L}$ DIMENSION H IS MEASURED .030 INCH (0.762 MM) AWAY FROM THE FLANGE TO CLEAR THE EPOXY FLOW OUT REGION PARALLEL TO DATUM B.

	IN	CH	MIL	MILLIMETER INCH MIL		INCH		MILLII	METER		
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX		
AA	.795	.805	20.19	20.45	N	.357	.363	9.07	9.22		
ВВ	.225	.235	5.72	5.97	Q	.125	.135	3.18	3.43		
CC	.125	.175	3.18	4.45	R	.227	.233	5.77	5.92		
D	.210	.220	5.33	5.59	S	.225	.235	5.72	5.97		
E	.055	.065	1.40	1.65							
F	.004	.006	0.10	0.15	aaa		.005	0.	.13		
G	.562	BSC	14.	28 BSC	bbb		.010		.010 0.25		.25
Н	.077	.087	1.96	2.21	ccc	.015		0.38			
K	.085	.115	2.16	2.92							
L	.040	.050	1.02	1.27							
М	.355	.365	9.02	9.27							
© NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED			MECHANICAL OUTL		TLINE PRINT VERSION NOT TO SCALE			O SCALE			
TITLE: DOCUMENT						NT NO: 98ASAC	00795D	REV: A			
	NI-360H-2SB					STANDARD: NON-JEDEC					
						S0T1791-	-1	17	FEB 2016		

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following resources to aid your design process.

Application Notes

- · AN1908: Solder Reflow Attach Method for High Power RF Devices in Air Cavity Packages
- · AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

- Electromigration MTTF Calculator
- RF High Power Model
- .s2p File

Development Tools

· Printed Circuit Boards

To Download Resources Specific to a Given Part Number:

- 1. Go to http://www.nxp.com/RF
- 2. Search by part number
- 3. Click part number link
- 4. Choose the desired resource from the drop down menu

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description		
0	Dec. 2018	Initial release of data sheet		

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners.

© 2018 NXP B.V.

Document Number: MRFX035H

Rev. 0, 12/2018

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF MOSFET Transistors category:

Click to view products by NXP manufacturer:

Other Similar products are found below:

MRF492 MRFE8VP8600HR5 ARF1511 ARF465BG BF 2030 E6814 BLF861A DU1215S DU28200M UF28100M DU2820S

MHT1008NT1 MMRF1014NT1 MRF426 ARF468AG ARF468BG MAPHST0045 DU2860U MRFE6VP5300NR1 BF2040E6814HTSA1

MRFE6VP5150GNR1 LET9060S MRF136Y BF999E6327HTSA1 SD2931-12MR BF998E6327HTSA1 MRF141 MRF171 MRF172

MRF174 SD2942 QPD1020SR BF 1005S E6327 MRF134 MRF136 MRF137 MRF141G MRF151A MRF151G MRF157 MRF158

MRF160 MRF166C MRF171A MRF177 UF2840G TGF3021-SM ARF1510 ARF448BG ARF449AG ARF466BG