

. :eescale Semiconductor Technical Data

Document Number: MWIC930N

Rev. 6, 5/2006

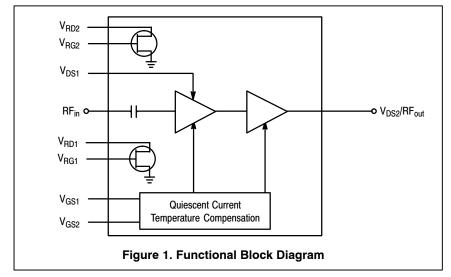
RF LDMOS Wideband Integrated Power Amplifiers

The MWIC930N wideband integrated circuit is designed for CDMA and GSM/GSM EDGE applications. It uses Freescale's newest High Voltage (26 to 28 Volts) LDMOS IC technology and integrates a multi-stage structure. Its wideband On-Chip integral matching circuitry makes it usable from 790 to 1000 MHz. The linearity performances cover all modulations for cellular applications: GSM, GSM EDGE, TDMA, N-CDMA and W-CDMA.

Final Application

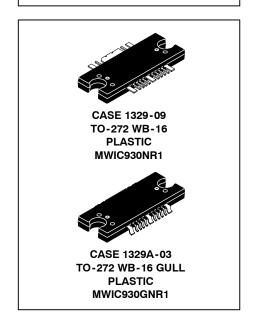
Typical Performance @ P1dB: V_{DD} = 26 Volts, I_{DQ1} = 90 mA, I_{DQ2} = 240 mA, P_{out} = 30 Watts P1dB, Full Frequency Band (921-960 MHz) Power Gain — 30 dB
 Power Added Efficiency — 45%

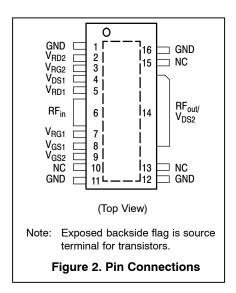
Driver Application


Typical Single-Carrier N-CDMA Performance: V_{DD} = 27 Volts, I_{DQ1} = 90 mA, I_{DQ2} = 240 mA, P_{out} = 5 Watts Avg., Full Frequency Band (865-894 MHz), IS -95 (Pilot, Sync, Paging, Traffic Codes 8 Through 13), Channel Bandwidth = 1.2288 MHz. PAR = 9.8 dB @ 0.01% Probability on CCDF.

Power Gain — 31 dB Power Added Efficiency — 21% ACPR @ 750 kHz Offset — -52 dBc in 30 kHz Bandwidth

 Capable of Handling 5:1 VSWR, @ 26 Vdc, 921 MHz, 30 Watts CW Output Power


Features


- Characterized with Series Equivalent Large-Signal Impedance Parameters
- On-Chip Matching (50 Ohm Input, DC Blocked, >4 Ohm Output)
- Integrated Quiescent Current Temperature Compensation with Enable/Disable Function
- On-Chip Current Mirror g_m Reference FET for Self Biasing Application (1)
- Integrated ESD Protection
- 200°C Capable Plastic Package
- N Suffix Indicates Lead-Free Terminations. RoHS Compliant.
- In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel.

MWIC930NR1 MWIC930GNR1

746-960 MHz, 30 W, 26-28 V SINGLE N-CDMA, GSM/GSM EDGE RF LDMOS WIDEBAND INTEGRATED POWER AMPLIFIERS

Refer to AN1987/D, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1987.

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +65	Vdc
Gate-Source Voltage	V _{GS}	-0.5, +15	Vdc
Storage Temperature Range	T _{stg}	-65 to +175	°C
Operating Junction Temperature	TJ	200	°C

Table 2. Thermal Characteristics

	Characteristic	Symbol	Value (1,2)	Unit
Thermal Resistance, Junction to C	Case	$R_{ heta JC}$		°C/W
GSM Application (P _{out} = 30 W CW)	Stage 1, 26 Vdc, I_{DQ} = 90 mA Stage 2, 26 Vdc, I_{DQ} = 240 mA		5.9 1.4	
GSM EDGE Application (P _{out} = 15 W CW)	Stage 1, 27 Vdc, I_{DQ} = 90 mA Stage 2, 27 Vdc, I_{DQ} = 240 mA		6.5 1.7	
CDMA Application (P _{out} = 5 W CW)	Stage 1, 27 Vdc, I_{DQ} = 90 mA Stage 2, 27 Vdc, I_{DQ} = 240 mA		6.5 1.8	

Table 3. ESD Protection Characteristics

Test Conditions	Class
Human Body Model	1 (Minimum)
Machine Model	M3 (Minimum)
Charge Device Model	C2 (Minimum)

Table 4. Moisture Sensitivity Level

Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD 22-A113, IPC/JEDEC J-STD-020	3	260	°C

Table 5. Electrical Characteristics (T_C = 25°C, unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
----------------	--------	-----	-----	-----	------

Functional Tests (In Freescale Test Fixture, 50 ohm system) V_{DD} = 27 Vdc, I_{DQ1} = 90 mA, I_{DQ2} = 240 mA, P_{out} = 5 W Avg. N-CDMA, f = 880 MHz, Single-Carrier N-CDMA, 1.2288 MHz Channel Bandwidth Carrier. ACPR measured in 30 kHz Bandwidth @ \pm 750 MHz Offset. PAR = 9.8 dB @ 0.01% Probability on CCDF

Power Gain	G _{ps}	28	31	_	dB
Power Added Efficiency	PAE	18	21	_	%
Input Return Loss (f = 880 MHz)	IRL	_	-12	-9	dB
Adjacent Channel Power Ratio	ACPR	_	-52	-48	dBc

$\textbf{Typical Performances} \text{ (In Freescale Test Fixture) } V_{DD} = 26 \text{ Vdc, I}_{DQ1} = 90 \text{ mA, I}_{DQ2} = 240 \text{ mA, 840 MHz} \\ \textbf{Frequency} < 920 \text{ MHz} \\ \textbf{MHz} < \textbf{Frequency} < 920 \text{ MHz} \\ \textbf{MHz} < \textbf{Frequency} < 920 \text{ MHz} \\ \textbf{MHz} < \textbf{MHz} <$

7 00 7 001	, DQ2	-		•	
Quiescent Current Accuracy over Temperature (2)		_		_	%
Stage 1 with 33.2 kΩ Gate Feed Resistors (-30 to 115°C)	ΔI_{1QT}		±2.5		
Stage 2 with 47.5 k Ω Gate Feed Resistors (-30 to 115°C)	ΔI_{2QT}		±2.5		
Gain Flatness in 80 MHz Bandwidth @ Pout = 5 W CW	G _F	_	0.3	_	dB
Deviation from Linear Phase in 80 MHz Bandwidth @ Pout = 5 W CW	Φ	_	0.6	_	٥
Delay @ P _{out} = 5 W CW Including Output Matching	Delay	_	3	_	ns
Part-to-Part Phase Variation @ Pout = 5 W CW	ΔΦ	_	±15	_	٥

- Refer to AN1955/D, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
 Select Documentation/Application Notes AN1955.
- 2. Refer to AN1977/D, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes AN1977.

(continued)

MWIC930NR1 MWIC930GNR1

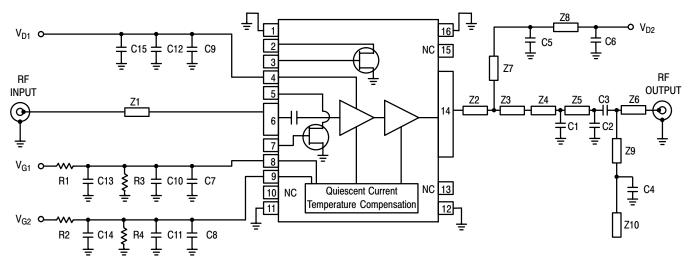


Table 5. Electrical Characteristics $(T_C = 25^{\circ}C, \text{ unless otherwise noted})$ (continued)

Characteristic	Symbol	Min	Тур	Max	Unit
Typical GSM/GSM EDGE Performances (In Freescale GSM/GSM EDGE Test Fixture, 50 ohm system) V _{DD} = 27 Vdc, I _{DQ1} = 90 mA, I _{DQ2} =					
240 mA, 921 MHz <frequency<960 mhz<="" td=""></frequency<960>					

Output Power, 1dB Compression Point	P1dB	_	30	_	W
Power Gain @ P _{out} = 30 W CW	G _{ps}	_	30	_	dB
Power Added Efficiency @ Pout = 30 W CW	PAE	_	45	_	%
Input Return Loss @ Pout = 30 W CW	IRL	_	-12	_	dB
Intermodulation Distortion (15 W, 2-Tone, 100 kHz Tone Spacing)	IMD	_	-30	_	dBc
Intermodulation Distortion (1 W, 2-Tone, 100 kHz Tone Spacing)	IMD backoff	_	-45	_	dBc
Gain Flatness in 40 MHz Bandwidth @ P _{out} = 30 W CW	G _F	_	0.3	_	dB
Deviation from Linear Phase in 40 MHz Bandwidth @ Pout = 30 W CW	Φ	_	0.6	_	0

Z1	0.0438" x 0.970" 50 Ω Microstrip	Z 6	0.0438" x 0.2009" Microstrip
	(not including lead pad)	Z 7	0.5274" x 0.0504" Microstrip
Z2	0.234" x 0.1183" Microstrip	Z8	0.0504" x 0.250" Microstrip
	(including lead pad)	Z 9	0.880" x 0.0254" Microstrip
Z3	0.1575" x 0.9379" Microstrip	Z10	0.0254" x 0.250" Microstrip
Z 4	0.08425" x 0.0729" Microstrip	PCB	Rogers 4350, 0.020", $\varepsilon_r = 3.50$
Z 5	0.08425" x 0.5111" Microstrip		

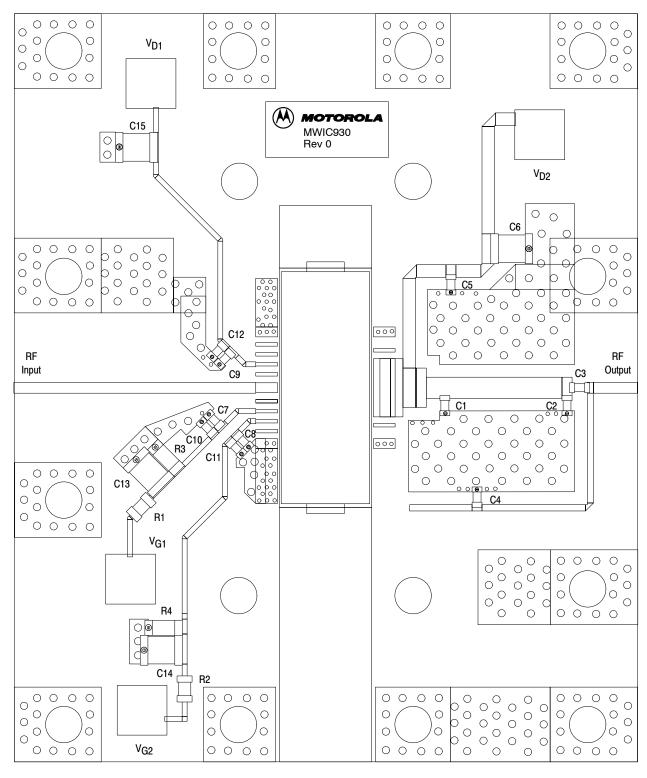

Figure 3. MWIC930NR1(GNR1) Test Fixture Schematic

Table 6. MWIC930NR1(GNR1) Test Fixture Component Designations and Values

Part	Description	Part Number	Manufacturer
*C1	15 pF High Q Capacitor	ATC600S150JW	ATC
*C2	6.8 pF High Q Capacitor - GSM Fixture 8.2 pF High Q Capacitor - CDMA Fixture	ATC600S6R8CW ATC600S8R2CW	ATC
*C3	5.6 pF High Q Capacitor	ATC600S5R6CW	ATC
*C4, C5, C7, C8, C9	47 pF High Q Capacitors	ATC600S470JW	ATC
C6, C13, C14, C15	1 μF Chip Capacitors	GRM42-2X7R105K050AL	Murata
C10, C11, C12	10 nF Chip Capacitors	C0603C103J5R	Kemet
R1, R2	1 kΩ, 1/8 W Chip Resistors	RM73B2AT102J	KOA Speer
R3, R4	1 MΩ, 1/4 W Chip Resistors	RM73B2BT105J	KOA Speer

^{*} For output matching and bypass purposes, it is strongly recommended to use these exact capacitors.

Freescale has begun the transition of marking Printed Circuit Boards (PCBs) with the Freescale Semiconductor signature/logo. PCBs may have either Motorola or Freescale markings during the transition period. These changes will have no impact on form, fit or function of the current product.

Figure 4. MWIC930NR1(GNR1) Test Circuit Component Layout

TYPICAL CHARACTERISTICS

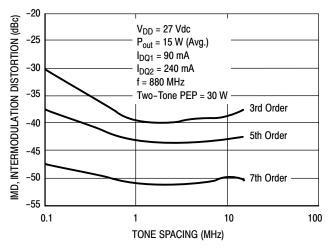


Figure 5. Intermodulation Distortion Products versus Output Power

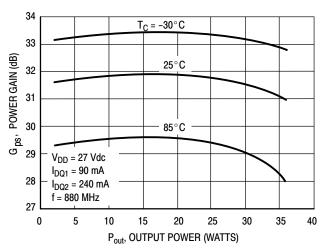


Figure 6. Power Gain versus Output Power

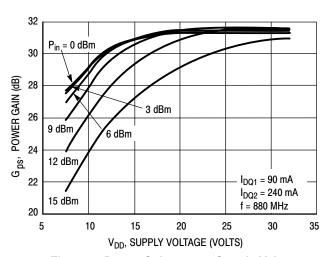


Figure 7. Power Gain versus Supply Voltage

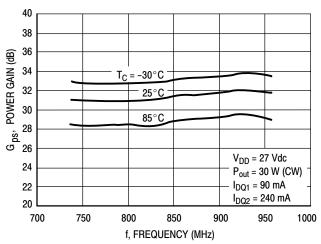


Figure 8. Power Gain versus Frequency

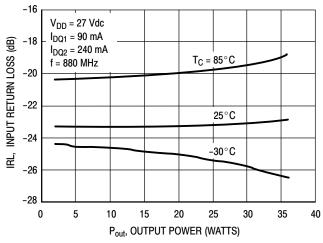


Figure 9. Input Return Loss versus Output Power

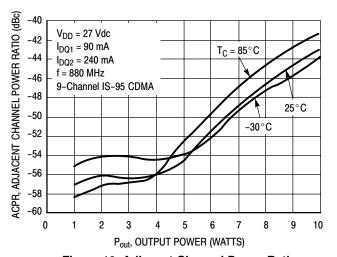


Figure 10. Adjacent Channel Power Ratio versus Output Power

MWIC930NR1 MWIC930GNR1

TYPICAL CHARACTERISTICS

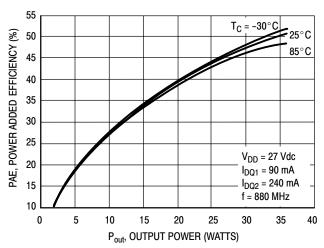


Figure 11. Power Added Efficiency versus
Output Power

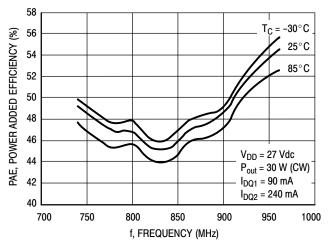
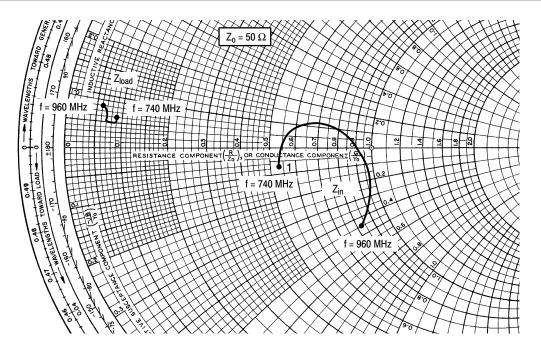



Figure 12. Power Added Efficiency versus Frequency

 V_{DD} = 27 Vdc, I_{DQ1} = 90 mA, I_{DQ2} = 240 mA, P_{out} = 5 W Avg.

f MHz	Z _{in} Ω	$\mathbf{Z_{load}}_{\Omega}$
740	26.61 - j3.68	4.28 + j2.99
760	26.88 - j0.53	4.37 + j2.91
780	28.22 + j2.21	4.39 + j2.79
800	30.57 + j4.31	4.34 + j2.64
820	33.79 + j5.53	4.21 + j2.54
840	37.83 + j5.30	4.06 + j2.52
860	41.92 + j3.42	3.90 + j2.58
880	45.58 - j0.40	3.73 + j2.70
900	47.77 - j5.84	3.59 + j2.93
920	47.83 - j12.15	3.43 + j3.17
940	45.55 - j18.05	3.28 + j3.44
960	41.58 - j22.64	3.13 + j3.75

 $Z_{in} \qquad = \quad \text{Device input impedance as measured from} \\ RF \text{ input to ground.}$

 $Z_{load} \quad = \quad \text{Test circuit impedance as measured} \\ \quad \text{from drain to ground.}$

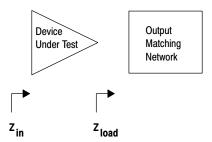
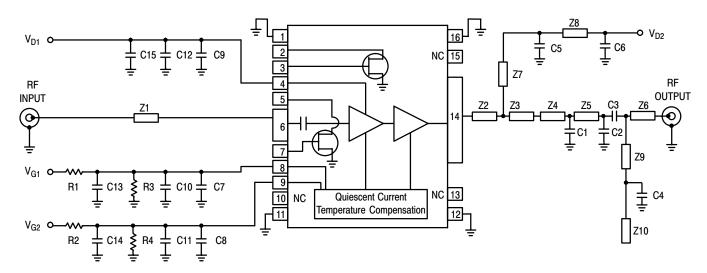



Figure 13. Series Equivalent Input and Load Impedance

DRIVER/PRE-DRIVER PERFORMANCE

Z1	0.0438" x 0.970" 50 Ω Microstrip	Z6	0.0438" x 0.2009" Microstrip
	(not including lead pad)	Z 7	0.5274" x 0.0504" Microstrip
Z2	0.234" x 0.1183" Microstrip	Z8	0.0504" x 0.250" Microstrip
	(including lead pad)	Z 9	0.880" x 0.0254" Microstrip
Z3	0.1575" x 0.9379" Microstrip	Z10	0.0254" x 0.250" Microstrip
Z4	0.08425" x 0.0729" Microstrip	PCB	Rogers 4350, 0.020", $\varepsilon_{\rm r}$ = 3.50
Z5	0.08425" x 0.5111" Microstrip		

Figure 14. MWIC930NR1(GNR1) Test Fixture Schematic — Alternate Characterization for Driver/Pre-Driver Performance

Table 7. MWIC930NR1 (GNR1) Test Fixture Component Designations and Values — Alternate Characterization for Driver/Pre-Driver Performance

Part	Description	Part Number	Manufacturer
*C1	12 pF High Q Capacitor	ATC600S120JW	ATC
*C2	8.2 pF High Q Capacitor - CDMA Fixture	ATC600S8R2CW	ATC
*C3	5.6 pF High Q Capacitor	ATC600S5R6CW	ATC
*C4, C5, C7, C8, C9	47 pF High Q Capacitors	ATC600S470JW	ATC
C6, C13, C14, C15	1 μF Chip Capacitors	GRM42-2X7R105K050AL	Murata
C10, C11, C12	10 nF Chip Capacitors	C0603C103J5R	Kemet
R1, R2	1 kΩ, 1/8 W Chip Resistors	RM73B2AT102J	KOA Speer
R3, R4	1 MΩ, 1/4 W Chip Resistors	RM73B2BT105J	KOA Speer

^{*} For output matching and bypass purposes, it is strongly recommended to use these exact capacitors.

TYPICAL CHARACTERISTICS DRIVER/PRE-DRIVER PERFORMANCE

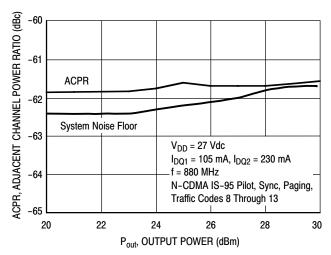
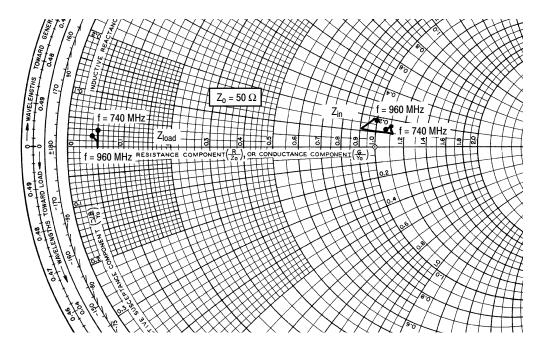



Figure 15. Single-Carrier N-CDMA ACPR versus Output Power

 V_{DD} = 27 Vdc, I_{DQ1} = 105 mA, I_{DQ2} = 230 mA, P_{out} = 5 W Avg.

f MHz	$oldsymbol{Z_{in}}{\Omega}$	$oldsymbol{Z_{load}}{\Omega}$
740	53.944 + j6.745	2.535 + j1.662
760	54.452 + j7.112	2.602 + j1.080
780	55.006 + j7.440	2.688 + j0.548
800	55.549 + j7.656	2.659 + j0.064
820	55.604 + j7.855	2.615 + j0.329
840	55.190 + j7.835	2.568 + j0.450
860	55.110 + j7.410	2.494 + j0.620
880	55.752 + j4.763	2.444 + j0.650
900	45.606 + j5.832	2.440 + j0.689
920	49.206 + j9.284	2.134 + j0.930
940	49.939 + j9.030	2.155 + j0.835
960	50.088 + j8.752	2.095 + j1.235

 $Z_{in} \qquad = \quad \text{Device input impedance as measured from} \\ \text{RF input to ground.}$

 $Z_{load} \quad \ = \quad Test \ circuit \ impedance \ as \ measured \\ from \ drain \ to \ ground.$

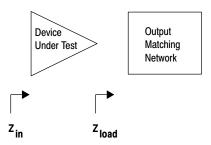
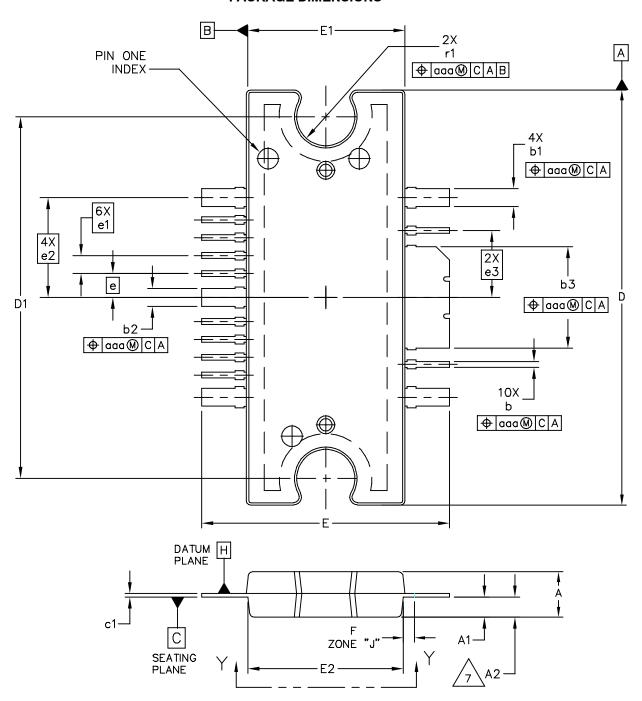
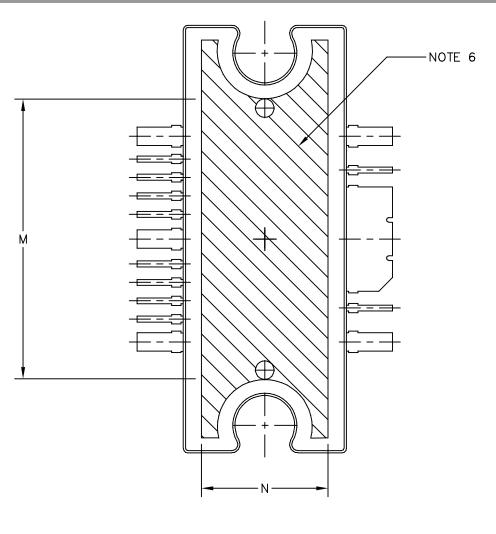


Figure 16. Series Equivalent Input and Load Impedance — Alternate Characterization for Driver/Pre-Driver Performance


NOTES

NOTES



PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:	DOCUMENT NO: 98ARH99164A REV: L		REV: L
TO-272 WIDE BO	CASE NUMBER: 1329-09 13 MAR 2006		
WOLTI ELAD	STANDARD: NO	DN-JEDEC	

VIEW Y-Y

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:	DOCUMENT NO	REV: L		
TO-272 WIDE BOI	CASE NUMBER	2: 1329–09	13 MAR 2006	
WOLTI-LLAD	STANDARD: NO	N-JEDEC	•	

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 (0.15) PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE —H—.
- 5. DIMENSIONS "b", "b1", "b2" AND "b3" DO NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 (0.13) TOTAL IN EXCESS OF THE "b", "b1", "b2" AND "b3" DIMENSIONS AT MAXIMUM MATERIAL CONDITION.
- 6. HATCHING REPRESENTS THE EXPOSED AREA OFTHE HEAT SLUG. HATCHED AREA SHOWN IS ON THE SAME PLANE.
- 7. DIM A2 APPLIES WITHIN ZONE "J" ONLY.

	IN	CH	MILL	IMETER		INCH		MILLI	METER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX	
Α	.100	.104	2.54	2.64	ь	.011	.017	0.28	0.43	
A1	.038	.044	0.96	1.12	b1	.037	.043	0.94	1.09	
A2	.040	.042	1.02	1.07	b2	.037	.043	0.94	1.09	
D	.928	.932	23.57	23.67	b3	.225	.231	5.72	5.87	
D1	.810	BSC	20.5	57 BSC	c1	.007	.011	.18	.28	
E	.551	.559	14.00	14.20	е	.0	.054 BSC		1.37 BSC	
E1	.353	.357	8.97	9.07	e1	.040 BSC		1.02 BSC		
E2	.346	.350	8.79	8.89	e2	.2	24 BSC	5.69	BSC	
F	.025	BSC	0.6	4 BSC	e3	.1	50 BSC	3.81	BSC	
М	.600		15.24		r1	.063	.068	1.6	1.73	
N	.270		6.86							
					aaa	.004		.10		
©	FREESCALE SE ALL RIGH	MICONDUCTOR, HTS RESERVED.	INC.	MECHANICA	L OUT	LINE	PRINT VERS	SION NOT T	O SCALE	

TITLE:

TO-272 WIDE BODY
MULTI-LEAD

DOCUMENT NO: 98ARH99164A REV: L

CASE NUMBER: 1329-09 13 MAR 2006


STANDARD: NON-JEDEC

FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE: TO-272WB, 16 LE	DOCUMENT NO: 98ASA10532D REV: E			
GULL WING	CASE NUMBER: 1329A-03 3 APR 200			
PLASTIC	STANDARD: NO	N-JEDEC		

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	L OUTLINE	PRINT VERSION NO	T TO SCALE	
TITLE: TO-272WB, 16 LE	DOCUMENT NO): 98ASA10532D	REV: E	
GULL WING	CASE NUMBER	R: 1329A-03	3 APR 2006	
PLASTIC		STANDARD: NO	N-JEDEC	

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 (0.15) PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- 5. DIMENSIONS "b", "b1", "b2" AND "b3" DO NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 (0.13) TOTAL IN EXCESS OF THE "b", "b1", "b2" AND "b3" DIMENSIONS AT MAXIMUM MATERIAL CONDITION.
- 6. HATCHING REPRESENTS EXPOSED AREA OF THE HEAT SLUG. HATCHED AREA SHOWN IS ON THE SAME PLANE.

	11	VCH	МІІ	LIMETER			INCH	МІ	LLIMETER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX	
Α	.100	.104	2.54	2.64	Ф	.011	.017	0.28	0.43	
A1	.001	.004	0.02	0.10	b1	.037	.043	0.94	1.09	
A2	.099	.110	2.51	2.79	b2	.037	.043	0.94	1.09	
D	.928	.932	23.57	23.67	b3	.225	.231	5.72	5.87	
D1	.810	BSC	20.	57 BSC	c1	.007	.011	.18 .28		
E	.429	.437	10.9	11.1	е	.05	.054 BSC		37 BSC	
E1	.353	.357	8.97	9.07	e1	.04	O BSC		02 BSC	
E2	.346	.350	8.79	8.89	e2	.22	224 BSC		5.69 BSC	
L	.018	.024	4.90	5.06	e3	.15	.150 BSC		3.81 BSC	
L1	.01	BSC	.0:	25 BSC	r1	.063	.068	1.6	1.73	
М	.600		15.24		t	2.	8.	2.	8*	
N	.270		6.86							
					aaa		.004		.10	
© F		MICONDUCTOR, HTS RESERVED.	INC.	MECHANICA	\L 0U1	TLINE	PRINT VER	SION NO	T TO SCALE	
TITLE:	TITLE: TO-272WB, 16 LEAD				DOCL	JMENT NO): 98ASA10532	2D	REV: E	
	GULL WING					CASE NUMBER: 1329A-03 3 APR 200			3 APR 2006	
PLASTIC					STANDARD: NON-JEDEC					

How to Reach Us:

Home Page:

www.freescale.com

E-mail:

support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale [™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2006. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by NXP manufacturer:

Other Similar products are found below:

ADPA7006AEHZ CXE2089ZSR MGA-43828-BLKG A82-1 RF2878TR7 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC1126-SX HMC342 HMC561-SX HMC598-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SE2622L-R SMA3101-TL-E SMA39 SMA70-1 A66-1 A66-3 A67-1 LX5535LQ LX5540LL RF2373TR7 HMC3653LP3BETR HMC395 HMC549MS8GETR HMC576-SX HMC754S8GETR HMC-ALH435-SX SMA101 SMA1031 SMA181 SMA32 SMA411 SMA531 SST12LP17E-XX8E SST12LP19E-QX6E TGA2598 WPM0510A HMC5929LS6TR HMC5879LS7TR HMC906A-SX HMC1127 HMC544A HMC1126 HMC1110-SX HMC1087F10 HMC1086 HMC1016