

74F573
Octal transparent latch (3-State)
74F574
Octal transparent latch (3-State)

Product specification
IC15 Data Handbook

74F573 Octal Transparent Latch (3-State) 74F574 Octal D Flip-Flop (3-State)

FEATURES

- 74F573 is broadside pinout version of 74F373
- 74F574 is broadside pinout version of 74F374
- Inputs and Outputs on opposite side of package allow easy interface to Microprocessors
- Useful as an Input or Output port for Microprocessors
- 3-State Outputs for Bus interfacing
- Common Output Enable
- 74F563 and 74F564 are inverting version of 74F573 and 74F574 respectively
- 3-State Outputs glitch free during power-up and power-down
- These are High-Speed replacements for N8TS805 and N8TS806

DESCRIPTION

The 74F573 is an octal transparent latch coupled to eight 3-State output buffers. The two sections of the device are controlled independently by Enable (E) and Output Enable (OE) control gates.

The 74F573 is functionally identical to the 74F373 but has a broadside pinout configuration to facilitate PC board layout and allow easy interface with microprocessors.
The data on the D inputs is transferred to the latch outputs when the Enable (E) input is High. The latch remains transparent to the data input while E is High and stores the data that is present one setup time before the High-to-Low enable transition.

The 3-State output buffers are designed to drive heavily loaded 3 -State buses, MOS memories, or MOS microprocessors. The active Low Output Enable ($\overline{\mathrm{OE}}$) controls all eight 3-State buffers independent to the latch operation. When OE is Low, the latched or transparent data appears at the outputs. When OE is High, the outputs are in high impedance "off" state, which means they will neither drive nor load the bus.

The 74F574 is functionally identical to the 74F374 but has a broadside pinout configuration to facilitate PC board layout and allow easy interface with microprocesors.

It is an 8-bit, edge triggered register coupled to eight 3-State output buffers. The two sections of the device are controlled independently by the clock (CP) and Output Enable (OE) control gates.
The register is fully edge-triggered. The state of each D input, one setup time before the Low-to-High clock transition is transferred to the corresponding flip-flop's Q output.

The 3-State output buffers are designed to drive heavily loaded 3 -State buses, MOS memories, or MOS microprocessors. The active Low Output Enable ($\overline{\mathrm{OE}}$) controls all eight 3-State buffers independently of the latch operation. When $\overline{O E}$ is Low, the latched or transparent data appears at the outputs. When OE is High, the outputs are in high impedance "off" state, which means they will neither drive nor load the bus.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 573	5.0 ns	35 mA

TYPE	TYPICAL $\mathrm{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 574	180 MHz	50 mA

ORDERING INFORMATION

DESCRIPTION	$\begin{gathered} \text { COMMERCIAL RANGE } \\ \mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%, \\ \mathrm{~T}_{\mathrm{amb}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{gathered}$	PKG DWG \#
20-Pin Plastic DIP	N74F573N, N74F574N	SOT146-1
20-Pin Plastic SOL	N74F573D, N74F574D	SOT163-1
20-Pin Plastic SSOP	N74F573DB	SOT339-1

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
D0 - D7	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{E}(74 \mathrm{~F} 573)$	Latch Enable input (active falling edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
OE	Output Enable input (active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP (74F574)	Clock Pulse input (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
Q0 - Q7	3-State outputs	$150 / 40$	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION - 74F573

LOGIC SYMBOL - 74F573

LOGIC SYMBOL (IEEE/IEC) - 74F573

PIN CONFIGURATION - 74F574

LOGIC SYMBOL - 74F574

LOGIC SYMBOL (IEEE/IEC) - 74F574

LOGIC DIAGRAM - 74F573

FUNCTION TABLE - 74F573

INPUTS			INTERNAL REGISTER	OUTPUTS	OPERATING MODES
$\overline{O E}$	E	Dn		Q0 - Q7	
L	H	L	L	L	Load and read register
L	H	H	H	H	
L	\downarrow	I	L	L	Latch and read register
L	\downarrow	h	H	H	
L	L	X	NC	NC	Hold
H	L	X	NC	Z	Disable outputs
H	H	Dn	Dn	Z	

$\mathrm{H}=$ High voltage level
$h=$ High voltage level one setup time prior to the High-to-Low E transition
$\mathrm{L}=$ Low voltage level
I = Low voltage level one setup time prior to the High-to-Low E transition
$\mathrm{NC}=$ No change
$X=$ Don't care
Z = High impedance "off" state
$\downarrow=$ High-to-Low E transition
LOGIC DIAGRAM - 74F574

FUNCTION TABLE - 74F574

INPUTS			INTERNAL REGISTER	OUTPUTS	OPERATING MODES
OE	CP	Dn		Q0-Q7	
L	\uparrow	।	L	L	
L	\uparrow	h	H	H	Load and read register
L	\uparrow	X	NC	NC	Hold
H	\uparrow	Dn	Dn	Z	Disable outputs

$\mathrm{H}=$ High voltage level
$h=$ High voltage level one setup time prior to the Low-to-High clock transition
L = Low voltage level
। = Low voltage level one setup time prior to the Low-to-High clock transition
NC= No change
$\mathrm{X}=$ Don't care
Z = High impedance "off" state
$\uparrow=$ Low-to-High clock transition
$\hat{千}=$ Not a Low-to-High clock transition

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limits set forth in this table may impair the useful life of the device.
Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$\mathrm{V}_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5.0	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	48	mA
$\mathrm{~T}_{\text {amb }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		MIN	NOM	MAX	
$\mathrm{V}_{\text {CC }}$	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
l_{OH}	High-level output current			-3	mA
$\mathrm{I}_{\text {OL }}$	Low-level output current			24	mA
$\mathrm{T}_{\text {amb }}$	Operating free-air temperature range	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{\text {NO TAG }}$		LIMITS			UNIT		
				MIN	TYP	MAX					
V_{OH}	High-level output voltage					$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N, I_{O H}=M A X \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.4			V
				$\pm 5 \% \mathrm{~V}_{\text {CC }}$	2.7		3.4		V		
$\mathrm{V}_{\text {OL }}$	Low-level output voltage			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=\mathrm{MAX} \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V		
				$\pm 5 \% \mathrm{~V}_{\text {CC }}$		0.35	0.50	V			
V_{IK}	Input clamp voltage				$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$			-0.73	-1.2	V	
1	Input current at maximum input voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
I_{IH}	High-level input current			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
$\mathrm{I}_{\text {IL }}$	Low-level input current			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA		
Iozh	Off-state output current, High-level voltage applied			$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$		
IozL	Off-state output current, Low-level voltage applied			$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-50	$\mu \mathrm{A}$		
Ios	Short-circuit output currentNO TAG			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-60		-150	mA		
ICC	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}}$	74F573	$V_{C C}=$ MAX			30	40	mA		
		$\mathrm{I}_{\text {CCL }}$					35	50	mA		
		$\mathrm{I}_{\text {CCZ }}$					40	60	mA		
		$\mathrm{I}_{\mathrm{CCH}}$	74F574	$V_{C C}=$ MAX			45	65	mA		
		$\mathrm{I}_{\text {CCL }}$					50	70	mA		
		$\mathrm{I}_{\mathrm{CCz}}$					55	85	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITIONS	LIMITS					UNIT	
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$						
			MIN	TYP	MAX	MIN	MAX			
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \\ & \hline \end{aligned}$	Propagation delay Dn to Qn	74F573		Waveform NO TAG	$\begin{aligned} & 3.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.0 \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \\ & \hline \end{aligned}$	Propagation delay E to Qn			Waveform NO TAG	$\begin{aligned} & 4.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{gathered} 12.5 \\ 8.0 \end{gathered}$	ns
$\begin{aligned} & \text { tpZH } \\ & \text { tpZL } \end{aligned}$	Output Enable time to High or Low level		Waveform NO TAG Waveform NO TAG	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} 10.5 \\ 8.5 \end{gathered}$	ns	
$\begin{aligned} & \text { tphZ } \\ & \mathrm{t}_{\mathrm{tPLZ}} \end{aligned}$	Output Disable time from High or Low level		Waveform NO TAG Waveform NO TAG	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.5 \end{aligned}$	ns	
${ }_{\text {f MAX }}$	Maximum Clock frequency	74F574	Waveform NO TAG	160	180		150		MHz	
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \\ & \hline \end{aligned}$	Propagation delay CP to Qn		Waveform NO TAG	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \\ & \hline \end{aligned}$	ns	
$\begin{aligned} & \text { tpzH } \\ & \text { tpZL } \end{aligned}$	Output Enable time to High or Low level		Waveform NO TAG Waveform NO TAG	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	ns	
$\begin{aligned} & \text { tphz } \\ & \text { tpLZ } \end{aligned}$	Output Disable time from High or Low level		Waveform NO TAG Waveform NO TAG	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	ns	

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER		TEST CONDITIONS	LIMITS					UNIT	
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{Cc}}=+5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$						
			MIN	TYP	MAX	MIN	MAX			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, Dn to E	74F573		Waveform 4	$\begin{aligned} & \hline 0.0 \\ & 1.5 \end{aligned}$			$\begin{aligned} & 0.0 \\ & 2.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, Dn to E			Waveform 4	$\begin{aligned} & 2.5 \\ & 4.0 \end{aligned}$			2.5 4.0		ns
$t_{w}(\mathrm{H})$	E pulse width, High		Waveform NO TAG	3.0			3.5		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, Dn to CP	74F574	Waveform NO TAG	2.5 2.5			3.0 3.0		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, Dn to CP		Waveform NO TAG	0			0		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	CP Pulse width, High or Low		Waveform NO TAG	$\begin{aligned} & \hline 3.0 \\ & 3.5 \\ & \hline \end{aligned}$			$\begin{aligned} & \hline 3.0 \\ & 4.0 \\ & \hline \end{aligned}$		ns	

AC WAVEFORMS

For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$
The shaded areas indicate when the input is permitted to change for predictable output performance.

Waveform 1. Propagation Delay, Clock and Enable Inputs to Output, Enable, Clock Pulse Widths, and Maximum Clock Frequency

Waveform 3. Data Setup and Hold Times

Waveform 5. 3-State Output Enable Time to High Level and Output Disable Time from High Level

Waveform 2. Propagation Delay for Data to Outputs

Waveform 4. Data Setup and Hold Times

Waveform 6. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

TEST CIRCUIT AND WAVEFORM

DEFINITIONS:

$R_{L}=$ Load resistor;
see AC electrical characteristics for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC electrical characteristics for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\text {OUT }}$ of pulse generators.

family	INPUT PULSE REQUIREMENTS					
	amplitude	$\mathbf{V}_{\mathbf{M}}$	rep. rate	$\mathbf{t}_{\mathbf{w}}$	$\mathbf{t}_{\mathbf{T} \text { LH }}$	$\mathbf{t}_{\text {THL }}$
74 F	3.0 V	1.5 V	1 MHz	500 ns	2.5 ns	2.5 ns

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\underset{\max }{A}$	A_{1} min.	A_{2} max.	b	b_{1}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	e_{1}	L	M_{E}	\mathbf{M}_{H}	w	$\mathbf{Z a x}^{(1)}$
mm	4.2	0.51	3.2	$\begin{aligned} & 1.73 \\ & 1.30 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 26.92 \\ & 26.54 \end{aligned}$	$\begin{aligned} & 6.40 \\ & 6.22 \end{aligned}$	2.54	7.62	$\begin{aligned} & 3.60 \\ & 3.05 \end{aligned}$	$\begin{aligned} & 8.25 \\ & 7.80 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.3 \end{gathered}$	0.254	2.0
inches	0.17	0.020	0.13	$\begin{aligned} & 0.068 \\ & 0.051 \end{aligned}$	$\begin{aligned} & 0.021 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.014 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 1.060 \\ & 1.045 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.24 \end{aligned}$	0.10	0.30	$\begin{aligned} & 0.14 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.33 \end{aligned}$	0.01	0.078

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT146-1			SC603	- ¢	$\begin{aligned} & 92-11-17 \\ & 95-05-24 \end{aligned}$

detail X

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	2.65	$\begin{aligned} & 0.30 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 12.6 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 7.4 \end{aligned}$	1.27	$\begin{aligned} & 10.65 \\ & 10.00 \end{aligned}$	1.4	$\begin{aligned} & 1.1 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.0 \end{aligned}$	0.25	0.25	0.1	0.9 0.4	$\begin{aligned} & 8^{0} \\ & 0^{\circ} \end{aligned}$
inches	0.10	$\begin{aligned} & 0.012 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.096 \\ & 0.089 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.51 \\ & 0.49 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.29 \end{aligned}$	0.050	$\begin{aligned} & 0.419 \\ & 0.394 \end{aligned}$	0.055	$\begin{aligned} & 0.043 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.043 \\ & 0.039 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.035 \\ & 0.016 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT163-1	075E04	MS-013AC		\square (¢)	$\begin{aligned} & -95-01-24 \\ & 97-05-22 \end{aligned}$

DIMENSIONS (mm are the original dimensions)

UNIT	$\underset{\text { max. }}{\text { A }}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$\mathbf{Z}^{(1)}$	θ
mm	2.0	$\begin{aligned} & 0.21 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 1.80 \\ & 1.65 \end{aligned}$	0.25	$\begin{aligned} & 0.38 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.09 \end{aligned}$	$\begin{aligned} & 7.4 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 5.2 \end{aligned}$	0.65	$\begin{aligned} & 7.9 \\ & 7.6 \end{aligned}$	1.25	$\begin{aligned} & 1.03 \\ & 0.63 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 0.7 \end{aligned}$	0.2	0.13	0.1	$\begin{aligned} & 0.9 \\ & 0.5 \end{aligned}$	8° 0°

Note

1. Plastic or metal protrusions of 0.20 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT339-1		MO-150AE			$-93-09-08$	

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support - These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes - Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors

811 East Arques Avenue

P.O. Box 3409

Sunnyvale, California 94088-3409
Telephone 800-234-7381

All rights reserved. Printed in U.S.A.
print code
Document order number:
Date of release: 10-98
9397-750-05141

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Flip Flops category:

Click to view products by NXP manufacturer:

Other Similar products are found below :
5962-8955201EA MC74HC11ADTG MC10EP29MNG MC74HC11ADTR2G NLV14013BDTR2G NLV14027BDG NLX1G74MUTCG 703557B 746431H 5962-90606022A 5962-9060602FA NLV14013BDR2G M38510/30104BDA M38510/07106BFA M38510/06102BFA M38510/06101B2A NLV74HC74ADR2G TC4013BP(N,F) NLV14013BDG NLV74AC32DR2G NLV74AC74DR2G MC74HC73ADG CY74FCT16374CTPACT MC74HC11ADR2G 74LVT74D,118 74VHCT9273FT(BJ) MM74HC374WM 74ALVCH162374PAG TC7WZ74FK,LJ(CT CD54HCT273F HMC853LC3TR HMC723LC3CTR MM74HCT574MTCX MM74HCT273WM SN74LVC74APW SN74LVC74AD MC74HC73ADTR2G MC74HC11ADG SN74ALVTH16374GR M74HCT273B1R M74HC377RM13TR M74HC374RM13TR M74HC175B1R M74HC174RM13TR 74ALVTH16374ZQLR 74ALVTH32374ZKER 74AUP1G74DC,125 74VHC374FT(BJ) 74VHC9273FT(BJ) NLV14013BCPG

