NX3DV2567

Low-ohmic four-pole double-throw analog switch Rev. 2 — 9 November 2011 Prod

Product data sheet

General description 1.

The NX3DV2567 is a four-pole double-throw analog switch (4PDT) optimized for switching WLAN-SIM supply, data and control signals. It has one digital select input (S) and four switches each with two independent input/outputs (nY0 and nY1) and a common input/output (nZ). Schmitt trigger action at S makes the circuit tolerant to slower input rise and fall times across the entire V_{CC} range from 1.4 V to 4.3 V.

A low input voltage threshold allows pin S to be driven by lower level logic signals without significant increase in supply current I_{CC} . This makes it possible for the NX3DV2567 to switch 4.3 V signals with a 1.8 V digital controller, eliminating the need for logic level translation.

The NX3DV2567 allows signals with amplitude up to V_{CC} to be transmitted from nZ to nY0 or nY1; or from nY0 or nY1 to nZ..

Features and benefits

- Wide supply voltage range from 1.4 V to 4.3 V
- Very low ON resistance for supply path:
 - 0.5 Ω (typical) at $V_{CC} = 1.8 \text{ V}$
 - 0.45 Ω (typical) at V_{CC} = 2.7 V
- Low ON resistance for data path:
 - 7 Ω (typical) at $V_{CC} = 1.8 \text{ V}$
 - 6 Ω (typical) at $V_{CC} = 2.7 \text{ V}$
- Low ON capacitance for data path
- Wide –3 db bandwidth > 160 MHz
- Break-before-make switching
- High noise immunity
- ESD protection:
 - HBM JESD22-A114F Class 3A exceeds 4000 V
 - ◆ HBM JESD22-A114F Class 3A I/O to GND exceeds 7000 V
 - CDM AEC-Q100-011 revision B exceeds 1000 V
- CMOS low-power consumption
- Latch-up performance exceeds 100 mA per JESD 78B Class II Level A
- 1.8 V control logic at V_{CC} = 3.6 V
- Control input accepts voltages above supply voltage
- Very low supply current, even when input is below V_{CC}
- High current handling capability (350 mA continuous current under 3.3 V supply for supply path switch)

Low-ohmic four-pole double-throw analog switch

■ Specified from -40 °C to +85 °C and from -40 °C to +125 °C

3. Applications

- Cell phone, PDA, digital camera, printer and notebook
- LCD monitor, TV and set-top box

4. Ordering information

Table 1. Ordering information

Type number	Package					
	Temperature range	Name	Description	Version		
NX3DV2567HR	–40 °C to +125 °C	HXQFN16U	plastic thermal enhanced extremely thin quad flat package; no leads; 16 terminals; UTLP based; body 3 x 3 x 0.5 mm	SOT1039-1		
NX3DV2567GU	–40 °C to +125 °C	XQFN16	plastic, extremely thin quad flat package; no leads; 16 terminals; body 1.80 x 2.60 x 0.50 mm	SOT1161-1		

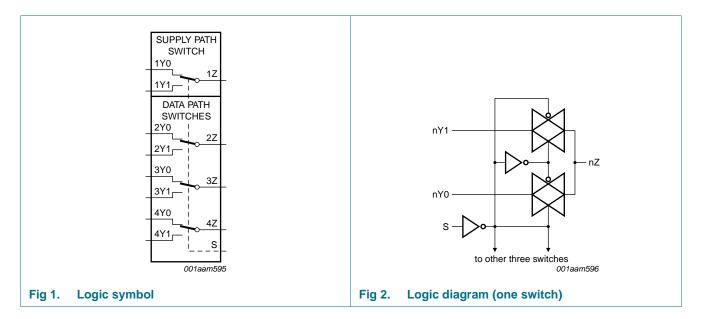
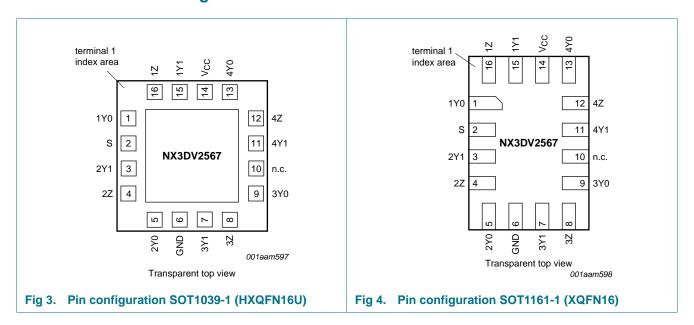

5. Marking

Table 2. Marking codes

Type number	Marking code
NX3DV2567HR	D60
NX3DV2567GU	D60


Low-ohmic four-pole double-throw analog switch

6. Functional diagram

7. Pinning information

7.1 Pinning

Low-ohmic four-pole double-throw analog switch

7.2 Pin description

Table 3. Pin description

Symbol	Pin	Description
1Y0	1	independent input or output (supply switch)
2Y0, 3Y0, 4Y0	5, 9, 13	independent input or output (data switch)
S	2	select input
1Y1	15	independent input or output (supply switch)
2Y1, 3Y1, 4Y1	3, 7, 11	independent input or output (data switch)
1Z	16	common output or input (supply switch)
2Z, 3Z, 4Z	4, 8, 12	common output or input (data switch)
GND	6	ground (0 V)
n.c.	10	not connected
V _{CC}	14	supply voltage

8. Functional description

Table 4. Function table[1]

Input S	Channel on
L	nY0
Н	nY1

^[1] H = HIGH voltage level; L = LOW voltage level.

9. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+4.6	V
VI	input voltage	select input S	<u>[1]</u> –0.5	+4.6	V
V_{SW}	switch voltage		2 -0.5	$V_{CC} + 0.5$	V
I _{IK}	input clamping current	$V_{I} < -0.5 \text{ V}$	-50	-	mΑ
I _{SK}	switch clamping current	$V_{I} < -0.5 \text{ V or } V_{I} > V_{CC} + 0.5 \text{ V}$	-	±50	mΑ
I _{SW}	switch current	supply path switch			
		V_{SW} > -0.5 V or V_{SW} < V_{CC} + 0.5 V; source or sink current	-	±350	mA
		V_{SW} > -0.5 V or V_{SW} < V_{CC} + 0.5 V; pulsed at 1 ms duration, < 10 % duty cycle; peak current	-	±500	mA
		data path switch			
		V_{SW} > -0.5 V or V_{SW} < V_{CC} + 0.5 V; source or sink current	-	±128	mA
T _{stg}	storage temperature		-65	+150	°C

NX3DV2567 **NXP Semiconductors**

Low-ohmic four-pole double-throw analog switch

Table 5. Limiting values ...continued

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C}$ to +125 $^{\circ}\text{C}$	[3][4]	250	mW

- [1] The minimum input voltage rating may be exceeded if the input current rating is observed.
- The minimum and maximum switch voltage ratings may be exceeded if the switch clamping current rating is observed but may not exceed 4.6 V.
- For HXQFN16U package: above 135 °C the value of Ptot derates linearly with 16.9 mW/K.
- [4] For XQFN16 package: above 133 °C the value of Ptot derates linearly with 14.5 mW/K.

10. Recommended operating conditions

Table 6. **Recommended operating conditions**

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		1.4	4.3	V
VI	input voltage	select input S	0	4.3	V
V_{SW}	switch voltage		[1] 0	V_{CC}	V
T_{amb}	ambient temperature		-40	+125	°C
$\Delta t/\Delta V$	input transition rise and fall rate	V _{CC} = 1.4 V to 4.3 V	[2] _	200	ns/V

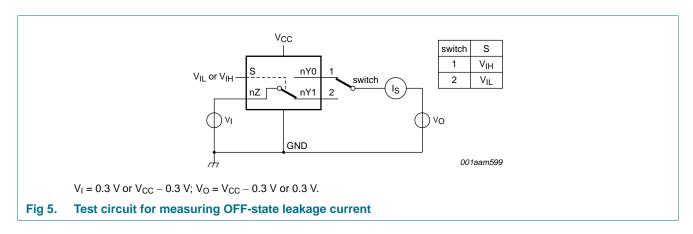
To avoid sinking GND current from terminal nZ when switch current flows in terminal nYn, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminal nZ, no GND current will flow from terminal nYn. In this case, there is no limit for the voltage drop across the switch.

11. Static characteristics

Table 7. Static characteristics

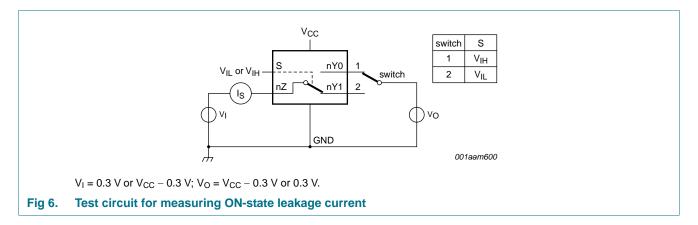
At recommended operating conditions; voltages are referenced to GND (ground 0 V).

Symbol	Parameter	Conditions	T _{ar}	_{nb} = 25	°C	T _{amb} = -	-40 °C to	+125 °C	Unit
			Min	Тур	Max	Min	Max (85 °C)	Max (125 °C)	
V _{IH}	HIGH-level	$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$	0.9	-	-	0.9	-	-	V
	input voltage	$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	0.9	-	-	0.9	-	-	V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.1	-	-	1.1	-	-	V
		V _{CC} = 2.7 V to 3.6 V	1.3	-	-	1.3	-	-	V
		V _{CC} = 3.6 V to 4.3 V	1.4	-	-	1.4	-	-	V
V_{IL}	LOW-level	V _{CC} = 1.4 V to 1.6 V	-	-	0.3	-	0.3	0.3	V
	input voltage	V _{CC} = 1.65 V to 1.95 V	-	-	0.4	-	0.4	0.3	V
		V _{CC} = 2.3 V to 2.7 V	-	-	0.4	-	0.4	0.4	V
		V _{CC} = 2.7 V to 3.6 V	-	-	0.5	-	0.5	0.5	V
		V _{CC} = 3.6 V to 4.3 V	-	-	0.6	-	0.6	0.6	V
l _l	input leakage current	select input S; V _I = GND to 4.3 V; V _{CC} = 1.4 V to 4.3 V	-	-	-	-	±0.5	±1	μΑ


^[2] Applies to control signal levels.

Low-ohmic four-pole double-throw analog switch

Table 7. Static characteristics ...continued
At recommended operating conditions; voltages are referenced to GND (ground 0 V).


Symbol	Parameter	Conditions	Ta	_{imb} = 25	°C	T _{amb} =	–40 °C to	+125 °C	Unit
			Min	Тур	Max	Min	Max (85 °C)	Max (125 °C)	
leaka	OFF-state leakage	nY0 and nY1 port; see <u>Figure 5</u>							
	current	$V_{CC} = 1.4 \text{ V to } 3.6 \text{ V}$	-	-	±5	-	±50	±500	nΑ
		$V_{CC} = 3.6 \text{ V to } 4.3 \text{ V}$	-	-	±10	-	±50	±500	nΑ
I _{S(ON)}	leakage	nZ port; $V_{CC} = 1.4 \text{ V to } 3.6 \text{ V};$ see Figure 6							
		$V_{CC} = 1.4 \text{ V to } 3.6 \text{ V}$	-	-	±5	-	±50	#500 пл #500 пл #500 пл #500 пл #500 пл 10 пл 11 пл 15 пл 16 пл 17 пл 18 пл 19 пл 19 пл 19 пл 19 пл 19 пл 19 пл 19 пл 19 пл 10 пл	nΑ
		$V_{CC} = 3.6 \text{ V to } 4.3 \text{ V}$	-	-	±10	-	±50	±500	nA
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $V_{SW} = GND$ or V_{CC}							
		$V_{CC} = 3.6 \text{ V}$	-	-	100	-	500	±500 n/ 5000 n/ 6000 n/ 7 μ/ 1 μ/	nΑ
		$V_{CC} = 4.3 \text{ V}$	-	-	150	-	800	6000	nA nA nA
ΔI_{CC}	additional supply current	V_{SW} = GND or V_{CC}							
		$V_I = 2.6 \text{ V}; V_{CC} = 4.3 \text{ V}$	-	2.0	4.0	-	7	7	μΑ
		$V_1 = 2.6 \text{ V}; V_{CC} = 3.6 \text{ V}$	-	0.35	0.7	-	1	1	μΑ
		$V_I = 1.8 \text{ V}; V_{CC} = 4.3 \text{ V}$	-	7.0	10.0	-	15	15	μΑ
		$V_I = 1.8 \text{ V}; V_{CC} = 3.6 \text{ V}$	-	2.5	4.0	-	5	5	μΑ
		$V_I = 1.8 \text{ V}; V_{CC} = 2.5 \text{ V}$	-	50	200	-	300	500	nΑ
Cı	input capacitance		-	1	-	-	-	-	pF
C _{S(OFF)}	OFF-state	supply path switch	-	35	-	-	-	-	pF
	capacitance	data path switch	-	3	-	-	-	-	pF
C _{S(ON)}	ON-state	supply path switch	-	130	-	-	-	-	pF
	capacitance	data path switch	-	16	-	-	-	-	pF

11.1 Test circuits

NX3DV2567 **NXP Semiconductors**

Low-ohmic four-pole double-throw analog switch

11.2 ON resistance

Table 8. **ON** resistance

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for graphs see Figure 8 to Figure 13.

Symbol Parameter		Conditions	T _{amb} =	-40 °C t	o +85 °C	$T_{amb} = -40^{\circ}$	°C to +125 °C	Unit
			Min	Typ[1]	Max	Min	Max	
Supply p	oath switch		'	'		'	•	
R _{ON}	ON resistance	$V_I = GND \text{ to } V_{CC};$ $I_{SW} = 100 \text{ mA}; \text{ see } \underline{\text{Figure 7}}$						
		$V_{CC} = 1.8 \text{ V}; V_{SW} = 0 \text{ V}, 1.8 \text{ V}$	-	0.5	0.75	-	0.85	Ω
		$V_{CC} = 2.7 \text{ V}; V_{SW} = 0 \text{ V}, 2.3 \text{ V}$	-	0.45	0.7	-	0.8	Ω
ΔR _{ON}	ON resistance	$V_I = GND \text{ to } V_{CC}; I_{SW} = 100 \text{ mA}$	2]					
	mismatch between channels	$V_{CC} = 2.7 \text{ V}; V_{SW} = 0 \text{ V}$	-	0.1	-	-	-	Ω
Data pat	h switches							
R _{ON}	ON resistance	$V_I = GND \text{ to } V_{CC}; I_{SW} = 20 \text{ mA};$ see Figure 7						
		$V_{CC} = 1.8 \text{ V}; V_{SW} = 0 \text{ V}, 1.8 \text{ V}$	-	7.0	10.0	-	11.0	Ω
		$V_{CC} = 2.7 \text{ V}; V_{SW} = 0 \text{ V}, 2.3 \text{ V}$	-	6.0	9.5	-	10.5	Ω
ΔR_{ON}	ON resistance	$V_I = GND \text{ to } V_{CC}; I_{SW} = 20 \text{ mA}$	2]					
	mismatch between channels	$V_{CC} = 2.7 \text{ V}; V_{SW} = 0 \text{ V}$	-	0.2	-	-	-	Ω

^[1] Typical values are measured at T_{amb} = 25 °C.

Measured at identical V_{CC}, temperature and input voltage.

Low-ohmic four-pole double-throw analog switch

11.3 ON resistance test circuit and graphs

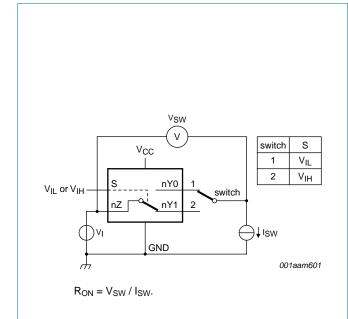
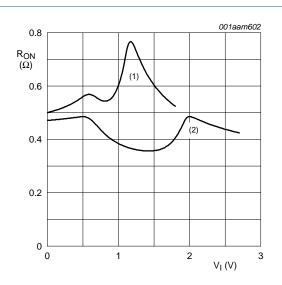
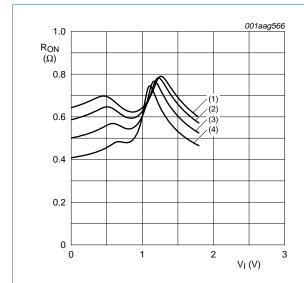




Fig 7. Test circuit for measuring ON resistance

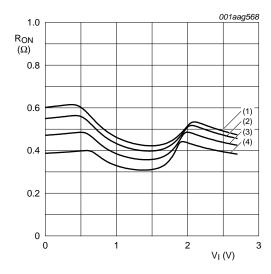
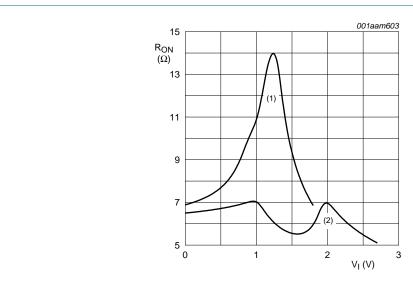
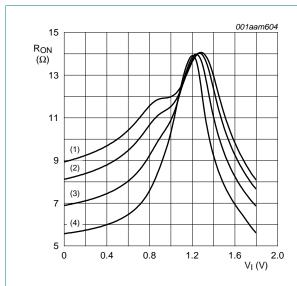

- (1) $V_{CC} = 1.8 \text{ V}.$
- (2) $V_{CC} = 2.7 \text{ V}.$

Fig 8. Typical ON resistance as a function of input voltage (supply path switch)

- (1) $T_{amb} = 125 \, ^{\circ}C$.
- (2) $T_{amb} = 85 \, ^{\circ}C$.
- (3) $T_{amb} = 25 \, ^{\circ}C$.
- (4) $T_{amb} = -40 \, ^{\circ}C$.


Fig 9. ON resistance as a function of input voltage; $V_{CC} = 1.8 \text{ V (supply path switch)}$

- (1) $T_{amb} = 125 \, ^{\circ}C$.
- (2) $T_{amb} = 85 \,^{\circ}C$.
- (3) $T_{amb} = 25 \, ^{\circ}C$.
- (4) $T_{amb} = -40 \, ^{\circ}C$.


Fig 10. ON resistance as a function of input voltage; $V_{CC} = 2.7 \text{ V (supply path switch)}$

Low-ohmic four-pole double-throw analog switch

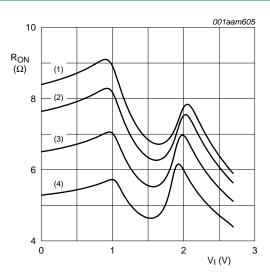

- (1) $V_{CC} = 1.8 \text{ V}.$
- (2) $V_{CC} = 2.7 \text{ V}.$

Fig 11. Typical ON resistance as a function of input voltage (data path switch)

- (1) $T_{amb} = 125 \, ^{\circ}C$.
- (2) $T_{amb} = 85 \, ^{\circ}C$.
- (3) $T_{amb} = 25 \, ^{\circ}C$.
- (4) $T_{amb} = -40 \, ^{\circ}C$.

Fig 12. ON resistance as a function of input voltage; $V_{CC} = 1.8 \text{ V (data path switch)}$

- (1) $T_{amb} = 125 \, ^{\circ}C$.
- (2) $T_{amb} = 85 \, ^{\circ}C$.
- (3) $T_{amb} = 25 \, ^{\circ}C$.
- (4) $T_{amb} = -40 \, ^{\circ}C$.

Fig 13. ON resistance as a function of input voltage; $V_{CC} = 2.7 \text{ V (data path switch)}$

Low-ohmic four-pole double-throw analog switch

12. Dynamic characteristics

Table 9. Dynamic characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for load circuit see Figure 16.

Symbol	Parameter	Conditions		25 °C		-40 °C to +125 °C			Unit
			Min	Typ[1]	Max	Min	Max (85 °C)	Max (125 °C)	ns n
Supply p	oath switch								
t _{en}	enable time	S to 1Z or 1Y0, 1Y1; see Figure 14							
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$	-	41	90	-	120	120	ns
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	-	30	70	-	80	90	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	-	20	45	-	50	55	ns
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	-	19	40	-	45	50	ns
		$V_{CC} = 3.6 \text{ V to } 4.3 \text{ V}$	-	19	40	-	45	50	ns
t _{dis} d	disable time	S to 1Z or 1Y0, 1Y1; see Figure 14							
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$	-	24	70	-	80	90	Max 125 °C) 120 ns 90 ns 55 ns 50 ns 35 ns 30 ns - ns - ns - ns - ns - ns - ns 55 ns 50 ns 550 ns 550 ns 550 ns 550 ns 50 ns 50 ns 50 ns 35 ns 30 ns 30 ns
		V _{CC} = 1.65 V to 1.95 V	-	15	55	-	60	65	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	-	9	25	-	30	35	ns
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	-	8	20	-	25	30	ns
		$V_{CC} = 3.6 \text{ V to } 4.3 \text{ V}$	-	8	20	-	25	30	ns
b-m	break-before-make	see Figure 15	[2]						ns n
	time	$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$	-	20	-	9	-	-	ns
		V _{CC} = 1.65 V to 1.95 V	-	17	-	7	-	65 ns 35 ns 30 ns 30 ns - ns - ns - ns - ns	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	-	13	-	4	-	-	ns
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	-	11	-	3	-	-	ns
		$V_{CC} = 3.6 \text{ V to } 4.3 \text{ V}$	-	11	-	2	-	-	ns
Data pat	h switch								
t _{en}	enable time	S to nZ or nYn; see Figure 14							
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$	-	40	90	-	120	120	ns
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	-	29	70	-	80	90	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	-	20	45	-	50	55	ns
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	-	19	40	-	45	50	ns
		$V_{CC} = 3.6 \text{ V to } 4.3 \text{ V}$	-	19	40	-	45	50	ns
t _{dis}	disable time	S to nZ or nYn; see Figure 14							
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$	-	21	70	-	80	90	ns
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	-	13	55	-	60	65	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	-	8	25	-	30	35	ns
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	-	7	20	-	25	30	ns n
		$V_{CC} = 3.6 \text{ V to } 4.3 \text{ V}$	-	7	20	-	25	30	ns

Low-ohmic four-pole double-throw analog switch

 Table 9.
 Dynamic characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for load circuit see Figure 16.

Symbol	Parameter	Conditions		25 °C		-40	–40 °C to +125 °C		Unit
			Min	Typ[1]	Max	Min	Max (85 °C)	Max (125 °C)	
t _{b-m}	break-before-make	see Figure 15 [2]							
	time	$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$	-	23	-	9	-	-	ns
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	-	19	-	7	-	-	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	-	15	-	4	-	-	ns
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	-	13	-	3	-	-	ns
		$V_{CC} = 3.6 \text{ V to } 4.3 \text{ V}$	-	12	-	2	-	-	ns

^[1] Typical values are measured at T_{amb} = 25 °C and V_{CC} = 1.5 V, 1.8 V, 2.5 V, 3.3 V and 4.3 V respectively.

12.1 Waveform and test circuits

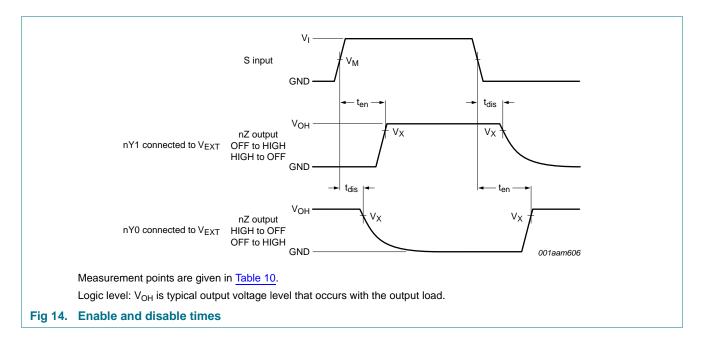
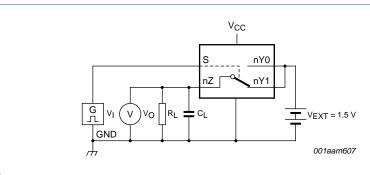
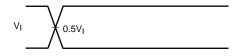
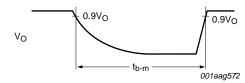
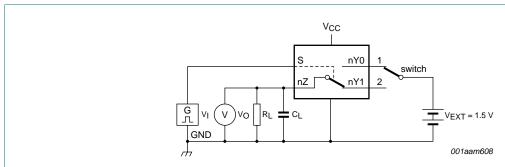



Table 10. Measurement points


Supply voltage	Input	Output
V _{CC}	V _M	V_X
1.4 V to 4.3 V	0.5V _{CC}	0.9V _{OH}


^[2] Break-before-make guaranteed by design.

Low-ohmic four-pole double-throw analog switch


a. Test circuit

b. Input and output measurement points

Fig 15. Test circuit for measuring break-before-make timing

Test data is given in Table 11.

Definitions test circuit:

 R_L = Load resistance.

 C_L = Load capacitance including jig and probe capacitance.

 V_{EXT} = External voltage for measuring switching times.

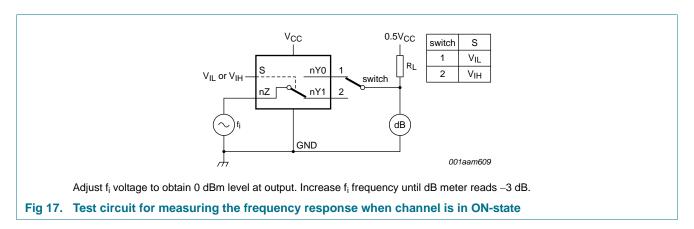
Fig 16. Test circuit for measuring switching times

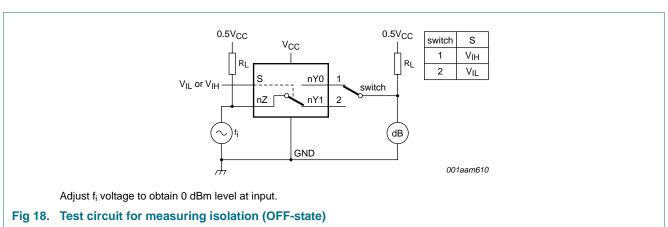
Table 11. Test data

Supply voltage	Input		Load	
V _{CC}	VI	t _r , t _f	CL	R _L
1.4 V to 4.3 V	V _{CC}	≤ 2.5 ns	35 pF	50 Ω

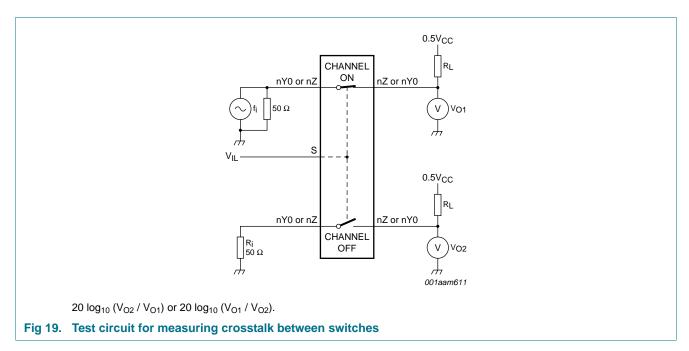
Low-ohmic four-pole double-throw analog switch

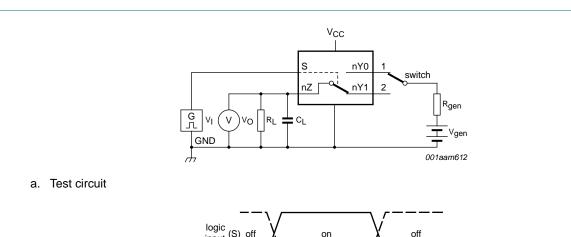
12.2 Additional dynamic characteristics

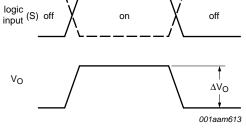

Table 12. Additional dynamic characteristics


At recommended operating conditions; voltages are referenced to GND (ground = 0 V); $V_I = \text{GND}$ or V_{CC} (unless otherwise specified); $t_r = t_f \le 2.5$ ns; $T_{amb} = 25$ °C.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Data pat	h switch					
f _(-3dB) -3 dB frequency response	-3 dB frequency	$R_L = 50 \Omega$; see Figure 17	[1]			
	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	-	330	-	MHz	
α_{iso} isolation (OFF-state)	$f_i = 10 \text{ MHz}$; $R_L = 50 \Omega$; see Figure 18	<u>[1]</u>				
	V _{CC} = 2.7 V to 3.6 V	-	-60	-	dB	
Xtalk crosstalk	between switches; $f_i = 10 \text{ MHz}$; $R_L = 50 \Omega$; see Figure 19	[1]				
	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	-	-60	-	dB	
Q _{inj} charg	charge injection	f_i = 1 MHz; C_L = 0.1 nF; R_L = 1 M Ω ; V_{gen} = 0 V; R_{gen} = 0 Ω ; see <u>Figure 20</u>				
		V _{CC} = 2.7 V to 3.6 V	-	10	-	рС


^[1] f_i is biased at 0.5 V_{CC} .


12.3 Test circuits



Low-ohmic four-pole double-throw analog switch

b. Input and output pulse definitions

Definition: Q_{inj} = $\Delta V_O \times C_L$.

 ΔV_{O} = output voltage variation.

 R_{gen} = generator resistance.

V_{gen} = generator voltage.

Fig 20. Test circuit for measuring charge injection

Low-ohmic four-pole double-throw analog switch

13. Package outline

Fig 21. Package outline SOT1039-1 (HXQFN16U)

Low-ohmic four-pole double-throw analog switch

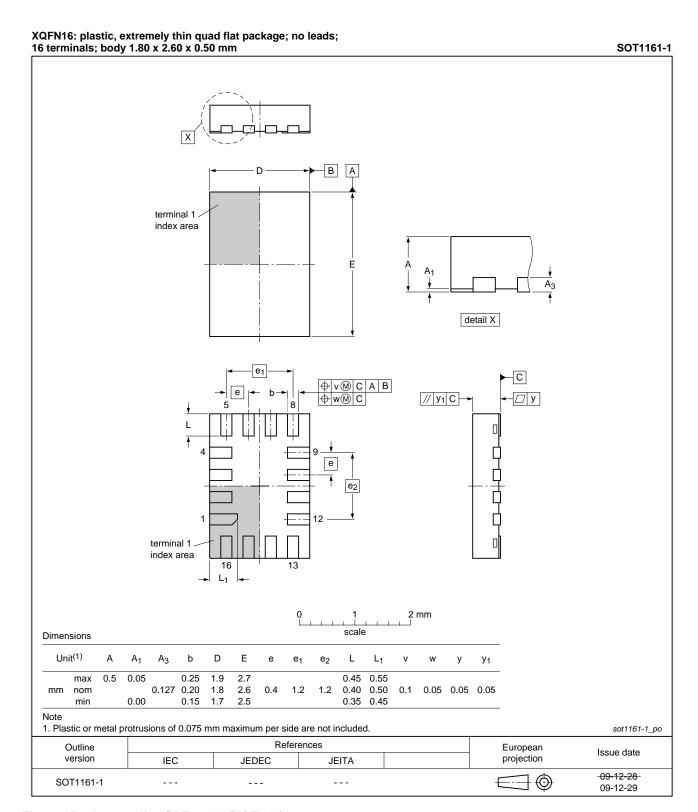


Fig 22. Package outline SOT1161-1 (XQFN16)

NX3DV2567 All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2011. All rights reserved.

Low-ohmic four-pole double-throw analog switch

14. Abbreviations

Table 13. Abbreviations

Acronym	Description
CDM	Charged Device Model
CMOS	Complementary Metal-Oxide Semiconductor
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model
PDA	Personal Digital Assistant
TTL	Transistor-Transistor Logic

15. Revision history

Table 14. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
NX3DV2567 v.2	20111109	Product data sheet	-	NX3DV2567 v.1
Modifications:	ons: • Legal pages updated.			
NX3DV2567 v.1	20100928	Product data sheet	-	-

Low-ohmic four-pole double-throw analog switch

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

NX3DV2567

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2011. All rights reserved.

Low-ohmic four-pole double-throw analog switch

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

NX3DV2567 **NXP Semiconductors**

Low-ohmic four-pole double-throw analog switch

18. Contents

1	General description 1
2	Features and benefits
3	Applications
4	Ordering information
5	Marking
6	Functional diagram 3
7	Pinning information
7.1	Pinning
7.2	Pin description 4
8	Functional description 4
9	Limiting values 4
10	Recommended operating conditions 5
11	Static characteristics 5
11.1	Test circuits 6
11.2	ON resistance
11.3	ON resistance test circuit and graphs 8
12	Dynamic characteristics 10
12.1	Waveform and test circuits
12.2	Additional dynamic characteristics 13
12.3	Test circuits
13	Package outline 15
14	Abbreviations
15	Revision history
16	Legal information
16.1	Data sheet status
16.2	Definitions
16.3	Disclaimers
16.4	Trademarks
17	Contact information
18	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for nxp manufacturer:

Other Similar products are found below:

MC13211R2 PCA9518PW,112 LFSTBEB865X MC33399PEFR2 PCA9551PW,112 MC34825EPR2 CBTW28DD14AETJ PCF8583P
MC68340AB16E MC8640DTVJ1250HE EVBCRTOUCH MC9S08PT16AVLC MC9S08PT8AVTG MC9S08SH32CTL MCF54415CMJ250
MCIMX6Q-SDB MCIMX6SX-SDB 74ALVC125BQ,115 74HC4050N 74HC4514N MK21FN1M0AVLQ12 MKV30F128VFM10 FRDMK66F FRDM-KW40Z FRDM-MC-LVBLDC PESD18VF1BSFYL PMF63UNEX PSMN4R0-60YS,115 HEF4028BPN RAPPID-567XFSW
MPC565MVR56 MPC574XG-176DS MPC860PCVR66D4 BT137-600E BT138-600E.127 BT139X-600.127 BT258-600R.127 BUK7628100A118 BUK765R0-100E.118 P5020NSE7VNB S12ZVML12EVBLIN SCC2692AC1N40 LPC1785FBD208K LPC2124FBD64/01
LS1020ASN7KQB LS1020AXN7HNB LS1020AXN7KQB LS1043ASE7PQA T1023RDB-PC FRDM-KW24D512