1. General description

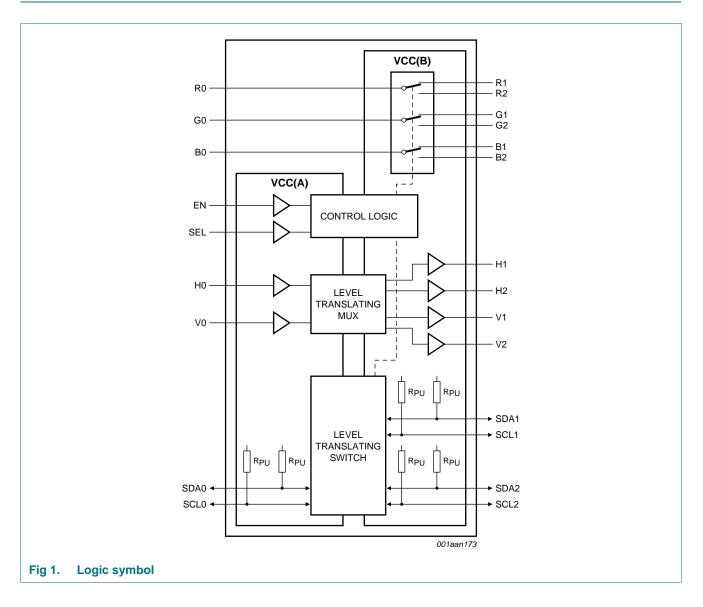
The NX5DV715 is a dual supply 1-to-2 VGA switch. It integrates high-bandwidth SPDT switches with level-translating buffers and level translating switches to provide switching of input RGB, H-Sync, V-Sync and DDC signals to either of two output channels.

The NX5DV715 is characterized for operation from -40 °C to +85 °C.

2. Features and benefits

- RGB switches:
 - Low ON resistance (4 Ω typical)
 - Low ON capacitance (12 pF typical)
 - Low output skew (50 ps)
- Low power consumption (< 2 μA)</p>
- Level translation of sync and DDC signals
- Over-voltage tolerant inputs
- ESD protection:
 - ◆ HBM JESD22-A114F Class 3A exceeds 4 kV
 - MM JESD22-A115-A exceeds 200 V
 - CDM JESD22-C101D exceeds 1000 V
 - IEC61000-4-2 contact discharge exceeds 4 kV for I/Os
- Specified from –40 °C to +85 °C

3. Applications


- Notebook Computers
- Docking stations
- Digital projectors
- Computer monitors
- Servers
- Storage

Ordering information 4.

Table 1. Ordering information						
Type number Package						
	Temperature range	Name	Description	Version		
NX5DV715HF	–40 °C to +85 °C	HWQFN32	plastic thermal enhanced very very thin quad flat package; no leads; 32 terminals; body $3 \times 6 \times 0.75$ mm	SOT1180-1		

Functional diagram 5.

NX5DV715 Product data sheet

Dual supply 1-of-2 VGA switch

6. Pinning information

6.1 Pinning

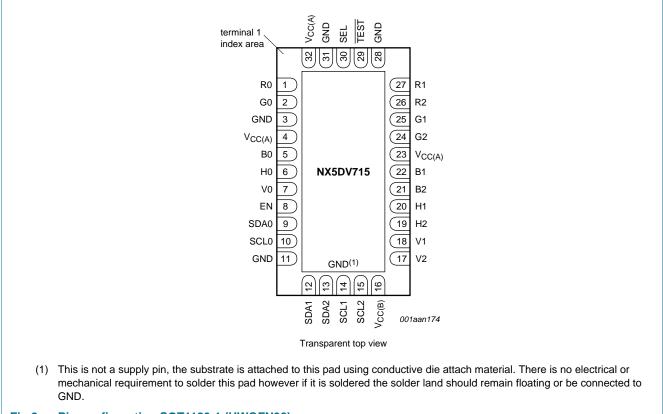


Fig 2. Pin configuration SOT1180-1 (HWQFN32)

6.2 Pin description

Table 2. **Pin description** Symbol Description Pin R0, G0, B0 1, 2, 5 RGB input or output GND 3, 11, 28, 31 ground (0 V) 4, 23, 32 supply voltage A V_{CC(A)} H0 6 horizontal sync input V0 7 vertical sync input ΕN 8 enable input (active HIGH) 9 SDA0 SDA0 input or output SCL0 10 SCL0 input or output SDA1, SDA2 12, 13 SDA input or output SCL1, SCL2 14, 15 SCL input or output 16 supply voltage B V_{CC(B)} V1, V2 18, 17 vertical sync output H1, H2 20, 19 horizontal sync output

Table 2. Pin descriptioncom	able 2. Pin descriptioncontinued					
Symbol	Pin	Description				
R1, G1, B1, R2, G2, B2	27, 25, 22, 26, 24, 21	RGB input or output				
TEST ^[1]	29	test pin (active LOW)				
SEL	30	select input				

[1] Test pin used to enable test mode. For normal usage, this pin must be connected to V_{CC(A)}.

7. Functional description

The NX5DV715 integrates high-bandwidth SPDT switches, level-translating buffers and level translating SPDT switches to provide a complete solution for 1-to-2 switching of VGA signals. An enable input (EN) is used to enable or disable the device and a select input (SEL) is used to determine which output is selected. When EN = LOW the device is disabled; all switches will be off, pull-up resistors will be disabled and H1, V1, H2, V2 will be forced LOW.

7.1 RGB switches

The NX5DV715 provides three identical single pole double throw high-bandwidth switches to route standard VGA RGB signals (see <u>Table 3</u>).

Table 3.Function table RGB

H = HIGH voltage level; L = LOW voltage level; X = Don't care.

Input		Switch
EN	SEL	
Н	L	R0 to R1; G0 to G1; B0 to B1
Н	Н	R0 to R2; G0 to G2; B0 to B2
L	Х	switches Rn, Gn, Bn off

7.2 H-Sync/V-Sync level translator

The horizontal and vertical synchronization buffers have inputs (H0, V0) referenced to $V_{CC(A)}$ and outputs (H1, V1 and H2, V2) that are referenced to $V_{CC(B)}$. This allows level translation of synchronization signals from as low as 2.0 V up to 5.5 V and supports low-voltage CMOS or TTL-compatible graphics controllers meeting the VESA specification for output drive of ± 8 mA. The EN input also controls the level shifter (See Table 4).

Table 4.Function table HV

H = HIGH voltage level; L = LOW voltage level; X = Don't care.

Input		Switch
EN	SEL	
Н	L	H1 = H0; V1 = V0; H2, V2 = L
Н	Н	H2 = H0; V2 = V0; H1, V1 = L
L	Х	L

7.3 Display-Data Channel Multiplexer

The NX5DV715 provides two identical SPDT active-level translating switches to route DDC signals (See <u>Table 5</u>). The switch outputs are limited to a diode drop less than the voltage applied on V_{CC(A)}. To provide VESA I²C-compatible signals 3.3 V should be applied to V_{CC(A)}. If voltage translation is not required V_{CC(A)} should be connected to V_{CC(B)}. Switch terminals include integrated pull-up resistors; inputs (SDA0, SCL0) are pulled up to V_{CC(A)}, outputs (SDA1, SCL1 and SDA2, SCL2) are pulled up to V_{CC(B)}. When the NX5DV715 is disabled (EN = LOW), the pull-up resistors are also disabled.

Table 5.Function table DDC

H = HIGH voltage level; $L = LOW$	voltage level; X = Don't care.
-----------------------------------	--------------------------------

Input		Switch
EN	SEL	
Н	L	SDA0 to SDA1, SCL0 to SCL1
Н	Н	SDA0 to SDA2, SCL0 to SCL2
L	Х	switches SDAn, SCLn off

8. Limiting values

Table 6.Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

		3 3 1 1 1 1 1 1 1 1 1 1		10	,
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC(A)}	supply voltage A		-0.5	+6	V
V _{CC(B)}	supply voltage B		-0.5	+6	V
VI	input voltage		<u>[1]</u> –0.5	+6	V
V _{SW}	switch voltage		<u>[1]</u> –0.5	+6	V
I _{IK}	input clamping current	V _I < -0.5 V	-50	-	mA
I _{SK}	switch clamping current	V _I < -0.5 V	-50	-	mA
I _{OK}	output clamping current	V _O < 0 V	-50	-	mA
lo	output current	$V_{O} = 0 V$ to $V_{CC(B)}$	-	±50	mA
I _{CC}	supply current	I _{CC(A)} or I _{CC(B)}	-	100	mA
I _{GND}	ground current		-100	-	mA
I _{SW}	switch current	$V_{SW} > -0.5$ V or $V_{SW} < 6$ V; source or sink current	-	±30	mA
		V_{SW} > -0.5 V or V_{SW} < 6 V; pulsed at 1 ms duration, < 10 % duty cycle; peak current	-	±90	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \ ^{\circ}C \ to \ +85 \ ^{\circ}C$	[2] _	250	mW

[1] The minimum input voltage rating may be exceeded if the input current rating is observed.

[2] For HWQFN32 package: above 137 °C the value of P_{tot} derates linearly with 20.5 mW/K.

9. Recommended operating conditions

Recommended operating conditions					
Parameter	Conditions	Min	Тур	Max	Unit
supply voltage A		2	3.3	5.5	V
supply voltage B		4.5	5.0	5.5	V
ambient temperature	operating in free-air	-40	+25	+85	°C
input transition rise and fall rate	$V_{CC(A)} = 2.3 \text{ V to } 2.7 \text{ V}$	<u>[1]</u> _	20	-	ns/V
	$V_{CC(A)} = 3 V \text{ to } 3.6 V$	<u>[1]</u> _	10	-	ns/V
	$V_{CC(A)} = 4.5 \text{ V to } 5.5 \text{ V}$	<u>[1]</u> _	5	-	ns/V
	Parameter supply voltage A supply voltage B ambient temperature	supply voltage Asupply voltage Bambient temperatureinput transition rise and fall rate $V_{CC(A)} = 2.3 V \text{ to } 2.7 V$ $V_{CC(A)} = 3 V \text{ to } 3.6 V$	ParameterConditionsMinsupply voltage A2supply voltage B4.5ambient temperatureoperating in free-air-40input transition rise and fall rate $V_{CC(A)} = 2.3 \vee to 2.7 \vee$ [1] $V_{CC(A)} = 3 \vee to 3.6 \vee$ [1]-	ParameterConditionsMinTypsupply voltage A23.3supply voltage B4.55.0ambient temperatureoperating in free-air-40+25input transition rise and fall rate $V_{CC(A)} = 2.3 \vee to 2.7 \vee$ [1]-20 $V_{CC(A)} = 3 \vee to 3.6 \vee$ [1]-10	ParameterConditionsMinTypMaxsupply voltage A23.35.5supply voltage B4.55.05.5ambient temperatureoperating in free-air-40+25+85input transition rise and fall rate $V_{CC(A)} = 2.3 V \text{ to } 2.7 V$ $\begin{bmatrix} 11 \\ 11 \\ -1 \end{bmatrix}$ 20- $V_{CC(A)} = 3 V \text{ to } 3.6 V$ $\begin{bmatrix} 11 \\ 11 \\ -1 \end{bmatrix}$ 10-

[1] Applies to control signal levels.

10. Static characteristics

Table 8. Static characteristics

 $V_{CC(B)}$ = 4.5 V to 5.5 V; $V_{CC(A)}$ = 2 V to 5.5 V, unless otherwise specified; Voltages are referenced to GND (ground = 0 V)

Symbol	Parameter	Conditions	Tamb	, = −40 °C to	+85 °C	Unit
			Min	Typ[1]	Max	
General						
I _{CC(A)}	supply current A	$V_{CC(A)} = 3.3 \text{ V}; \text{ EN} = V_{CC(A)} \text{ or GND};$ for H1, H2, V1, V2: I ₀ = 0 A; SCLn, SDAn unconnected	-	-	2.0	μA
I _{CC(B)}	supply current B	$V_{CC(B)} = 5.0 \text{ V}; \text{ EN} = V_{CC(A)} \text{ or GND};$ for H1, H2, V1, V2: I _O = 0 A; SCLn, SDAn unconnected	-	-	2.0	μA
HV buffe	er					
V _{IH}	HIGH-level input voltage	$V_{CC(A)} = 3 V \text{ to } 3.6 V$	2	-	-	V
V _{IL}	LOW-level input voltage	$V_{CC(A)} = 3 V \text{ to } 3.6 V$	-	-	0.8	V
V _H	hysteresis voltage		-	50	-	mV
I _I	input leakage current	$V_{CC(B)} = V_{CC(A)} = 5.5 V;$ $V_I = GND to V_{CC(A)}$	-	-	±1	μA
V _{OH}	HIGH-level output voltage	$I_{O} = -8 \text{ mA}$	V _{CC(B)} 0.5		-	V
V _{OL}	LOW-level output voltage	I _O = 8 mA	-	-	0.5	V
I _{OFF}	power-off leakage current		-	-	±1	μA
RGB swi	itches					
$I_{S(OFF)}$	OFF-state leakage current		-	-	±1	μA
I _{S(ON)}	ON-state leakage current		-	-	±1	μA
R _{ON}	ON resistance	$V_I = 0.7 \text{ V}; I_{SW} = -10 \text{ mA}; \text{ See } \frac{\text{Figure 5}}{\text{Figure 6}}$ and $\frac{\text{Figure 6}}{\text{Figure 6}}$	<u>[4]</u> _	4	-	Ω

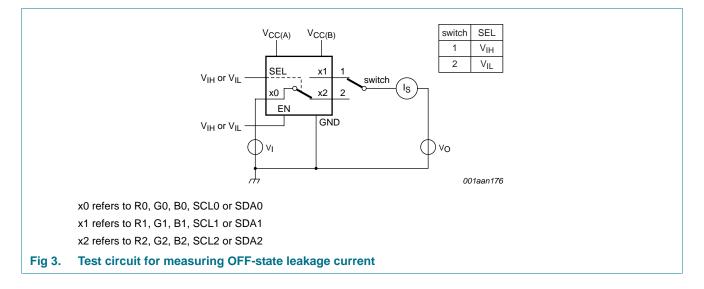
Dual supply 1-of-2 VGA switch

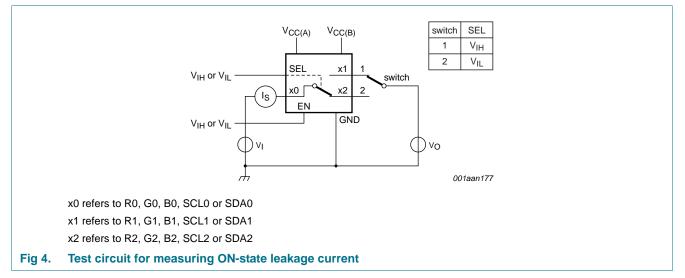
Symbol	Parameter	Conditions		T_{amb} = -40 °C to +85 °C			Unit
			-		Typ[1]	/p ^[1] Max	
ΔR_{ON}	ON resistance mismatch between channels	$V_{\rm I}$ = GND to 0.7 V; $I_{\rm SW}$ = –10 mA	[2]	-	0.5	-	Ω
R _{ON(flat)}	ON resistance (flatness)	$V_{\rm I}=GND$ to 0.7 V; $I_{\rm SW}=-10~mA$	[3]	-	0.5	-	Ω
$C_{S(OFF)}$	OFF-state capacitance			-	4.5	-	pF
C _{S(ON)}	ON-state capacitance			-	12	-	pF
SDAn, SO	CLn						
I _{S(OFF)}	OFF-state leakage current		<u>[5]</u>	-	-	±1	μΑ
R _{ON}	ON resistance	$V_{CC(A)} = 2 \text{ V}; \text{ V}_{I} = 0.4 \text{ V}; \text{ I}_{SW} = \pm 2 \text{ mA};$ See <u>Figure 5</u> and <u>Figure 7</u>		-	9	-	Ω
C _{S(ON)}	ON-state capacitance			-	15	-	pF
R _{PU}	pull-up resistance			-	4.7	-	kΩ
Control L	.ogic (SEL, EN)						
VIH	HIGH-level input voltage	$V_{CC(A)}$ = 2.3 V to 2.7 V		1.7	-		V
		$V_{CC(A)} = 3.0 \text{ V to } 3.6 \text{ V}$		2.0	-		V
		$V_{CC(A)} = 4.5 \text{ V}$ to 5.5 V		$0.7V_{CC(A)}$	-		V
V _{IL}	LOW-level input voltage	$V_{CC(A)} = 2.3 \text{ V to } 2.7 \text{ V}$		-	-	0.7	V
		$V_{CC(A)} = 3.0 \text{ V to } 3.6 \text{ V}$		-	-	0.8	V
		$V_{CC(A)} = 4.5 \text{ V}$ to 5.5 V		-	-	$0.3V_{CC(A)}$	V
V _H	hysteresis voltage			-	50	-	mV
I _I	input leakage current	$V_{CC(A)} = 5.5 \text{ V}; \text{ V}_{I} = \text{GND to } V_{CC(A)}$		-	-	±1	μA

Table 8. Static characteristics ... continued

[1] All typical values are measured at $V_{CC(B)}$ = 5 V, $V_{CC(A)}$ = 3.3 V and T_{amb} = 25 °C unless otherwise specified.

[2] Measured at identical V_{CC} , temperature and input voltage.

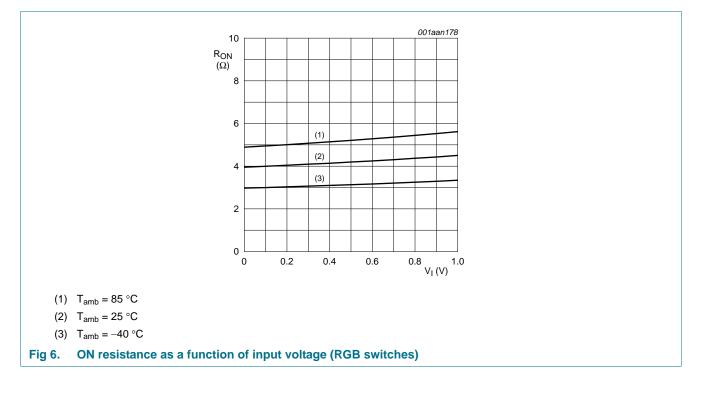

Flatness is defined as the difference between the maximum and minimum value of ON resistance measured at identical V_{CC} and [3] temperature.

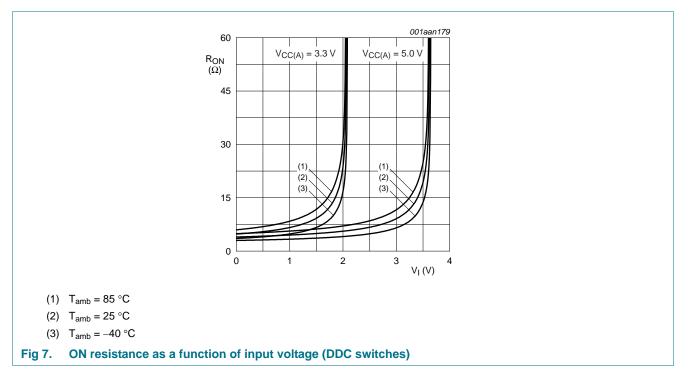

Guarantees the LOW level. [4]

[5] Guarantees the HIGH level.

Dual supply 1-of-2 VGA switch

10.1 Test circuits and waveforms




Dual supply 1-of-2 VGA switch

NX5DV715

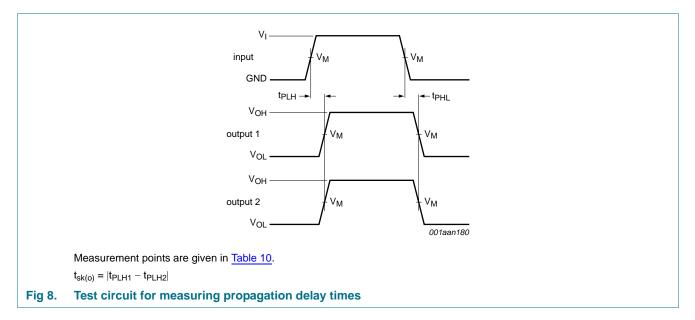
Dual supply 1-of-2 VGA switch

11. Dynamic characteristics

Table 9.Dynamic characteristics

At recommended operating conditions; Voltages are referenced to GND (ground = 0 V; $V_{CC(B)}$ = 4.5 V to 5.5 V; $V_{CC(A)}$ = 2 V to 5.5 V.

Symbol	Parameter	Conditions	Conditions		T _{amb} = −40 °C to +85 °C		
				Min	Typ <mark>[1]</mark>	Max	
t _{pd}	propagation delay	H0 to H1, H2 and V0 to V1, V2; See <u>Figure 8</u> and <u>Figure 9</u>	[2]	-	3	-	ns
t _{en}	enable time	EN and SEL to all other outputs; See <u>Figure 10</u> and <u>Figure 11</u>		-	15	-	ns
t _{dis}	disable time	EN and SEL to all other outputs; See <u>Figure 10</u> and <u>Figure 11</u>		-	5	-	ns
t _{b-m}	break-before-make time	See Figure 12		-	10	-	ns
t _{sk(o)}	output skew time	Skew between any Rn, Gn and Bn ports; see <u>Figure 8</u>	<u>[3]</u>	-	50	-	ps


[1] All typical values are measured at V_{CC(B)} = 5 V; V_{CC(A)} = 3.3 V; T_{amb} = 25 \ ^{\circ}C.

[2] t_{pd} is the same as t_{PLH} and t_{PHL} .

[3] Guaranteed by design.

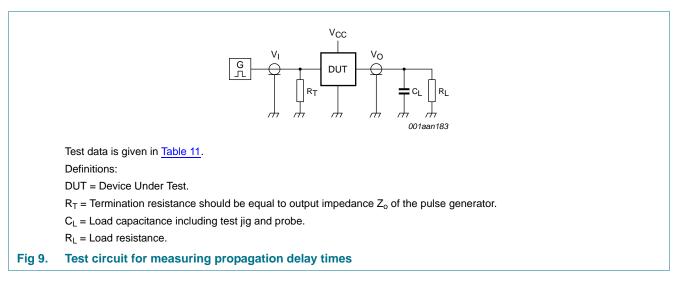
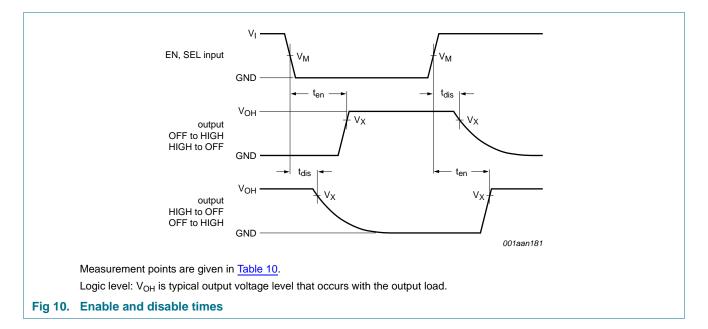
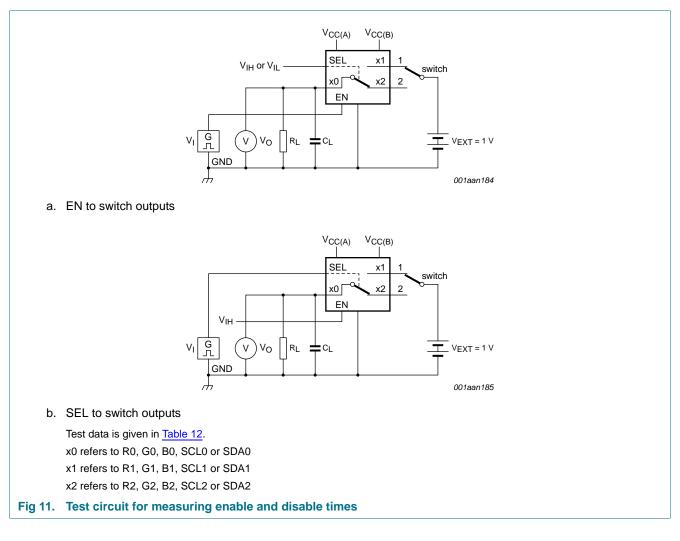

Dual supply 1-of-2 VGA switch

Table 10.Measurement points

Input		Output		
V _M	VI	V _X	V _M	
0.5V _{CC(A)}	GND to V _{CC(A)}	0.9V _{OH}	0.5V _{CC(B)}	




Table 11. Test data

Input	Load	
t _r , t _f	CL	RL
\leq 2.5 ns	10 pF	1 kΩ

NX5DV715

Dual supply 1-of-2 VGA switch

All information provided in this document is subject to legal disclaimers.

NX5DV715

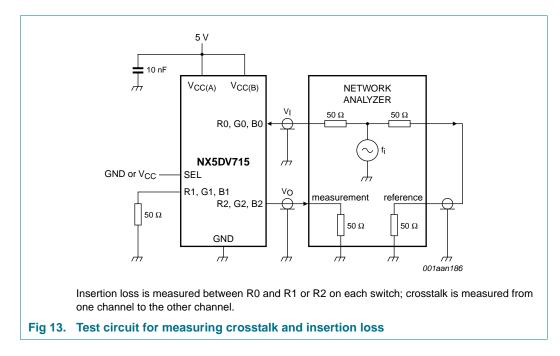
NX5DV715

Dual supply 1-of-2 VGA switch

nput			Load		
r, t _f	1	/ ₁	CL	RL	
≤ 2.5 ns	(GND to V _{CC(A)}	10 pF	100 Ω	
			VCC(A) VCC(B) SEL x1 x0 x2 EN RL CL	VEXT = 1 V 001aan182	
a. Test	circuit				
		V10.5	ÿVι		
		Vo	0.9Vo	0.9V ₀	
b. Inpu	t and output measu	rement points			
	data is given in <u>Table</u>				
x0 re	efers to R0, G0, B0, SC	L0 or SDA0			
	fers to R1, G1, B1, SC				
x2 re	fers to R2, G2, B2, SC	L2 or SDA2			
Fig 12. Test	circuit for measur	ing break-before-	make timing		

NX5DV715 Product data sheet

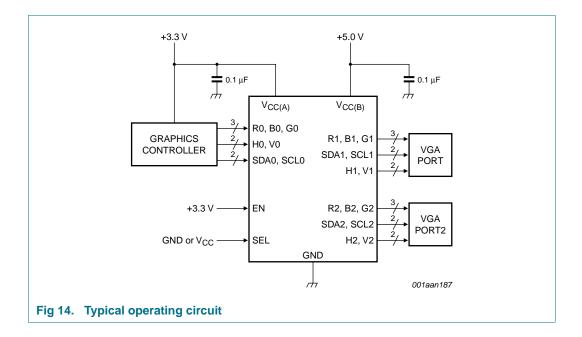
12. Additional dynamic characteristics


Table 13. Additional dynamic characteristics

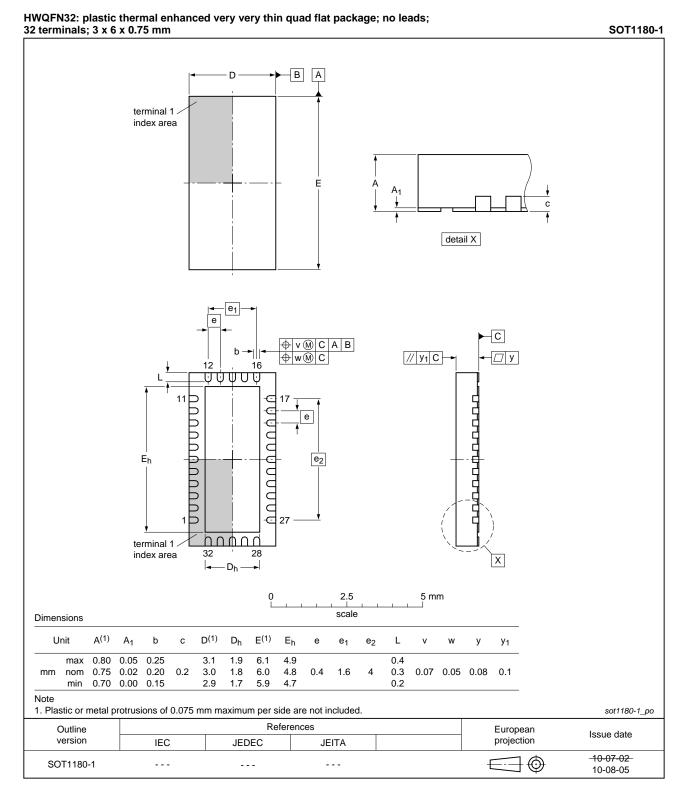
 $V_{CC(B)}$ = 5.0 V ± 10 %, $V_{CC(A)}$ = 2 V to 5.5 V, unless otherwise specified; Voltages are referenced to GND (ground = 0 V)

Symbol	Parameter	Conditions		T _{amb} = −40 °C to +85 °C			Unit
				Min	Тур	Max	
f _(-3dB)	-3 dB frequency response	$R_L = 50 \Omega$; see Figure 13	[1]	-	600	-	MHz
α_{ins}	Insertion loss	f _i = 1 MHz; R _L = R _S = 50 Ω; see <u>Figure 13</u>		-	0.6	-	dB
Xtalk	crosstalk	between switches; $f_i = 50 \text{ MHz}$; $R_L = 50 \Omega$; see <u>Figure 13</u>	[1]	-	-50	-	dB

[1] f_i is biased at 0.5V_{CC}.


12.1 Test circuits

Dual supply 1-of-2 VGA switch


13. Application information

The NX5DV715 provides the level shifting necessary to drive two standard VGA ports from a graphic controller as low as 2.2 V. Internal buffers drive the H-Sync and V-Sync signals to VGA standard TTL levels. The DDC multiplexer provides level shifting by clamping signals to a diode drop less than $V_{CC(A)}$ (See Figure 14). Connect $V_{CC(A)}$ to 3.3 V for normal operation, or to $V_{CC(B)}$ to disable voltage clamping for DDC signals

Dual supply 1-of-2 VGA switch

14. Package outline

Fig 15. Package outline SOT1180-1 (HWQFN32)

All information provided in this document is subject to legal disclaimers.

NX5DV715

Dual supply 1-of-2 VGA switch

15. Abbreviations

Table 14.	Abbreviations
Acronym	Description
CDM	Charged Device Model
DDC	Display Data Channel
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model
RGB	Red Green Blue
TTL	Transistor-Transistor Logic
VESA	Video Electronics Standards Association

16. Revision history

Table 15. Revision	history			
Document ID	Release date	Data sheet status	Change notice	Supersedes
NX5DV715 v.3	20111104	Product data sheet	-	NX5DV715 v.2
Modifications:	 Legal pages 	updated		
NX5DV715 v.2	20110725	Product data sheet	-	NX5DV715 v.1
NX5DV715 v.1	20101220	Product data sheet	-	-

17. Legal information

17.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

17.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

17.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Dual supply 1-of-2 VGA switch

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

18. Contact information

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

17.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

19. Contents

1	General description	1
2	Features and benefits	1
3	Applications	1
4	Ordering information	2
5	Functional diagram	2
6	Pinning information	3
6.1	Pinning	3
6.2	Pin description	3
7	Functional description	4
7.1	RGB switches	4
7.2	H-Sync/V-Sync level translator	
7.3	Display-Data Channel Multiplexer	5
8	Limiting values	5
9	Recommended operating conditions	6
10	Static characteristics	6
10.1	Test circuits and waveforms	8
11	Dynamic characteristics	10
11.1	Test circuits and waveforms	11
12	Additional dynamic characteristics	14
12.1	Test circuits	14
13	Application information.	15
14	Package outline	16
15	Abbreviations	17
16	Revision history	17
17	Legal information	18
17.1	Data sheet status	18
17.2	Definitions	18
17.3	Disclaimers	18
17.4	Trademarks	19
18	Contact information	19
19	Contents	20

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2011.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 4 November 2011 Document identifier: NX5DV715

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Video Switch ICs category:

Click to view products by NXP manufacturer:

Other Similar products are found below :

PI3HDX621FBE PI3HDMI2410FFE PI3VDP12412NEE HD3SS212ZQER PI3HDMI412ADZBEX AD8191ASTZ LT6555IGN#PBF AD8190ACPZ HD3SS215IZQER MAX4567CSE+ MAX4566ESE+ MAX4566CSE+ MAX4547CSE+ MAX4546ESE+ MAX4546CSE+ MAX4567ESE+ MAX4547ESE+ PI3HDX412BDZBEX NJM2244M LT1203CN8#PBF MAX4814EECB+ MAX14885EETL+T MAX4885ETJ+T IH5352CPE+ MAX4589CAP+ MAX4565EAP+ MAX4565CAP+ MAX4545EAP+ MAX4545CAP+ MAX4885EETG+T MAX4359EAX+ MAX4529CUT+T MAX4545CWP+ MAX4565EAP+ MAX4565CAP+ MAX4562CEE+ MAX4562EEE+ MAX4563CEE+ MAX4563EEE+ MAX4565EWP+ MAX4566CEE+ MAX4567EEE+ MAX4562CEE+ MAX4562CEI+ MAX4573CAI+ MAX4584EUB+ MAX4586EUB+ MAX4587EUB+ MAX4588CAI+ MAX4885ETJ+