PN7120 NFC controller SBC kit quick start guide Rev. 1.5 — 1 February 2021

319715

Application note COMPANY PUBLIC

Document information

Information	Content
Keywords	OM5577, PN7120, Raspberry Pi, BeagleBone, NFC, P2P, Card Emulation, Linux, Android
Abstract	This document gives a description on how to get started with the PN7120 NFC controller SBC kit.

1 Revision history

Revisio	n history	
Rev	Date	Description
1.5	20210201	 Removed Windows IoT support The format of this application note has been redesigned to comply with the new identity guidelines of NXP Semiconductors
1.4	20190708	Updated Linux demo part with link to instructions
1.3	20160520	Adding details about Beaglebone startup
1.2	20151009	 Information about Win10 IoT demo added Section <u>Section 7</u> updated
1.1	20150701	 Correction of a syntax error in a referenced link Explicitly point to the demo images
1.0	20150601	First release

2 Introduction

This document gives a description on how to get started with the PN7120 NFC-Controller SBC Kit. This document provides a step by step guide to the installation procedure of the hardware and the software. Finally it shows PN7120 NFC Controller functionalities through demonstration application.

2.1 OM5577/PN7120S demo kit

OM5577/PN7120S kit is a high performance fully NFC-compliant expansion board for both Raspberry Pi (refer to [1] for more details) and BeagleBone (refer to [2] for more details). It meets compliance with Reader mode, P2P mode and Card emulation mode standards. The board features an integrated high performance RF antenna to insure high interoperability level with NFC devices.

The kit is composed of 3 printed circuit boards and a MIFARE Ultralight EV1 product-based card.

2.2 Linux driver support

PN7120 NFC Controller is supported under GNU/Linux system using the NXP Linux libnfc-nci software stack (for more details, refer to AN11697 available on PN7120 Product Web Page [5]). The Raspberry Pi and BeagleBone Linux demo images include the complete stack (Kernel mode driver, User mode library and demo application) allowing to demonstrate the NFC functionalities offered by the PN7120.

2.3 Android driver support

PN7120 NFC Controller is supported from the official Android Open Source Project (refer to [7] for more details) with the addition of dedicated patches available through PN7120 Product Web Page [5] (refer to AN11690).

The BeagleBone Black demo image is based on this concept.

319715

3 Quick Startup on Raspberry Pi

3.1 Required items

Raspberry Pi [1]

• Compatible SD or MicroSD card (depending on the Raspberry Pi model) of at least 4 Gb memory size [3]

- Micro USB power supply (5 V / 1A) [4]
- USB Keyboard
- USB Mouse
- HDMI cable to connect to a Monitor / TV
- Computer (running Windows, Linux or Mac OS X) for SD/MicroSD card installation

3.2 Hardware setup

First of all assemble the PN7120 NFC Controller Board with the Raspberry Pi Interface Board.

Then stacked together the boards with the Raspberry Pi according to below guidelines.

3.2.1 Raspberry Pi A/B (old models)

On the old models, the Raspberry Pi Interface Board connector fit perfectly the Raspberry Pi one. Assemble the boards as shown in figure below, removing first the 4 white plastic spacers:

/1111040
Application note
COMPANY PUBLIC

AN11646

PN7120 NFC controller SBC kit quick start guide

3.2.2 Raspberry Pi A+/B+ and Raspberry Pi 2 (new models)

The Raspberry Pi new models have a 40-pin connector allowing to connect an expansion board. The Raspberry Pi Interface Board only makes use of the first 26 ones for compatibility reason with the previous Raspberry Pi models. Assemble the boards as shown in figure below:

Figure 4. OM5577/PN7120S and Raspberry Pi B+ model stacked together

3.3 Linux NFC demo application

3.3.1 Setup

Guidelines to set up this demonstration are provided here <u>https://community.nxp.com/t5/NXP-Designs-Knowledge-Base/Easy-set-up-of-NFC-on-Raspberry-Pi/ta-p/1099034</u>. Just follow the step-by-step procedure to install the demo from Raspbian distribution.

3.3.2 Application details

The demo application is part of the Linux libnfc-nci stack available on public GitHub repository https://github.com/NXPNFCLinux/linux_libnfc-nci. The related source code can then be found there (more details in document AN11697 [7]).

Refer to <u>Section 5</u> for the following procedure.

AN11646 Application note COMPANY PUBLIC

4 Quick Startup on BeagleBone

4.1 Required items

- BeagleBone Black [2]
- MicroSD card of at least 4 Gb (8 Gb for Android)
- 5 V adapter or micro USB cable to power the BeagleBone
- USB Keyboard
- USB Mouse
- USB Hub to connect both Mouse and Keyboard to the BeagleBone
- HDMI cable to connect to a Monitor / TV
- Computer (running Windows, Linux or Mac OS X) for MicroSD card installation
- BeagleBone image file, downloaded from the OM5577/PN7120S demo kit webpage [6]

4.2 Hardware setup

First of all assemble the PN7120 NFC Controller Board with the BeagleBone Interface Board.

Then stacked together the boards with the BeagleBone.

7 / 21

PN7120 NFC controller SBC kit quick start guide

4.3 Software setup

Prepare a MicroSD card, with the downloaded BeagleBone demo image (<u>https://www.nxp.com/downloads/en/software/OM5577_BBB_Linux.html</u> or <u>https://www.nxp.com/downloads/en/software/OM5577_BBB_Kitkat.html</u>)</u>, following the installation guidelines. First extract the ".img" file from the archive, then flash it on the microSD card according to below guidelines.

4.3.1 On Windows

Insert the MicroSD card into your computer (note the device drive letter), and using Win32 Disk Imager, write the image into it:

	🌝 Win32 Disk Imager
	Image File Device
	C:/Temp/NXP-NCI_v1.0.0_BBB_Demoboard.img
	Copy MD5 Hash: Progress
	Version: 0.9.5 Cancel Read Write Exit
Figure 7. Win3	2 Disk Imager

4.3.2 On Linux

Insert the MicroSD card into your computer and determine the device node assigned to it (ignore the device number; e.g. /dev/sdb, not sdb1):

\$ sudo dmesg | tail -20

```
$ sudo dmesg | tail -20
[95300.848154] usb 2-1: new high-speed USB device number 33 using ehci-
pci
[95300.983859] usb 2-1: New USB device found, idVendor=14cd, id
Product=6d00
[95300.983872] usb 2-1: New USB device strings: Mfr=1, Product=3,
SerialNumber=2
[95300.983880] usb 2-1: Product: USB 2.0 SD/MMC READER
[95300.983888] usb 2-1: Manufacturer: SDMMC M121
[95300.983895] usb 2-1: SerialNumber: 800340070270
[95300.984593] usb-storage 2-1:1.0: USB Mass Storage device detected
[95300.984882] scsi18 : usb-storage 2-1:1.0
[95301.985555] scsi 18:0:0:0: Direct-Access USB 2.0 SD/MMC Reader PQ:
0 ANSI: 0 CCS
[95301.986856] sd 18:0:0:0: Attached scsi generic sg2 type 0
[95301.988277] sd 18:0:0:0: [sdb] Attached SCSI removable disk
Figure 8. Identifying device number under Linux
```

Then, unmount the device node using following command:

sudo umount /dev/devicenode

Finally flash the image to the device node using following command:

sudo dd if=path to image file.img of=/dev/devicenode bs=1M

4.3.3 On MAC OS X

Using PiFiller (see <u>http://www.nxp.com/redirect/learn.adafruit.com/beaglebone-black-installing-operating-systems/mac-os-x.md</u>), select the image file then insert the MicroSD card into your computer to flash it.

4.4 Starting NFC demo

Then power up the Raspberry Pi by plugging the USB power cable.

Insert the MicroSD card in the BeagleBone. Connect HDMI Display, mouse and keyboard. Finally supply the BeagleBone using 5 V adapter or micro USB cable.

This triggers power-up of the BeagleBone, then depending of the demo image used:

4.4.1 Linux image

The Raspberry Pi boots and displays the bone-debian GUI:

PN7120 NFC controller SBC kit quick start guide

Open a terminal and browse to the Linux libnfc-nci stack directory (refer to <u>Section 2.2</u> for more details about the Linux NFC software stack).

\$ cd ~/linux_libnfc-nci

Refer to <u>Section 5</u> for the following procedure.

4.4.2 Android image

After a few seconds Android boots up, NFC is then running, ready to read tags or interact with remote NFC device (e.g. NFC phone).

You can enable/disable the NFC function via "Settings/Wireless & Network/More..."

PN7120 NFC controller SBC kit quick start guide

Airplane mode				
NFC Allow data exchange when the table	t touches another device			
Android Beam Ready to transmit app content via N				
VPN				
	\hookrightarrow	\bigcirc		

Using provided NXP TagInfo and NXP TagWriter applications you can get information from discovered tag and write content.

										2:10
		APPS	WIDGETS							
		Browser	- = + Calculator	Calendar	Clock	Dev Tools	Downloads	Email	Gallery	
						Ø				
		Movie Studio	Music	People	Search	Settings	Speech Recorc	laginto	Tagwriter	
				Ĵ						
Figu	ure 12. An	droid a	pplicatio	ns						

PN7120 NFC controller SBC kit quick start guide

				12:20
			≺_	
INFO	NDEF	EXTRA		тесн
IC manufacturer				
NXP Semiconductors				
IC type				
MIFARE Ultralight (MF0ICU1)				
NFC Forum NDEF-compliant tag				
Type 2 Tag				NXP
	÷ -			
				12:20
≡ 🔊 🖕			<, 👔	🖛 🗄
IM/O	NDEF	EXTRA	TECH	
NFC data set information				
NDEF message containing 1 record Current message size. 29 bytes Maximum message size. 46 bytes NFC data set access: Read & Write Can be made Read-Only				
Record #1: URI record				
Type Manne Riemat: NIC Risus walkkrean type SortNeerd type: "U" protocol field: <u>http://www.</u> URI field: <u>nsp.com/s/emioboard/IOM567</u> Payload length: 25 bytes Payload data [00] 01 €E 78 70 28 63 €F €D 2F € [10] 72 64 2F 4F 4D 25 25 37 37	1] 54 65 60 6F 52 6F 61 nxp.com/demobe rd/006577			
 NDEF message 				
[00] D1 01 19 55 01 6E 78 70 2E 6 [10] 6F 62 6F 61 72 64 2F 4F 4D 3	53 6F 6D 2F 54 65 60 ····U·nxp.com/de IS 35 37 37 sbcard/CMS577			
 NDEF Capability Container (CC) 				
	~ c			
Figure 13. Android Tagl	nfo application			

AN11646

PN7120 NFC controller SBC kit quick start guide

	View Read and view content of an NFC-enabled item	
2	Create, write and store Create, write and store an NFC data set	
	Copy Copy an NFC data set from an NFC-enabled item to another one	
*	Tools Commands for NFC-enabled item management	>
M	History Commands for NFC data set database management	>
M	Share an NFC data set with another device	
7	Scan QR Code Convert a QR Code to an NFC data set	

5 Linux NFC demo application

5.1 Application details

The demo application is part of the Linux libnfc-nci stack delivery. More details can be found in document AN11697 [7] available on PN7120 product web page [5].

5.2 Using the application

The application must be started with parameters:

\$./nfcDemoApp <OPTIONS>

You can get the parameters details by launching the application help menu:

```
$ ./nfcDemoApp write --help
```

DMMAND: poll write push	Polling mode Write tag Push to device	e.g. <nfcdemoapp poll=""> e.g. <nfcdemoapp "test"="" -l="" -r="" en="" writetype="Text"> e.g. <nfcdemoapp -t="" -u="" http:="" push="" uri="" www.nxp.com=""></nfcdemoapp></nfcdemoapp></nfcdemoapp>
C617879204E6F1	74652033040D0C024	e.g. <pre>cmcdemoapp pushtype=wtwe -w application/vnd.bldetootn.ep.oob -d 2200xc39/403xPlc0e0947 005031E110B11"></pre>
elp Options: h,help		Show help options
i@raspberrypi	~ \$	

The demo application offers 3 modes of operation:

- **Polling**: continuously waiting for a remote NFC device (tag or peer device) and displays related information
- Tag writing: allows writing NDEF content to an NFC tag
- Device push: allows pushing NDEF content to a remote NFC peer device

5.2.1 Polling mode

When in this mode, the application displays information of any discovered NFC tags or remote NFC device.

It is reached starting the application with "poll" parameter:

\$./nfcDemoApp poll

PN7120 NFC controller SBC kit quick start guide

5.2.2 Tag writing mode

This mode allows writing data to an NFC tag. It is reached using "write" parameter:

```
$ ./nfcDemoApp write <OPTIONS>
         pi@raspberrypi:
   l@raspberrypi ~ $ ./nfcDemoApp write --type=Text -l en -r
... press enter to quit ...
                                                                         "Hello World
 NFC Tag Found
                    Type : 'Type A - Mifare Ul'
Record Found :
                                       NDEF Content Max size :
NDEF Actual Content size :
ReadOnly :
                                                                              '137 bytes'
'29 bytes'
'FALSE'
                                       Type :
URI :
                                                                               'URI
                                                                               'http://www.nxp.com/demoboard/om5577'
 29 bytes of NDEF data received :
D1
 D1

Ø1 19 55 01 6E 78 70 2E 63 6F 6D 2F 64 65 6D 6F 62 6F 61 72 64 2F 6F 6D 35 35 37 37

Write Tag OK

Read back data

Record Found :
                            Record Found :
NDEF Content Max size :
NDEF Actual Content size ;
ReadOnly :
Type :
Text :
                                                                             '137 bytes'
'18 bytes'
'FALSE'
'Text'
'hello world'
 18 bytes of NDEF data received :
D1
01 0E 54 02 65 6E 68 65 6C 6C 6F 20 77 6F 72 6C 64
NFC Tag Lost
 Waiting for a Tag/Device...
Figure 17. Linux demo application tag writing mode
```

You can get more information about the message format using "-h" or "--help" parameter:

```
$ ./nfcDemoApp write --help
```

5.2.3 Device push mode

This mode allows pushing data to a remote NFC device (e.g. an NFC phone). It is reached using "push" parameter:

You can get more information about the message format using "-h" or "--help" parameter:

\$./nfcDemoApp push --help

6 References

[1] The Raspberry Pi is a credit card sized computer. The initial idea behind it was to develop a small and cheap computer to be used by kids all over the world to learn programming. In the end, it became very popular among developers all over the world. The heart of the Raspberry Pi is a SoC (System on Chip). This contains an ARM11 running at 700 MHz and a graphics processor that is capable of Blu-ray quality playback, using H.264 at 40MBits/s. It has a fast 3D core accessed using the supplied OpenGL ES2.0 and Open VG libraries. In addition, the Model B has 512 MB RAM included in its SoC. To get started quickly, the Raspberry Pi Foundation provides several preconfigured Linux distributions.

For more information about it please visit <u>https://www.raspberrypi.org/</u>.

- [2] BeagleBone is a low-power open source hardware single-board credit-card-sized Linux computer that connects to the Internet and runs software such as Android and Ubuntu. With plenty of I/O and processing power for real-time analysis provided by a 720 MHz ARM[®] processor-based SoC (System on Chip), BeagleBone can be complemented with cape plug-in boards to augment functionality. For more information about it, please visit <u>http://beagleboard.org/bone</u>.
- [3] List of verified SD cards: <u>https://elinux.org/RPi_SD_cards</u>.
- [4] List of verified USB power adapters: <u>https://elinux.org/</u> <u>RPi_VerifiedPeripherals#Power_adapters</u>
- [5] PN7120 Product Web Page: <u>https://www.nxp.com/products/rfid-nfc/nfc-hf/nfc-readers/nfc-controller-with-integrated-firmware-and-nci-interface-for-home-appliances:PN7120</u>
- [6] OM5577/PN7120S demo kit webpage: <u>https://www.nxp.com/products/rfid-nfc/nfc-hf/nfc-readers/development-kits-for-pn7120-plugn-play-nfc-controller:OM5577</u>
- [7] AN11697 PN71x0 Linux Software Stack Integration Guidelines: <u>https://www.nxp.com/docs/en/application-note/AN11697.pdf</u>

AN11646

PN7120 NFC controller SBC kit quick start guide

7 Legal information

7.1 Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

7.2 Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Evaluation products — This product is provided on an "as is" and "with all faults" basis for evaluation purposes only. NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express, implied or statutory, including but not limited to the implied warranties of non-infringement, merchantability and fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this product remains with customer. In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special, indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business, business interruption, loss of use, loss of data or information, and the like) arising out the use of or inability to use the product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even if advised of the possibility of such damages. Notwithstanding any damages that customer might incur for any reason whatsoever (including without limitation, all damages referenced above and all direct or general damages), the entire liability of NXP Semiconductors, its affiliates and their suppliers and customer's exclusive remedy for all of the foregoing shall be limited to actual damages incurred by customer based on reasonable reliance up to the greater of the amount actually paid by customer for the product or five dollars (US\$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails of its essential purpose.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

7.3 Licenses

Purchase of NXP ICs with NFC technology

Purchase of an NXP Semiconductors IC that complies with one of the Near Field Communication (NFC) standards ISO/IEC 18092 and ISO/ IEC 21481 does not convey an implied license under any patent right infringed by implementation of any of those standards. Purchase of NXP Semiconductors IC does not include a license to any NXP patent (or other IP right) covering combinations of those products with other products, whether hardware or software.

7.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

MIFARE — is a trademark of NXP B.V.

 $\label{eq:MIFARE Ultralight} \textbf{MIFARE Ultralight} - \text{is a trademark of NXP B.V.}$

All information provided in this document is subject to legal disclaimers.

AN11646

PN7120 NFC controller SBC kit quick start guide

NXP — wordmark and logo are trademarks of NXP B.V.

PN7120 NFC controller SBC kit quick start guide

Figures

Fig. 1.	PN7120 NFC Controller SBC Kit content	3
Fig. 2.	OM5577/PN7120S Raspberry Pi	
	configuration	. 5
Fig. 3.	OM5577/PN7120S and Raspberry Pi B	
	model stacked together	.6
Fig. 4.	OM5577/PN7120S and Raspberry Pi B+	
	model stacked together	.6
Fig. 5.	OM5577/PN7120S BeagleBone	
	configuration	.7
Fig. 6.	OM5577/PN7120S and BeagleBone Black	
	stacked together	.8
Fig. 7.	Win32 Disk Imager	.8

Fig. 8.	Identifying device number under Linux	9
Fig. 9.	bone-debian GUI	10
Fig. 10.	Android home screen	10
Fig. 11.	Android "Setting/Wireless&Network" menu	11
Fig. 12.	Android applications	11
Fig. 13.	Android TagInfo application	12
Fig. 14.	Android TagWriter application	13
Fig. 15.	Linux demo application commands	14
Fig. 16.	Linux demo application polling mode	15
Fig. 17.	Linux demo application tag writing mode	15
Fig. 18.	Linux demo application device push mode	16

PN7120 NFC controller SBC kit quick start guide

Contents

1	Revision history	2
2	Introduction	3
2.1	OM5577/PN7120S demo kit	3
2.2	Linux driver support	4
2.3	Android driver support	4
3	Quick Startup on Raspberry Pi	5
3.1	Required items	5
3.2	Hardware setup	5
3.2.1	Raspberry Pi A/B (old models)	5
3.2.2	Raspberry Pi A+/B+ and Raspberry Pi 2	
	(new models)	6
3.3	Linux NFC demo application	6
3.3.1	Setup	6
3.3.2	Application details	6
4	Quick Startup on BeagleBone	7
4.1	Required items	7
4.2	Hardware setup	7
4.3	Software setup	8
4.3.1	On Windows	8
4.3.2	On Linux	9
4.3.3	On MAC OS X	9
4.4	Starting NFC demo	9
4.4.1	Linux image	9
4.4.2	Android image	10
5	Linux NFC demo application	14
5.1	Application details	14
5.2	Using the application	14
5.2.1	Polling mode	14
5.2.2	Tag writing mode	15
5.2.3	Device push mode	16
6	References	17
7	Legal information	18

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2021.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 1 February 2021 Document identifier: AN11646 Document number: 319715

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RFID Transponder Tools category:

Click to view products by NXP manufacturer:

Other Similar products are found below :

 SP-MX-08-HF-M2
 V700-A43 10M
 WF-SM-30
 V700-A44 20M
 V680-A60 2M
 WS02-CFSC1-EV3
 V680-A60 5M
 V680

 HAM91
 V680-A60 10M
 V700-A46 50M
 V680S-HMD66-ETN
 MEDP-MF-RFID-R10
 ST25-TAG-BAG-U
 MIKROE-3644
 MIKROE-2395

 1482
 MIKROE-2462
 2800
 2802
 X-NUCLEO-NFC05A1
 359
 360
 361
 362
 363
 365
 3781
 789
 884
 4032
 4033
 4043
 4429
 4701

 AS3980-QF_DK_ST
 AS3930
 DEMOSYSTEM
 AS3953-DK-TAGS
 ATARFID-EK1
 ATARFID-EK2
 EVB90109
 MIKROE-3659
 MIKROE-3659

 3971
 MIKROE-4208
 MIKROE-1434
 MIKROE-1475
 MIKROE-1726
 MIKROE-262
 MIKROE-4309