

Product data sheet

1. General description

The PCF2116 is a low-power CMOS LCD controller and driver, designed to drive a split screen dot matrix LCD display of 1 or 2 lines by 24 characters or 2 or 4 lines by 12 characters with 5×8 dot format. All necessary functions for the display are provided in a single chip, including on-chip generation of LCD bias voltages, resulting in a minimum of external components and lower system power consumption. The chip contains a character generator and displays alphanumeric and kana (Japanese) characters. The PCF2116 interfaces to most microcontrollers using a 4 or 8-bit bus or via the 2-wire l²C-bus. To allow partial V_{DD} shutdown the ESD protection system of the SCL and SDA pins does not use a diode connection to V_{DD}.

The 'x' in 'PCF2116x' represents a specific letter code for a character set in the character generator ROM (CGROM). The different character sets currently available are specified by the letters A, C, and G (see <u>Figure 5</u>, <u>Figure 6</u> and <u>Figure 7</u>). Other character sets are available on request.

Remark: The notation for hexadecimal numbers used in this datasheet is consistent with NXP house style and uses a suffix 'h' following the number e.g. 00h.

2. Features

- Single chip LCD controller/driver
- 1 or 2-line display of up to 24 characters per line, or 2 or 4 lines of up to 12 characters per line
- 5 × 7 character format plus cursor; 5 × 8 for kana (Japanese syllabary) and user defined symbols
- On chip:
 - generation of LCD supply voltage (external supply also possible)
 - generation of intermediate LCD bias voltages
 - oscillator requires no external components (external clock also possible)
- Display data RAM: 80 characters
- Character generator ROM: 240 characters
- Character generator RAM: 16 characters
- 4 or 8-bit parallel bus or 2-wire I²C-bus interface
- CMOS/TTL compatible
- 32 row, 60 column outputs
- MUX rates 1:32 and 1:16
- Uses common 11 code instruction set
- Logic supply voltage range, V_{DD} V_{SS}: 2.5 to 6 V
- Display supply voltage range, V_{DD} V_{LCD}: 3.5 to 9 V

- Low power consumption
- I²C-bus address: 011101 SA0.

3. Applications

- Telecom equipment.
- Portable instruments.
- Point-of-sale terminals.

4. Ordering information

Table 1.Ordering information

Type number	Package												
	Name	Description	Version										
PCF2116xU	-	chip in tray	-										
PCF2116xU/2	-	chip with gold bumps in tray	-										
PCF2116xU/10	-	wafer sawn and delivered on film frame carrier (FFC)	-										
PCF2116xU/12	-	wafer sawn with gold bumps and delivered on film frame carrier (FFC)	-										

[1] The letter 'x' in the type number represents the letter of the required built-in character set: A, C or G.

LCD controller / drivers

5. Block diagram

LCD controller / drivers

6. Pinning information

6.1 Pinning

LCD controller / drivers

Table 2.	Pad allocation table			
Symbol	Pad	Symbol	Pad	
OSC	1	C29 to C1	60 to 88	
DB1	2	R24 to R17	89 to 96	
V _{DD2}	3	R8 to R1	97 to 104	
DB0	4	DB7	105	
V _{DD1}	5	SCL	106	
SA0	6	DB6	107	
E	7	SDA	108	
V _{SS1}	8	DB5	109	
R/W	9	V ₀	110	
T1	10	V _{LCD1}	111	
V _{SS2}	11	DB4	112	
RS	12	V _{LCD2}	113	
R9 to R16	13 to 20	DB3	114	
R25 to R3	2 21 to 28	V _{LCD3}	115	
C60 to C3	0 29 to 59	DB2	116	

6.2 Pin description

Table 3. Bonding pad description

All x/y coordinates represent the position of the centre of each pad with respect to the centre (x/y = 0) of the chip (see Figure 2).

Symbol	Pad	Χ (μm)	Υ (μm)	Description
OSC	1	-2445	-3300	oscillator/external clock input
DB1	2	-2211	-3300	1 bit of 8 bit bi-directional data bus
V _{DD2}	3	-2034	-3300	supply voltage 2
DB0	4	-1806	-3300	1 bit of 8 bit bi-directional data bus
V _{DD1}	5	-1627	-3300	supply voltage 1
SA0	6	-1437	-3300	I ² C-bus address pin
E	7	-1245	-3300	data bus clock input (parallel control)
V _{SS1}	8	-1056	-3300	logic ground 1
R/W	9	-867	-3300	read/write input (parallel control)
T1	10	-672	-3300	test pad (connect to V_{SS})
V _{SS2}	11	-486	-3300	logic ground 2
RS	12	-297	-3300	register select input (parallel control)
R9	13	77	-3300	LCD row driver output 9
R10	14	247	-3300	LCD row driver output 10
R11	15	417	-3300	LCD row driver output 11
R12	16	587	-3300	LCD row driver output 12
R13	17	757	-3300	LCD row driver output 13
R14	18	927	-3300	LCD row driver output 14
R15	19	1097	-3300	LCD row driver output 15
R16	20	1267	-3300	LCD row driver output 16

LCD controller / drivers

Table 3. Bonding pad description ...continued

All x/y coordinates represent the position of the centre of each pad with respect to the centre (x/y = 0) of the chip (see Figure 2).

Symbol	Pad	Χ (μm)	Υ (μ m)	Description
R25	21	1436	-3300	LCD row driver output 25
R26	22	1606	-3300	LCD row driver output 26
R27	23	1776	-3300	LCD row driver output 27
R28	24	1976	-3300	LCD row driver output 28
R29	25	2116	-3300	LCD row driver output 29
R30	26	2286	-3300	LCD row driver output 30
R31	27	2456	-3300	LCD row driver output 31
R32	28	2626	-3013	LCD row driver output 32
C60	29	2626	-2760	LCD column driver output 60
C59	30	2626	-2590	LCD column driver output 59
C58	31	2626	-2420	LCD column driver output 58
C57	32	2626	-2250	LCD column driver output 57
C56	33	2626	-2080	LCD column driver output 56
C55	34	2626	-1910	LCD column driver output 55
C54	35	2626	-1740	LCD column driver output 54
C53	36	2626	-1570	LCD column driver output 53
C52	37	2626	-1400	LCD column driver output 52
C51	38	2626	-1230	LCD column driver output 51
C50	39	2626	-1060	LCD column driver output 50
C49	40	2626	-890	LCD column driver output 49
C48	41	2626	-720	LCD column driver output 48
C47	42	2626	-550	LCD column driver output 47
C46	43	2626	-380	LCD column driver output 46
C45	44	2626	582	LCD column driver output 45
C44	45	2626	752	LCD column driver output 44
C43	46	2626	922	LCD column driver output 43
C42	47	2626	1092	LCD column driver output 42
C41	48	2626	1262	LCD column driver output 41
C40	49	2626	1432	LCD column driver output 40
C39	50	2626	1602	LCD column driver output 39
C38	51	2626	1772	LCD column driver output 38
C37	52	2626	1942	LCD column driver output 37
C36	53	2626	2112	LCD column driver output 36
C35	54	2626	2282	LCD column driver output 35
C34	55	2626	2452	LCD column driver output 34
C33	56	2626	2622	LCD column driver output 33
C32	57	2626	2792	LCD column driver output 32
C31	58	2626	2962	LCD column driver output 31
C30	59	2626	3132	LCD column driver output 30

LCD controller / drivers

Table 3. Bonding pad description ...continued

All x/y coordinates represent the position of the centre of each pad with respect to the centre (x/y = 0) of the chip (see Figure 2).

Symbol	Pad	Χ (μ m)	Υ (μ m)	Description
C29	60	2339	3302	LCD column driver output 29
C28	61	2169	3302	LCD column driver output 28
C27	62	1999	3302	LCD column driver output 27
C26	63	1829	3302	LCD column driver output 26
C25	64	1659	3302	LCD column driver output 25
C24	65	1489	3302	LCD column driver output 24
C23	66	1319	3302	LCD column driver output 23
C22	67	1149	3302	LCD column driver output 22
C21	68	979	3302	LCD column driver output 21
C20	69	809	3302	LCD column driver output 20
C19	70	639	3302	LCD column driver output 19
C18	71	469	3302	LCD column driver output 18
C17	72	299	3302	LCD column driver output 17
C16	73	129	3302	LCD column driver output 16
C15	74	-245	3302	LCD column driver output 15
C14	75	-415	3302	LCD column driver output 14
C13	76	-585	3302	LCD column driver output 13
C12	77	-755	3302	LCD column driver output 12
C11	78	-925	3302	LCD column driver output 11
C10	79	-1095	3302	LCD column driver output 10
C9	80	-1265	3302	LCD column driver output 9
C8	81	-1435	3302	LCD column driver output 8
C7	82	-1605	3302	LCD column driver output 7
C6	83	-1775	3302	LCD column driver output 6
C5	84	-1945	3302	LCD column driver output 5
C4	85	-2115	3302	LCD column driver output 4
C3	86	-2285	3302	LCD column driver output 3
C2	87	-2455	3302	LCD column driver output 2
C1	88	-2625	3015	LCD column driver output 1
R24	89	-2625	2846	LCD row driver output 24
R23	90	-2625	2676	LCD row driver output 23
R22	91	-2625	2506	LCD row driver output 22
R21	92	-2625	2336	LCD row driver output 21
R20	93	-2625	2166	LCD row driver output 20
R19	94	-2625	1996	LCD row driver output 19
R18	95	-2625	1826	LCD row driver output 18
R17	96	-2625	1656	LCD row driver output 17
R8	97	-2625	1487	LCD row driver output 8
R7	98	-2625	1317	LCD row driver output 7

Table 3. Bonding pad description ...continued

All x/y coordinates represent the position of the centre of each pad with respect to the centre (x/y = 0) of the chip (see Figure 2).

Symbol	Pad	Χ (μ m)	Υ (μ m)	Description
R6	99	-2625	1147	LCD row driver output 6
R5	100	-2625	977	LCD row driver output 5
R4	101	-2625	807	LCD row driver output 4
R3	102	-2625	637	LCD row driver output 3
R2	103	-2625	467	LCD row driver output 2
R1	104	-2625	297	LCD row driver output 1
DB7	105	-2625	-290	1 bit of 8 bit bi-directional data bus
SCL	106	-2625	-479	I ² C-bus serial clock input
DB6	107	-2625	-716	1 bit of 8 bit bi-directional data bus
SDA	108	-2625	-976	I ² C-bus serial data input/output
DB5	109	-2625	-1202	1 bit of 8 bit bi-directional data bus
V ₀	110	-2625	-1388	control input for V _{LCD}
V _{LCD1}	111	-2625	-1580	LCD supply voltage input/output 1
DB4	112	-2625	-1808	1 bit of 8 bit bi-directional data bus
V _{LCD2}	113	-2625	-1985	LCD supply voltage input/output 2
DB3	114	-2625	-2213	1 bit of 8 bit bi-directional data bus
V _{LCD3}	115	-2625	-2390	LCD supply voltage input/output 3
DB2	116	-2625	-2621	1 bit of 8 bit bi-directional data bus

7. Pin functions

7.1 RS: register select (parallel control)

RS selects the register to be accessed for read and write when the device is controlled by the parallel interface. RS = logic '0' selects the instruction register for write and the Busy Flag and Address Counter for read. RS = logic '1' selects the data register for both read and write. There is an internal pull-up on pin RS.

7.2 R/W: read/write (parallel control)

 R/\overline{W} selects either the read (R/\overline{W} = logic '1') or write (R/\overline{W} = logic '0') operation when control is by the parallel interface. There is an internal pull-up on this pin.

7.3 E: data bus clock

The E pin is set HIGH to signal the start of a read or write operation when the device is controlled by the parallel interface. Data is clocked in or out of the chip on the negative edge of the clock. Note that this pin must be connected to logic '0' (V_{SS}) when the I²C-bus control is used.

7.4 DB0 to DB7: data bus

The bidirectional, 3-state data bus transfers data between the system controller and the PCF2116. DB7 may be used as the Busy Flag signalling that internal operations are not yet complet. In 4-bit operations the 4 higher order lines DB4 to DB7 are used; DB0 to DB3 must be left open circuit. There is an internal pull-up on each of the data lines. Note that these pins must be left open circuit when the I²C-bus control is used.

7.5 C1 to C60: column driver outputs

These pins output the data for pairs of columns. This arrangement permits an optimized chip-on-glass (COG) design for 4-line, 12 character layouts.

7.6 R1 to R32: row driver outputs

These pins output the row select waveforms to the left and right halves of the display.

7.7 V_{LCD}: LCD power supply

Negative power supply for the liquid crystal display. This may be generated on-chip or supplied externally.

7.8 V₀: V_{LCD} control input

The input level at this pin determines the generated V_{LCD} output voltage.

7.9 OSC: oscillator

When the on-chip oscillator is used this pin must be connected to V_{DD} . This pin is the input for an external clock signal, if used.

7.10 SCL: serial clock line

Input for the I²C-bus clock signal.

7.11 SDA: serial data line

Input/output for the I²C-bus data line.

7.12 SA0: address pin

The hardware sub-address line is used to program the device sub-address for 2 different PCF2116s on the same I^2 C-bus.

7.13 T1: test pad

Must be connected to V_{SS} . Not user accessible.

8. Functional description

8.1 LCD supply voltage generator for PCF2116x

The on-chip voltage generator is controlled by bit G of the 'Function set' instruction and $\mathsf{V}_0.$

 V_0 is a high-impedance input and draws no current from the system power supply. Its range is between V_{SS} and $V_{DD}-1$ V. When V_0 is connected to V_{DD} the generator is switched off and an external voltage must be supplied to pin V_{LCD} . This can be more negative than V_{SS} .

When G = logic '1' the generator produces a negative voltage at pin V_{LCD}, controlled by the input voltage at pin V₀. The LCD operating voltage is given by the relationship: $V_{OP} = (1.8V_{DD} - V_0)$

Where:

$$V_{OP} = (V_{DD} - V_{LCD})$$

and

$$V_{LCD} = (V_0 - 0.8V_{DD})$$

When G = logic '0', the generated output voltage V_{LCD} is equal to V_0 (between V_{SS} and V_{DD}). In this instance:

 $V_{OP} = V_{DD} - V_0$

When V_{LCD} is generated on-chip the V_{LCD} pin must be de-coupled to V_{DD} with a suitable capacitor. V_{DD} and V_0 must be selected to limit the maximum value of V_{OP} to 9 V. Figure 3 and Figure 4 show the two generator control characteristics.

LCD controller / drivers

8.2 Character generator ROM (CGROM)

The character generator ROM generates 240 character patterns in 5×8 dot format from 8-bit character codes. Figure 5, Figure 6 and Figure 7 show the character sets currently available.

The standard character sets A, C and G are available for the PCF2116x.

LCD controller / drivers

lower 6 bits	upper 4 bits	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
xxxx	0000	1						•					•••••				
xxxx	0001	2		:											÷;		
xxxx	0010	3		::								i		i ji	.:: [:]		
xxxx	0011	4						: <u></u> .	·							:::-	.
xxxx	0100	5							÷			·					
xxxx	0101	6						֥				::					
xxxx	0110	7					······ ·····	·	::					••••			
xxxx	0111	8		. .	"`. 			:		:							
xxxx	1000	9		÷					3			.:				÷	
xxxx	1001	10							·			÷:				•• :	·
xxxx	1010	11	÷	:	::	: 		: 							·		щ.
xxxx	1011	12	:		:: ::						ث	:*				×	
xxxx	1100	13	:	:								÷::				: .	
xxxx	1101	14		•••••										·`·.			•
xxxx	1110	15	~	::		•••									•••		
xxxx	1111	16							÷				۰. 	÷			

Fig 5. Character set 'A' in CGROM: PCF2116A

LCD controller / drivers

lower 4 bits	upper 4 bits	0000	0001	0010	0011	0100	0101	0110	01	11	1000	1001	1010	1011	1100	1101	1110	1111
xxxx	0000	CG RAM 1															÷	
хххх	0001	2							::		÷							·::::
хххх	0010	3											::					····
хххх	0011	4							:							:	:	·
хххх	0100	5								••		÷		·				·
хххх	0101	6																
хххх	0110	7	<u>-</u>				Ĥ			::				<u>.</u>			÷	::
хххх	0111	8							#	::		Ŧ	:	÷				
хххх	1000	9					×						Ľ.					:::
хххх	1001	10					÷			i	÷					::: :		:;
хххх	1010	11											:	:: ::				
хххх	1011	12												∷				
хххх	1100	13							::		::::		:					
xxxx	1101	14							•••				•••••					
xxxx	1110	15	·	ŀ									::				:" i	
хххх	1111	16		•						•••								•••••

Fig 6. Character set 'C' in CGROM: PCF2116C

LCD controller / drivers

lower 6 bits	upper 4 bits	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
xxxx	0000	CG RAM 1					<u>.</u>	÷	<u>ا</u>		Ę					0	
xxxx	0001	2		•				·	!				<u>.</u>		₩.		
xxxx	0010	3	•	::					ŀ·	÷		1	·		`×.		
xxxx	0011	4										`	··'':				::::
xxxx	0100	5							:			·		÷			::
xxxx	0101	6		••••			:		:	:::::::		::		•.			
xxxx	0110	7					÷		÷			·. 		•••••			
xxxx	0111	8		."			:		:	::::::::::::::::::::::::::::::::::::::		·		· · · · ·	•••••		
xxxx	1000	9		··								·			••••••	·	
xxxx	1001	10					···-;							•		•• :	
xxxx	1010	11		:	:: ::	·]	·	•	····					i,i	·		<u>.</u>
xxxx	1011	12	:		::			×.			÷					:::	·
xxxx	1100	13		:	÷.							.i			· ·	¢	
xxxx	1101	14		•••••									· · ·	[:]	····		•
xxxx	1110	15		::			··	II						::::	··.·		
xxxx	1111	16	:::·	·			•••••		÷								

Fig 7. Character set 'G' in CGROM: PCF2116G

8.3 LCD bias voltage generator

The intermediate bias voltages for the LCD display are also generated on-chip. This removes the need for external bias chain resistors and significantly reduces the system power consumption. The optimum levels depend on the multiplex rate and are selected automatically when the number of lines in the display is defined.

The optimum value of V_{OP} depends on the multiplex rate, the LCD threshold voltage (V_{th}) and the number of bias levels and is given by the relationships in <u>Table 4</u>. Using a 5-level bias scheme for 1:16 MUX rate allows V_{OP} < 5 V for most LCD liquids. The effect on the display contrast is negligible.

Table 4. Optimum values for V_{OP}

MUX rate	Number of bias levels	V _{OP} /V _{th}	Discrimination V _{on} /V _{off}
1:16	5	3.67	1.277
1:32	6	5.19	1.196

8.4 Oscillator

The on-chip oscillator provides the clock signal for the display system. No external components are required. Pin OSC must be connected to V_{DD}.

8.5 External clock

If an external clock is to be used, it must be input at pin OSC. The resulting display frame frequency is given by $f_{frame} = \frac{1}{2304} f_{osc}$. A clock signal must always be present, otherwise the LCD is frozen in a DC state.

8.6 Power-on reset

The power-on reset block initializes the chip after power-on or power failure.

8.7 Registers

The PCF2116 has two 8-bit registers, an Instruction Register (IR) and a Data Register (DR). The Register Select signal (RS) determines which register will be accessed.

The instruction register stores instruction codes such as 'Display clear' and 'Cursor shift', and address information for the Display Data RAM (DDRAM) and Character Generator RAM (CGRAM). The instruction register can be written to, but not read, by the system controller.

The data register temporarily stores data to be read from the DDRAM and CGRAM. When reading, data from the DDRAM or CGRAM corresponding to the address in the Address Counter is written to the data register prior to being read by the 'Read data' instruction.

8.8 Busy flag

The Busy Flag indicates the free/busy status of the PCF2116. Logic '1' indicates that the chip is busy and further instructions will not be accepted. The Busy Flag is output to pin DB7 when RS = logic '0' and R/\overline{W} = logic '1'. Instructions must only be written after checking that the Busy Flag is logic '0' or waiting for the required number of clock cycles.

8.9 Address counter (AC)

The Address Counter assigns addresses to the DDRAM and CGRAM for reading and writing and is set by the instructions 'Set CGRAM address' and 'Set DDRAM address'. After a read/write operation the Address Counter is automatically incremented or decremented by 1. The Address Counter contents are output to the bus (DB0 to DB6) when RS = logic '0' and R/\overline{W} = logic '1'.

8.10 Display data RAM (DDRAM)

The display data RAM stores up to 80 characters of display data represented by 8-bit character codes. RAM locations not used for storing display data can be used as general purpose RAM. The basic DDRAM-to-display mapping scheme is shown in <u>Figure 8</u> and <u>Figure 9</u>.

With no display shift the characters represented by the codes in the first 12 or 24 RAM locations starting at address 00 in line 1 are displayed. Subsequent lines display data starting at addresses 20h, 40h, or 60h. Figure 10, Figure 11, Figure 12 and Figure 13 show the DDRAM-to-display mapping principle when the display is shifted.

LCD controller / drivers

The display address ranges are shown in Table 5.

Table 5. Display address ranges

	•	
1-line display	2-line display	4-line display
00 to 4F	line 1: 00 to 27	line 1: 00 to 13
-	line 2: 40 to 67	line 2: 20 to 33
-	•	line 3: 40 to 53
-	-	line 4: 60 to 73

For 2 and 4-line displays the end address of one line and the start address of the next line are not consecutive. When the display is shifted each line wraps around independently of the others (Figure 10, Figure 11, Figure 12 and Figure 13).

When data is written into the DDRAM wrap-around occurs from 4F to 00 in 1-line mode and from 27 to 40 and 67 to 00 in 2-line mode; from 13 to 20, 33 to 40, 53 to 60 and 73 to 00 in 4-line mode.

8.11 Character generator RAM (CGRAM)

Up to 16 user-defined characters may be stored in the character generator RAM. The CGROM and CGRAM use a common address space, of which the first column is reserved for the CGRAM (see Figure 5). Figure 14 shows the addressing principle for the CGRAM.

	character codes CGRAM (DDRAM data) address										ch (arac CGF	ter p RAM	oatte data	rns a)							
7	6 high orde bits	5 er er	4	3	2 0 0	1 ower order bits	0		6 •	5 high orde bits	4 er er	3	2 	1 ower order bits	0	higher ← order bits	4	3	2 c 0	1 ower rder bits	0	
0	0	0	0	0	0	0	0		0	0	0	0	0 0 0 1 1 1	0 0 1 1 0 0 1	0 1 0 1 0 1 0		0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	character pattern example 1
0	0	0	0	0	0	0	1		0	0	0	1	0 0 0 1 1 1	0 0 1 0 0 1	0 1 0 1 0 1 0		0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	character pattern example 2
0	0	0	0	0	0	1	0		0	0	1	0	0 0	0 0	0 1							-
00000	0 0 0	0 0 0 0	0 0 0 0	1 1 1	1 1 1	1 1 1	1 1 1		1 1 1	1 1 1	1 1 1	1 1 1	1 1 1	0 0 1 1	0 1 0 1					т	ga80	0

Character code bits 0 to 3 correspond to CGRAM address bits 3 to 6.

CGRAM address bits 0 to 2 designate character pattern line position. The 8th line is the cursor position and display is performed by logical OR with the cursor. Data in the 8th line will appear in the cursor position.

Character pattern column positions correspond to CGRAM data bits 0 to 4, as shown in Figure 14 (bit 4 being at the left end).

As shown in Figure 5 and Figure 14, CGRAM character patterns are selected when character code bits 4 to 7 are all logic 0. CGRAM data = logic 1 corresponds to selection for display.

Only bits 0 to 5 of the CGRAM address are set by the 'Set CGRAM address' instruction. Bit 6 can be set using the 'Set DDRAM address' instruction or by using the auto-increment feature during CGRAM write. All bits 0 to 6 can be read using the 'Read busy flag and address' instruction.

Fig 14. Relationship between CGRAM addresses and data / display patterns

8.12 Cursor control circuit

The cursor control circuit generates the cursor (underline and/or character blink as shown in Figure 15) at the DDRAM address contained in the Address Counter. When the Address Counter contains the CGRAM address the cursor will be inhibited.

LCD controller / drivers

8.13 Timing generator

The timing generator produces the various signals required to drive the internal circuitry. Internal chip operation is not disturbed by operations on the data buses.

8.14 LCD row and column drivers

The PCF2116 contains 32 row and 60 column drivers, which connect the appropriate LCD bias voltages in sequence to the display, in accordance with the data to be displayed. The bias voltages and the timing are selected automatically when the number of lines in the display is selected. Figure 16 and Figure 17 show typical waveforms.

In 1-line mode (1:16) the row outputs are driven in pairs: R1/R17, R2/R18 for example. This allows the output pairs to be connected in parallel, providing greater drive capability.

Unused outputs should be left unconnected.

NXP Semiconductors

PCF2116 family

LCD controller / drivers

NXP Semiconductors

PCF2116 family

LCD controller / drivers

8.15 Reset function

The PCF2116 automatically initializes (resets) when power is turned on. After reset the chip has the following state (see <u>Table 6</u>):

Table 6.	State after reset									
Step	Description									
1	display clear									
2	function set	DL = 1	8-bit interface							
		M, N = 0	1-line display							
		G = 0	voltage generator; $V_{LCD} = V_0$							
3	display on/off control	D = 0	display off							
		C = 0	cursor off							
		B = 0	blink off							
4	entry mode set	I/D = 1	+1 increment							
		S = 0	no shift							
5	Default address pointe busy state (BF = logic for 2 ms. The chip can (see <u>Figure 18</u> and Fig	Default address pointer to DDRAM. The Busy Flag (BF) indicates the busy state (BF = logic '1') until initialization ends. The busy state lasts for 2 ms. The chip can also be initialized by software. (see Figure 18 and Figure 29).								
6	I ² C-bus interface rese	t								

9. Instructions

Only two PCF2116 registers, the Instruction Register (IR) and the Data Register (DR) are directly controlled by the microcontroller. Before internal operation, control information is stored temporarily in these registers to allow an interface to various types of microcontrollers which operate at different speeds or to allow an interface to peripheral control ICs.

PCF2116 operation is controlled by the instructions shown in <u>Table 8</u> together with their execution time.

There are 4 categories of instructions, those that:

- designate PCF2116 functions such as display format, data length, etc.
- set internal RAM addresses
- perform data transfer with internal RAM
- others.

In normal use, the data transfer instructions are used most frequently. However, automatic incrementing by 1 (or decrementing by 1) of internal RAM addresses after each data write lessens the microcontroller program load. The display shift in particular can be performed concurrently with display data write, enabling the designer to develop systems in minimum time with maximum programming efficiency.

During internal operation no instruction other than 'Read busy flag and address' is executed.

Because the Busy Flag is set to logic '1' while an instruction is being executed, check to make sure it is on logic '0' before sending the next instruction or wait for the maximum instruction execution time, as given in <u>Table 8</u>. An instruction sent while the Busy Flag is HIGH will not be executed.

Table 7.	Command bit identities	
Bit	0	1
I/D	decrement	increment
S	display freeze	display shift
D	display off	display on
С	cursor off	cursor on
В	character at cursor position does not blink	character at cursor position blinks
S/C	cursor move	display shift
R/L	left shift	right shift
DL	4 bits	8 bits
G	voltage generator: VLCD = V0	voltage generator; VLCD = V0 - 0.8VDD
N, (M = 0)		
PCF2116x	1 line \times 24 characters; MUX 1:16	2 lines \times 24 characters; MUX 1:32
N, (M = 1)	reserved	4 lines \times 12 characters; MUX 1:32
BF	end of internal operation	internal operation in progress
Со	last control byte, only data bytes to follow	next two bytes are a data byte and another control byte

Table 8. Instructions

Table 8. Instruction	าร											
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	
NOP	0	0	0	0	0	0	0	0	0	0	No operation.	
Clear display	0	0	0	0	0	0	0	0	0	1	Clears entire display DDRAM address 0 Counter.	
Return Home	0	0	0	0	0	0	0	0	1	0	Sets DDRAM addre Counter. Also return display to original po contents remain un	
Entry mode set	0	0	0	0	0	0	0	1	I/D	S	Sets cursor move d specifies shift of dis operations are perfo data write and read	
Display control	0	0	0	0	0	0	1	D	С	В	Sets entire display of cursor on/off (C) and position character (
Cursor/display shift	0	0	0	0	0	1	S/C	R/L	0	0	Moves cursor and s without changing D	
Function set	0	0	0	0	1	DL	Ν	Μ	G	0	Sets interface data number of display li voltage generator c	
Set CGRAM address	0	0	0	1	ACG						Sets CGRAM addre	
Set DDRAM address	0	0	1	ADD							Sets DDRAM addre	
Read busy flag and address	0	1	BF	AC		Reads Busy Flag (E internal operation is performed and read Counter contents.						
Read data	1	1	read d	ata	ita Reac DDR							
Write data	1	0	write c	lata							Writes data to CGR	

[1] In the l^2 C-bus mode the DL bit is don't care. 8-bit mode is assumed.

[2] In the l²C-bus mode a control byte is required when RS or R/W is changed; control byte: Co, RS, R/W, 0, 0, 0, 0, 0, 0; command byte: DB7 to D [3] Example: $f_{osc} = 150$ kHz, $T_{CY} = \frac{1}{f_{OSC}} = 6.67 \mu s$; 3 cycles = 20 μ s, 165 cycles = 1.1 ms.

Product data sheet

Rev. 05.01 — 20 July 2007

© NXP B.V. 2007. All rights reserved. 24 of 56

LCD controller / drivers

LCD controller / drivers

9.1 Clear display

'Clear display' writes space code 20h into all DDRAM addresses (The character pattern for character code 20 must be a blank pattern). Sets the DDRAM Address Counter to logic '0'. Returns the display to its original position if it was shifted. So, the display disappears and the cursor or blink position goes to the left edge of the display (the first line if 2 or 4 lines are displayed). Sets entry mode I/D = logic '1' (increment mode). S of entry mode does not change.

The instruction 'Clear display' requires extra execution time. This is accommodated by checking the busy-flag (BF) or waiting for 2 ms. The latter must be applied where no read-back options are foreseen, as in some chip-on-glass (COG) applications.

9.2 Return home

'Return home' sets the DDRAM Address Counter to logic '0' and returns the display to its original position if it was shifted. The DDRAM contents do not change. The cursor or blink position goes to the left of the display (the first line if 2 or 4 lines are displayed). I/D and S of entry mode do not change.

9.3 Entry mode set

9.3.1 I/D

When I/D = logic '1' (or '0') the DDRAM or CGRAM address increments (or decrements) by 1 when data is written into or read from the DDRAM or CGRAM. The cursor or blink position moves to the right when incremented and to the left when decremented. The cursor and blink are inhibited when the CGRAM is accessed.

9.3.2 S

When S = logic '1', the entire display shifts either to the right (I/D = logic '0') or to the left (I/D = logic '1') during a DDRAM write. So, it looks as if the cursor stands still and the display moves. The display does not shift when reading from the DDRAM, or when writing into or reading from the CGRAM. When S = logic '0' the display does not shift.

9.4 Display on/off control

9.4.1 D

The display is on when D = logic '1' and off when D = logic '0'. Display data in the DDRAM is not affected and can be displayed immediately by setting D to logic '1'.

9.4.2 C

The cursor is displayed when C = logic '1' and inhibited when C = logic '0'. Even if the cursor disappears, the display functions e.g. I/D, remain in operation during display data write. The cursor is displayed using 5 dots in the 8th line (see Figure 15).

9.4.3 B

The character indicated by the cursor blinks when B = logic '1'. The blink is displayed by switching between display characters and all dots on with a period of 1 second when $f_{\text{osc}} = 150 \text{ kHz}$ (see Figure 15). At other clock frequencies the blink period is equal to $150 \text{ kHz/f}_{\text{osc}}$.

The cursor and the blink can be set to display simultaneously.

9.5 Cursor display shift

'Cursor/display shift' moves the cursor position or the display to the right or left without writing or reading display data. This function is used to correct a character or move the cursor through the display. In 2 or 4-line displays, the cursor moves to the next line when it passes the last position (40 or 20 decimal) of the line. When the displayed data is shifted repeatedly all lines shift at the same time; displayed characters do not shift into the next line.

The Address Counter (AC) content does not change if the only action performed is shift display, but increments or decrements with the cursor shift.

9.6 Function set

9.6.1 DL (parallel mode only)

Defines interface data width when the parallel data interface is used.

Data is sent or received in bytes (bits DB7 to DB0) when DL = logic '1', or in two 4-bit nibbles (DB7 to DB4) when DL = logic '0'. When 4-bit width is selected, data is transmitted in two cycles using the parallel bus.

In a 4-bit application DB3 to DB0 are left open (internal pull-ups). Hence in the first 'Function set' instruction after power-on, G and H are set to 1. A second 'Function set' must then be sent (2 nibbles) to set G and H to their required values.

When using the I²C-bus interface the DL should not previously have been set to 0 using the parallel interface.

9.6.2 N, M

Sets the number of display lines.

9.6.3 G

Controls the V_{LCD} voltage generator characteristic.

9.7 Set CGRAM address

'Set CGRAM address' sets bit 0 to 5 of the CGRAM address (A_{CG} in <u>Table 8</u>) into the Address Counter (binary A[5] to A[0]). Data can then be written to or read from the CGRAM.

Only bits 0 to 5 of the CGRAM address are set by the 'Set CGRAM address' instruction. Bit 6 can be set using the 'Set DDRAM address' instruction or by using the auto-increment feature during CGRAM write. All bits 0 to 6 can be read using the 'Read busy flag and address' instruction.

9.8 Set DDRAM address

'Set DDRAM address' sets the DDRAM address (A_{DD} in <u>Table 8</u>) into the Address Counter (binary A[6] to A[0]). Data can then be written to or read from the DDRAM.

Table 9.	Hexadecimal address ranges (pcf2116)									
Address	(h)	Function								
00 to 4F		1-line by 24								
00 to 27 a	and 40 to 67	2-lines by 24								

9.9 Read busy flag and address

00 to 13, 20 to 33, 40 to 53 and 60 to 73

'Read busy flag and address' reads the Busy Flag (BF). BF = logic 1 indicates that an internal operation is in progress. The next instruction will not be executed until BF = logic 0, so BF should be checked before sending another instruction.

4-lines by 12

At the same time, the value of the Address Counter (A_C in <u>Table 8</u>) expressed in binary A[6] to A[0] is read out. The Address Counter is used by both CGRAM and DDRAM, and its value is determined by the previous instruction.

9.10 Write data to CGRAM or DDRAM

Writes binary 8-bit data D[7] to D[0] to the CGRAM or the DDRAM.

Whether the CGRAM or DDRAM is to be written into is determined by the previous specification of the CGRAM or DDRAM address setting.

After writing, the address automatically increments or decrements by 1, in accordance with the entry mode. Only bits D[4] to D[0] of CGRAM data are valid, bits D[7] to D[5] are 'don't care' CGRAM addresses.

9.11 Read data from CGRAM or DDRAM

Reads binary 8-bit data D[7] to D[0] from the CGRAM or DDRAM.

The most recent 'Set address' instruction determines whether the CGRAM or DDRAM is to be read.

The 'Read data' instruction gates the content of the data register (DR) to the bus while E = HIGH. After E goes LOW again, internal operation increments (or decrements) the AC and stores RAM data corresponding to the new AC into the DR.

Remark: the only three instructions which update the data register (DR) are:

- 'Set CGRAM address'
- 'Set DDRAM address'
- 'Read data' from CGRAM or DDRAM.

Other instructions (e.g. 'Write data', 'Cursor/Display shift', 'Clear display', 'Return home') do not modify the data register content.

10. Interface to microcontroller (parallel interface)

The PCF2116 can send data in either two 4-bit operations or one 8-bit operation and can thus interface to 4-bit or 8-bit microcontrollers.

In 8-bit mode data is transferred as 8-bit bytes using the 8 data lines DB0 to DB7. Three further control lines E, RS, and R/W are required.

In 4-bit mode data is transferred in two cycles of 4-bits each. The higher order bits (corresponding to DB4 to DB7 in 8-bit mode) are sent in the first cycle and the lower order bits (DB0 to DB3 in 8-bit mode) in the second.

Data transfer is complete after two 4-bit data transfers.

It should be noted that two cycles are also required for the Busy Flag check. 4-bit operation is selected by instruction. See <u>Figure 19</u>, <u>Figure 20</u> and <u>Figure 21</u> for examples of bus protocol.

In 4-bit mode pins DB3 to DB0 must be left open-circuit. They are pulled up to V_{DD} internally.

11. Interface to microcontroller (I²C-bus interface)

11.1 Characteristics of the I²C-bus

The I²C-bus is for bidirectional, two-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor. Data transfer may be initiated only when the bus is not busy.

11.2 Bit transfer

One data bit is transferred during each clock pulse.

The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as a control signal.

11.3 START and STOP conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the START condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP condition (P).

11.4 System configuration

A device generating a message is a 'transmitter', a device receiving a message is the 'receiver'. The device that controls the message is the 'master' and the devices which are controlled by the master are the 'slaves'.

11.5 Acknowledge

The number of data bytes transferred between the START and STOP conditions from transmitter to receiver is unlimited. Each byte of eight bits is followed by an acknowledge bit. The acknowledge bit is a HIGH level signal put on the bus by the transmitter during which time the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master receiver must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges must pull-down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse (set-up and hold times must be taken into consideration). A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a STOP condition.

11.6 I²C-bus protocol

Before any data is transmitted on the l²C-bus, the device which should respond is addressed first. The addressing is always carried out with the first byte transmitted after the start procedure. The l²C-bus configuration for the different PCF2116 READ and WRITE cycles is shown in Figure 22, Figure 23 and Figure 24.

NXP Semiconductors

PCF2116 family

LCD controller / drivers

LCD controller / drivers

12. Limiting values

Table 10. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{DD}	supply voltage		-0.5	8.0	V
V _{LCD}	LCD supply voltage		$V_{DD}-11$	V _{DD}	V
VI	input voltage	on each of the pins OSC, V ₀ , RS, R/ \overline{W} , E, and DB0 to DB7	$V_{SS}-0.5$	V _{DD} + 0.5	V
Vo	output voltage	on each of the pins R1 to R32, C1 to C60 and V_{LCD}	$V_{LCD}-0.5$	V _{DD} + 0.5	V
I _I	input current		-10	+10	mA
I _O	output current		-10	+10	mA
I _{DD}	supply current		-50	+50	mA
I _{SS}	ground supply current		-50	+50	mA
I _{LCD}	LCD supply current		-50	+50	mA
P _{tot}	total power dissipation		-	400	mW
Po	output power		-	100	mW
T _{stg}	storage temperature		-65	+150	°C

CAUTION

Static voltages across the liquid crystal display can build up when the LCD supply voltage (V_{LCD}) is on while the IC supply voltage (V_{DD}) is off, or vice versa. This may cause unwanted display artifacts. To avoid such artifacts, V_{LCD} and V_{DD} must be applied or removed together.

12.1 ESD values

- ESD protection exceeds 5000 V HBM per JESD22-A114, 200 V MM per JESD22-A115 and 1000 V CDM per JESD22-C101.
- Latch-up testing is done to JEDEC standard JESD78 which exceeds 100 mA.

13. Static characteristics

Table 11. Static characteristics

 $V_{DD} = 2.5 \text{ to } 6.0 \text{ V}; V_{SS} = 0 \text{ V}; V_{LCD} = V_{DD} - 3.5 \text{ V} \text{ to } V_{DD} - 9.0 \text{ V}; T_{AMB} = -40 \text{ to } +85 \text{ °C}; unless otherwise specified.$

Symbol	Parameter	ameter Conditions						
Supplies								
V _{DD}	supply voltage			2.5	-	6.0	V	
V _{LCD}	LCD supply voltage			$V_{DD}-9$	-	$V_{DD}{-}3.5$	V	
I _{DD}	supply current external V_{LCD}		[1]					
I _{DD1}	supply current 1	external V _{LCD}	[1]	-	200	500	μΑ	
I _{DD2}	supply current 2	$V_{DD} = 5 V; V_{OP} = 9 V;$ $f_{OSC} = 150 \text{ kHz};$ $T_{amb} = 25 ^{\circ}\text{C}$	[1]	-	200	300	μA	

Table 11. Static characteristics ...continued

 $V_{DD} = 2.5$ to 6.0 V; $V_{SS} = 0$ V; $V_{LCD} = V_{DD} - 3.5$ V to $V_{DD} - 9.0$ V; $T_{AMB} = -40$ to +85 °C; unless otherwise specified.

VDD - 2.0 10 0.0	$v_1, v_{33} = v_1, v_{LCD} = v_{DD}$ $v_{10} = v_{10}$	VDD 5.0 V, VAMB = 40 10	100 0,	<i>unicos</i> 0		speemea.	
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
I _{DD3}	supply current 3	$\label{eq:DD} \begin{array}{l} V_{DD} = 3 \ V; \ V_{OP} = 5 \ V; \\ f_{OSC} = 150 \ \text{kHz}; \\ T_{amb} = 25 \ ^{\circ}\text{C} \end{array}$	[1]	-	150	200	μΑ
I _{DD4}	supply current 4	internal V_{LCD}	<u>[1] [2]</u> [8]	-	700	1100	μA
I _{DD5}	supply current 5	$V_{DD} = 5 V; V_{OP} = 9 V;$ $f_{OSC} = 150 \text{ kHz};$ $T_{amb} = 25 \text{ °C}$	[1] [2] [8]	-	600	900	μA
I _{DD6}	supply current 6	$V_{DD} = 3 V; V_{OP} = 5 V;$ $f_{OSC} = 150 \text{ kHz};$ $T_{amb} = 25 \text{ °C}$	[1] [2] [8]	-	500	800	μA
I _{LCD}	LCD supply current		<u>[1] [7]</u>	-	50	100	μΑ
V _{POR}	power on reset supply voltage		[3]	-	1.3	1.8	V
Logic							
V _{IL1}	LOW-level input voltage	input voltage on pins E, F R/W, DB0 to DB7 and S/	RS, 40	V_{SS}	-	$0.3 V_{DD}$	V
V _{IH1}	HIGH-level input voltage	input voltage on pins E, F R/W, DB0 to DB7 and S/	RS, 40	$0.7 V_{DD}$	-	V_{DD}	V
V _{IL(OSC)}	LOW-level input voltage on pin OSC			V_{SS}	-	V _{DD} - 1.5	V
V _{IL(V0)}	LOW-level input voltage on pin V_0			V _{SS}	-	$V_{DD}-1.5$	V
V _{IH(OSC)}	HIGH-level input voltage on pin OSC			V _{DD} – 0.1	-	V _{DD}	V
V _{IH(V0)}	HIGH-level input voltage on pin V_0			V _{DD} – 0.05	-	V _{DD}	V
I _{PU}	pull-up current	pull-up current on pins DB0 to DB7; $V_I = V_{SS}$		0.04	0.15	1.0	μA
I _{OL(DB)}	LOW-level output current	low level output current of DB0 to DB7; $V_{OL} = 0.4 \text{ V}$ $V_{DD} = 5 \text{ V}$	on pins ;	1.6	-	-	mA
I _{OH(DB)}	HIGH-level output current	high level output current DB0 to DB7; $V_{OL} = 0.4 V$ $V_{DD} = 5 V$	on pins ;	-1.0	-	-	mA
I _{L1}	leakage current	$V_I = V_{DD}$ or V_{SS} ; leakage current on pins OSC, V_0 , E, RS, R/W, DI DB7 and SA0	B0 to	-1.0	-	+1.0	μA
LCD outputs							
V _{tol2}	output voltage variation	LCD supply voltage (V _{LCD}) tolerance	[2]	-300	40	+300	mV
V _{tol1}	output voltage variation	bias voltage tolerance on each pin: R1 - R32 and C1 to C60	[7]	-300	40	+300	mV
R _{ROW}	output resistance	output resistance on each pin: R1 - R32	[6]	-	1.5	3.0	kΩ

Table 11. Static characteristics ... continued

 $V_{DD} = 2.5 \text{ to } 6.0 \text{ V}; V_{SS} = 0 \text{ V}; V_{LCD} = V_{DD} - 3.5 \text{ V} \text{ to } V_{DD} - 9.0 \text{ V}; T_{AMB} = -40 \text{ to } +85 \text{ °C}; unless otherwise specified.$

		55 7 7 1115				•	
Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
R _{COL}	output resistance	output resistance on	[6]	-	3.0	6.0	kΩ
		each pin: C1 - C60					
l ² C-bus							
SDA, SCL							
V _{IL2}	LOW-level input voltage		[4]	V_{SS}	-	$0.3 V_{DD}$	V
V _{IH2}	HIGH-level input voltage		[4]	$0.7 V_{DD}$	-	V_{DD}	V
I _{L2}	leakage current	V _I = V _{DD} or V _{SS} ; leakage current on pins S and SCL	SDA	-1.0	-	+1.0	μΑ
Ci	input capacitance		[5]	-	-	7	pF
I _{OL(SDA)}	LOW level output current on pin SDA	$V_{OL} = 0.4 \text{ V}; V_{DD} = 5 \text{ V}$		3	-	-	mA

[1] LCD outputs are open-circuit; inputs at V_{DD} or V_{SS}; V₀ = V_{DD}; bus inactive; internal or external clock with duty cycle 50% (I_{DD1} only).

[2] LCD outputs are open-circuit; LCD supply voltage generator is on; load current at $V_{LCD} = 20 \mu A$.

[3] Resets all logic when $V_{DD} < V_{POR}$.

[4] When the voltages are above or below the supply voltages V_{DD} or V_{SS} , an input current may flow; this current must not exceed \pm 0.5 mA.

[5] Tested on sample basis.

[6] Resistance of output terminals (R1 to R32 and C1 to C60) with load current = 150μ A; $V_{OP} = V_{DD} - V_{LCD} = 9$ V; outputs measured one at a time; (external V_{LCD}).

[7] LCD outputs open-circuit; external V_{LCD}.

[8] Maximum value occurs at 85 °C.

14. Dynamic characteristics

Table 12. Dynamic characteristics

 $V_{DD} = 2.5$ to 6.0 V; $V_{SS} = 0$ V; $V_{LCD} = V_{DD} - 3.5$ V to $V_{DD} - 9.0$ V; $T_{AMB} = -40$ to +85 °C; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
f _{osc}	clock frequency	external clock frequency		90	150	225	kHz
f _{FR}	LCD frame frequency	internal clock	<u>[1]</u>	40	65	100	Hz
Timing cha	racteristics: Parallel interface		<u>[1] [2]</u>				
Write operat	ion (writing data from microcontroller to F	PCF2116)					
T _{CY}	enable cycle time			500	-	-	ns
PW_{EH}	enable pulse width			220	-	-	ns
t _{ASU}	address set-up time			50	-	-	ns
t _{AH}	address hold time			25	-	-	ns
t _{DSW}	data set-up time			60	-	-	ns
t _{HD}	data hold time			25	-	-	ns
Read operat	ion (reading data from PCF2116 to micro	ocontroller)					
T _{CY}	enable cycle time			500	-	-	ns
PW_{EH}	enable pulse width			220	-	-	ns

$V_{DD} = 2.5 t_{c}$	$0.0 V; V_{SS} = 0 V; V_{LCD} = V_{DD} - 3.5 V to$	$V_{DD} - 9.0 \; V; \; T_{AM}$	$_{\rm B} = -40$	to +85 °C	; unless oth	erwise specif	ied.
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
t _{ASU}	address set-up time			50	-	-	ns
t _{AH}	address hold time			25	-	-	ns
t _{DHD}	data delay time			-	-	150	ns
t _{HD}	data hold time			20	-	100	ns
Timing cha	aracteristics: I ² C-bus		[2]				
f _{SCL}	SCL clock frequency			-	-	100	kHz
t _{SW}	tolerable spike pulse width	on the I ² C-bus		-	-	100	ns
t _{BUF}	bus free time between a STOP and START			4.7	-	-	μs
t _{SU;STA}	set-up time for a repeated START condition			4.7	-	-	μs
t _{HD;STA}	START condition hold time			4.0	-	-	μs
t _{LOW}	SCL LOW time			4.7	-	-	μs
t _{HIGH}	SCL HIGH time			4.0	-	-	μs
t _r	rise time of both SDA and SCL signals			-	-	1.0	μs
t _f	fall time of both SDA and SCL signals			-	-	0.3	μs
t _{SU;DAT}	data set-up time			250	-	-	ns
t _{HD;DAT}	data hold time			0.0	-	-	ns
t _{SU;STO}	set-up time for STOP condition			4.0	-	-	μs

Table 12. Dynamic characteristics ...continued

[1] $V_{DD} = 5 V.$

[2] All timing values are valid within the operating supply voltage and ambient temperature range and are referenced to V_{IL} and V_{IH} with an input voltage swing of V_{SS} to V_{DD} .

LCD controller / drivers

15. Application information

LCD controller / drivers

LCD controller / drivers

LCD controller / drivers

15.1 4-bit operation, 1-line display using internal reset

The program must set functions prior to 4-bit operation. <u>Table 13</u> shows an example. When power is turned on, 8-bit operation is automatically selected and the PCF2116 attempts to perform the first write as an 8-bit operation. Since nothing is connected to DB0 to DB3, a rewrite is then required. However, since one operation is completed in two accesses of 4-bit operation, a rewrite is required to set the functions (see <u>Table 13</u> step 3).

So, DB4 to DB7 of the function set are written twice.

· · ·								
Step	Instr	uction					Display	Operation
1	powe initial	r supp ized by	ly on (I / the in	PCF21 ternal	16 is reset c	circuit)		Initialized. No display appears.
2	funct	ion set						
	RS	R/W	DB7	DB6	DB5	DB4		Sets to 4-bit operation. In this instance operation
	0	0	0	0	1	0		is handled as 8-bits by initialization and only this instruction completes with one write.
3	funct	ion set						
	0	0	0	0	1	0		Sets to 4-bit operation, selects 1-line display and
	0	0	0	0	0	0		VLCD = V0. 4-bit operation starts from this point and resetting is needed.
4	displa	ay on/o	off cont	rol				
	0	0	0	0	0	0	_	Turns on display and cursor. Entire display is
	0	0	1	1	1	0		blank after initialization.
5	entry	mode	set					
	0	0	0	0	0	0	_	Sets mode to increment the address by 1 and to
	0	0	0	1	1	0		shift the cursor to the right at the time of write to the DD/CGRAM. Display is not shifted.
6	write	data to	CGR	AM/DE	ORAM			
	1	0	0	1	0	1	P_	Writes 'P'. The DDRAM has already been
	1	0	0	0	0	0		selected by initialization at power-on. The cursor is incremented by 1 and shifted to the right.

Table 13. 4-bit operation, 1-line display example; using internal reset

15.2 8-bit operation, 1-line display using internal reset

Table 14 shows an example of a 1-line display in 8-bit operation. The PCF2116 functions must be set by the 'Function set' instruction prior to display. Since the display data RAM can store data for 80 characters, the RAM can be used for advertising displays when combined with display shift operation. Since the display shift operation changes the display position only and DDRAM contents remain unchanged, display data entered first can be displayed when the Return Home operation is performed.

15.3 8-bit operation, 2-line display

For a 2-line display, the cursor automatically moves from the first to the second line after the 40th digit of the first line is written. So, if there are only 8 characters in the first line, the DDRAM address must be set after the eighth character is completed (see <u>Table 15</u>). Note that both lines of the display are always shifted together; data does not shift from one line to the other.

15.4 I²C-bus operation, 1-line display

A control byte is required with most instructions (see <u>Table 16</u>).

15.5 Initializing by instruction

If the power supply conditions for correctly operating the internal reset circuit are not met, the PCF2116 must be initialized by instruction. <u>Table 17</u> and <u>Table 18</u> show how this may be performed for 8-bit and 4-bit operation.

ocF211	Table 1	4. 8-k	oit opera	ation, 1	-line di	splay e	xample	e; using	intern	al reset	t (chara	cter set 'A')	
6_fam	Step	Instr	uction									Display	Operation
dat	1	powe	er supply	on (PC	F2116	is initial	ized by	the inte	rnal res	et func	tion)		Initialized. No display app
ash	2	functi	ion set										
eet		RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		Sets to 8-bit operation, set V_{1} CD = V_{2}
		0	0	0	0	1	1	0	0	0	0		VLCD = V0.
	3	displa	ay mode	e on/off (control								Turns on display and curs
		0	0	0	0	0	0	1	1	1	0	-	Initialization.
	4	entry	mode s	et									Sets mode to increment the
		0	0	0	0	0	0	0	1	1	0	-	DD/CGRAM. Display is n
	5	write	data to	CGRAN	1/DDRA	M							Writes 'P'. The DDRAM h
		1	0	0	1	0	1	0	0	0	0	P_	initialization at power-on. and shifted to the right.
Re	6	write	data to	CGRAN	1/DDRA	M							
v. 0		1	0	0	1	0	0	1	0	0	0	PH_	Writes 'H'.
.01 — 20 JI	/												
uly	8	write	data to	CGRAN	1/DDRA	M							
2007		1	0	0	1	0	1	0	0	1	1	PHILIPS_	Writes 'S'.
	9	entry	mode s	et									
		0	0	0	0	0	0	0	1	1	1	PHILIPS_	Sets mode for display shi
	10	write	data to	CGRAN	1/DDRA	M							
		1	0	0	0	1	0	0	0	0	0	PHILIPS_	Writes space.
	11	write	data to	CGRAN	1/DDRA	M							
		1	0	0	1	0	0	1	1	0	1	PHILIPS M_	Writes 'M'.
© NXF	12												
° B.V. 2	13	write	data to	CGRAN	1/DDRA	M							
2007. A		1	0	0	1	0	0	1	1	1	1	MICROKO	Writes 'O'.
4 right	14	curso	or or disp	olay shif	ť								
s reserved. 4 of 56		0	0	0	0	0	1	0	0	0	0	MICROKO	Shifts only the cursor pos

g Table 14. 8-bit operation, 1-line display example; using internal reset (character set 'A')

Step	Inst	ruction									Display	Operation
15	curs	or or di	splay sł	nift								
	0	0	0	0	0	1	0	0	0	0	MICROKO	Shifts only the cursor pos
16	write	e data to	CGRA	M/DDF	RAM							
	1	0	0	1	0	0	0	0	1	1	ICROCO	Writes 'C' correction. The
17	curs	or or di	splay sh	nift								
	0	0	0	0	0	1	1	1	0	0	MICROCO	Shifts the display and cur
Z18	curs	or or di	splay sł	nift								
	0	0	0	0	0	1	0	1	0	0	MICROCO_	Shifts only the cursor to the
19	write	e data to	CGRA	M/DDF	RAM							
	1	0	0	1	0	0	1	1	0	1	ICROCOM_	Writes 'M'.
20												
											I	
											1	
21	Retu	ırn Horr	ne									
	0	0	0	0	0	0	0	0	1	0	PHILIPS M	Returns both display and (address 0).

Product data sheet

Step	Instr	uction									Display	Operation
1	powe	er supply	y on (PC	CF2116	is initial	ized by	the inte	rnal res	et func	tion)		Initialized. No display app
2	funct	ion set										Sets to 8-bit operation, se
	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		generator off.
	0	0	0	0	1	1	1	0	0	0		
3	displ	ay on/of	ff contro	I							_	Turns on display and curs initialization.
	0	0	0	0	0	0	1	1	1	0		
4	entry	mode s	set									Sets mode to increment the
											_	cursor to the right at the ti Display is not shifted
	0	0	0	0	0	0	0	1	1	0		Display is not shinted.
5	Write	e data to	CGRAI	M/DDR/	۹M						P_	Writes 'P'. The DDRAM h initialization at power-on. and shifted to the right
	1	0	0	1	0	1	0	0	0	0		
6											 	
7	write	data to	CGRAN	M/DDRA	M						PHILIPS_	Writes 'S'.
	1	0	0	1	0	1	0	0	1	1		
8	set D	DRAM	address	3							PHILIPS	Sets DDRAM address to of the 2nd line.
	0	0	1	1	0	0	0	0	0	0	_	
9	write	data to	CGRAN	// DDR/	AM						PHILIPS	Writes 'M'.
	1	0	0	1	0	0	1	1	0	1	M_	
10	1	0	0	1	0	0	1	1	0	1	M_ 	

46 of 56

P	Table 1	5. 8-	olt ope	ration,	2-line c	display	examp	ie; usir	ng inter	nal res	et		
2116_f	Step	Inst	ruction									Display	Operation
amily_05	11	write	e data to	CGRA	M/ DDF	RAM						PHILIPS	Writes 'O'.
heet		1	0	0	1	0	0	1	1	1	1	MICROCO_	
	12	write	e data to	CGRA	M/ DDF	RAM						PHILIPS	Sets mode for display sh
		0	0	0	0	0	0	0	1	1	1	MICROCO_	
	13	write	e data to	CGRA	M/ DDF	RAM						PHILIPS	Writes 'M'. Display is shi second lines shift togethe
		1	0	0	1	0	0	1	1	0	1	ICROCOM_	
7	14												
ev. 05.	15	retu	m Hom	e								PHILIPS	Returns both display and (address 0).
2		0	0	0	0	0	0	0	0	1	0	MICROCOM	

Rev. 05.01 — 20 July 2007

© NXP B.V. 2007. All rights reserved. 47 of 56

Product da	Table 16.	Exam	ple of l	² C-bus	operati	on; 1-liı	ne displ	lay (usi	ng inter	nal res	et, assumin	g SA0 = V _{SS} [<u>1]</u>)
onpo	Step	Instru	uction								Display	Operation
t da	1	I ² C S	TART									Initialized. No display appears.
lata sheet	2	slave	address	s for writ	e							During the acknowledge cycle SDA
heet		SA6	SA5	SA4	SA3	SA2	SA1	SA0	R/W	Ack		PCF2116.
		0	1	1	1	0	1	0	0	1		
	3	send	a contro	l byte fo	or function	on set						Control byte sets RS and R/W for f
		Co	RS	R/W						Ack		
		0	0	0	Х	Х	Х	Х	Х	1		
	4	functi	on set									Selects 1-line display and VLCD =
		DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Ack		acknowledge cycle starts execution
		0	0	1	Х	0	0	0	0	1		
	5	displa	y on/off	control								Turns on display and cursor. Entire
Re		DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Ack		(blank in ASCII-like character sets)
ev. 0		0	0	0	0	1	1	1	0	1	_	
5.01	6	entry	mode s	et								Sets mode to increment the addres
I		DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Ack		the right at the time of write to the
20 J		0	0	0	0	0	1	1	0	1	_	not snined.
uly 2	7	I ² C S	TART								_	For writing data to DDRAM, RS mu
2007												control byte is needed.
	8	slave	address	s for writ	e							
		SA6	SA5	SA4	SA3	SA2	SA1	SA0	R/W	Ack		
		0	1	1	1	0	1	0	0	1	-	
	9	send	a contro	ol byte fo	or write o	data						
		Со	RS	R/W						Ack		
		0	1	0	Х	Х	Х	Х	Х	1	_	
	10	write	data to l	DDRAM								Writes 'P'. The DDRAM has been
		DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Ack		The cursor is incremented by 1 and
© NXP		0	1	0	1	0	0	0	0	1	P_	
B.V. 2	11	write	data to l	DDRAM								Writes 'H'.
007. A		DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Ack		
1 rights		0	1	0	0	1	0	0	0	1	PH_	

18 of 56

Product data sheet

	Table 16	. Exam	ple of I	² C-bus	operati	on; 1-lir	ne displ	ay (usi	ng inter	nal res	et, assuming	J SA0 = V _{SS} [<u>1]</u>)
2116_fam	Step	Instru	uction								Display	Operation
t data she	12 to 15										 	
et	16	write	data to l	DDRAM								Writes 'S'.
		DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Ack		
		0	1	0	1	0	0	1	1	1	PHILIPS_	
	17	(optio	nal I ² C	stop) I ² (C start +	slave a	ddress f	or write	(as ste	p 8)	PHILIPS_	
	18	contro	ol byte									
		Co	RS	R/W						Ack		
		1	0	0	Х	Х	Х	Х	Х	1	PHILIPS_	
	19	Retur	n Home	;								Sets DDRAM address 0 in Address
7		DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Ack		display to original position. DDRAN
Rev.		0	0	0	0	0	0	1	0	1	<u>P</u> HILIPS	instruction does not update the Da
05.0	20 control byte for read											DDRAM content will be read from
Î		Co	RS	R/W						Ack		The R/W has to be set to 1 while s
20、		0	1	1	Х	Х	Х	Х	Х	1	<u>P</u> HILIPS	
July	21	I ² C S	TART								P <u>H</u> ILIPS	
200	22	slave	address	s for rea	d				During the acknowledge cycle the			
7		SA6	SA5	SA4	SA3	SA2	SA1	SA0	R/W	Ack		the internal I ² C interface to be shift
		0	1	1	1	0	1	0	1	1	P <u>H</u> ILIPS	performed. Therefore the content of
	23	read	data: 8 >	< SCL +	master	acknow	ledge [2]					$8 \times SCL$; content loaded into interfa
		DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Ack		acknowledge cycle is shifted out or
		х	Х	Х	Х	Х	Х	Х	Х	0	PH <u>I</u> LIPS	the I ² C interface.
	24	read	data: 8 >	< SCL +	master	acknow	ledge [2]	1				$8 \times SCL$; code of letter 'H' is read f
		DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Ack		acknowledge code of 'l' is loaded i
0		0	1	0	0	1	0	0	0	0	PHILIPS	
NXP	25	read	data: 8 >	< SCL +	no mas	ter ackn	owledge	e [2]				No master acknowledge; After the
3.V. 20		DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Ack		register is shifted out no internal ac
07. All rights r 49		0	1	0	0	1	0	0	1	1	PHI <u>L</u> IPS	is loaded to the interface register, I updated, Address Counter (AC) is not shifted.
of 5	26	I ² C st	ор								PHI <u>L</u> IPS	

49 of 56

PCF2116_family_05
Product data sheet

Rev. 05.01 — 20 July 2007

© NXP B.V. 2007. All rights reserved. 50 of 56

Step										Description
power	on or u	nknown	state							
wait 2	ms after	· V _{DD} rise	es above	V _{POR}						
RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	BF cannot be checked before this instruction
0	0	0	0	1	1	×	×	×	×	Function set (interface is 8 bits long)
wait 2	ms									
RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	BF cannot be checked before this instruction
0	0	0	0	1	1	×	×	×	×	Function set (interface is 8 bits long)
wait m	nore thar	n 40 μs								
RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	BF cannot be checked before this instruction
0	0	0	0	1	1	×	×	×	×	Function set (interface is 8 bits long)
										BF can be checked after the following instruction checked the waiting time between instructions (see <u>Table 8</u>).
RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Function set (interface is 8 bits long). Specify the
0	0	0	0	1	1	Ν	М	G	0	voltage generator characteristics.
0	0	0	0	0	0	1	0	0	0	Display off.
0	0	0	0	0	0	0	0	0	1	Clear display.
0	0	0	0	0	0	0	1	I/D	S	Entry mode set.

[2] SDA is left at high-impedance by the microcontroller during the READ acknowledge.

[1] X = don't care.

Table 18. Initialization by instruction, 4 bit interface. Not applicable for I²C-bus operation.

N1							
116_fa	Step						Description
mily_0	power-or	n or unkno	wn state				
б	wait 2 m	s after V _{DD}	rises abo	ve V _{POR}			
	RS	R/W	DB7	DB6	DB5	DB4	BF cannot be checked before this instruction
	0	0	0	0	1	1	Function set (interface is 8 bits long)
	wait 2 m	S					
	RS	R/W	DB7	DB6	DB5	DB4	BF cannot be checked before this instruction
	0	0	0	0	1	1	Function set (interface is 8 bits long)
	wait more	e than 40	μs				
	RS	R/W	DB7	DB6	DB5	DB4	BF cannot be checked before this instruction
	0	0	0	0	1	1	Function set (interface is 8 bits long)
							BF can be checked after the following instructions. When the BF is
	DC			DBC			Europhic set (set interface to 4 bits long)
	к о	K/VV		0	DBS		Function set (set interface to 4 bits long).
	0	0	0	0	1	1	
	0	0	0	0	1	0	Function set (interface is 4 bits long).
	0	0	Ν	Μ	G	0	Specify the number of display lines and voltage generator character
	0	0	0	0	0	0	
	0	0	1	0	0	0	Display off.
	0	0	0	0	0	0	Clear display.
	0	0	0	0	0	1	
	0	0	0	0	0	0	Entry mode set.
	0	0	0	1	I/D	S	
	Initializat	ion ends					
	-						

16. Package outline

Not applicable.

17. Handling information

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be completely safe you must take normal precautions appropriate to handling MOS devices; see *JESD625-A and/or IEC61340-5*.

18. Packing information

Table 19.	Tray dimensions (se	ee <mark>Figure 38</mark>)	
Symbol		Description	Value
A		pocket pitch in x direction	5.64 mm
В		pocket pitch in y direction	5.64 mm
С		pocket width in x direction	4.08 mm
D		pocket width in y direction	4.08 mm
E		tray width in x direction	50.8 mm
F		tray width in y direction	50.8 mm
G		cut corner to pocket 1.1 centre	5.66 mm
Н		cut corner to pocket 1.1 centre	5.66 mm
x		number of pockets, x direction	8
у		number of pockets, y direction	8

LCD controller / drivers

19. Revision history

Table 20. Revision histo	ory			
Document ID	Release date	Data sheet status	Change notice	Supersedes
PCF2116_FAM_5.01	<tbd></tbd>	Product data sheet	20070711 (date)	PCF2116_FAM_4
Modifications:	 Character set 	: 'A' in CGROM corrected, Sec	tion 8.2.	
	 Packing information 	mation added, Section 18		
	 The format of guidelines of 	this data sheet has been rede NXP Semiconductors.	signed to comply wi	th the new identity
	 Legal texts have 	ave been adapted to the new c	ompany name wher	e appropriate.
PCF2116_FAM_4	19970407	Product data sheet		PCF2116_3
PCF2116_3	19961025	Product data sheet		PCF2116_2
PCF2116_2	19941010	Product data sheet		PCF2116A_1
PCF2116A_1	19931215	Product data sheet		-

20. Legal information

20.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

20.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

20.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of a NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

20.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

I²C-bus — logo is a trademark of NXP B.V.

21. Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, send an email to: salesaddresses@nxp.com

LCD controller / drivers

22. Contents

1	General description 1
2	Features 1
3	Applications 2
4	Ordering information 2
5	Block diagram 3
6	Pinning information 4
6 1	Pinning 4
6.2	Pin description 5
7	Pin functions
71	PS: register coloct (parallel control)
7.1	RS. register select (parallel control)
73	E: data bus clock
7.3	DB0 to DB7: data bus
7.4	C1 to $C60$: column driver outputs
7.5	R1 to R32: row driver outputs
7.0	
7.0	V _{LCD} . LCD power suppry
7.0	
7.9	
7.10	
7.11	
7.12	
7.13	11: test pad 9
8	Functional description
8.1	LCD supply voltage generator for PCF2116x 9
8.2	Character generator ROM (CGROM) 11
8.3	LCD bias voltage generator
8.4	Oscillator 15
8.5	External clock 15
8.6	Power-on reset 15
8.7	Registers 15
8.8	Busy flag
8.9	Address counter (AC) 16
8.10	Display data RAM (DDRAM) 16
8.11	Character generator RAM (CGRAM) 18
8.12	Cursor control circuit
8.13	Timing generator
8.14	LCD row and column drivers
8.15	Reset function 22
9	Instructions 22
9.1	Clear display
9.2	Return home
9.3	Entry mode set
9.3.1	I/D
9.3.2	S
94	Display on/off control 28
941	D 28
942	C 28
J	2

9.4.3	В 28
9.5	Cursor display shift 28
9.6	Function set 28
9.6.1	DL (parallel mode only) 28
9.6.2	N, M
9.6.3	G 29
9.7	Set CGRAM address
9.8	Set DDRAM address
9.9 9.10	Write data to CGRAM or DDRAM
9.11	Read data from CGRAM or DDRAM
10	Interface to microcontroller (parallel
	interface) 30
11	Interface to microcontroller (I ² C-bus
11 1	Characteristics of the I ² C bus
11.1	Rit transfer 30
11.2	START and STOP conditions.
11.4	System configuration
11.5	Acknowledge 3
11.6	I ² C-bus protocol
12	Limiting values 35
12.1	ESD values 38
13	Static characteristics 35
14	Dynamic characteristics
15	Application information 39
15.1	4-bit operation, 1-line display using internal reset
15.2	8-bit operation, 1-line display using internal reset
15.3	8-bit operation, 2-line display
15.4	I ² C-bus operation, 1-line display 43
15.5	Initializing by instruction
16	Package outline 52
17	Handling information 52
18	Packing information 52
19	Revision history 54
20	Legal information 55
20.1	Data sheet status 55
20.2	Definitions 55
20.3	Disclaimers 55
20.4	I rademarks 55
21	Contact information 55
22	Contents 56

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2007.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

PHILIPS

founded by

Date of release: 20 July 2007 Document identifier: PCF2116_family_05

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for LCD Drivers category:

Click to view products by NXP manufacturer:

Other Similar products are found below :

874390R NJU6432BFH1 LC75821WHS-E LC75827W-E LC75827WS-E LC75829PE-H LC75832WS-TBM-E LC75836WH-E LC75874WHS-SH-E LC75890W-NH LC75897PW-E LC75829PEH-TLA-H LC75829PW-H LC75832E-E LC75832W-E LC75835W-TBM-E LC75852W-E LC75853NEHS-E LC75874W-E LC79430KNE-E LC79431KNE-E FAN7317BMX MAX8795AGCJ/V+ MAX16929AGUI/V+ MAX16929DGUI/V+ PCF8578T/1,112 PCF8533U/2/F2,026 LC75839PW-H LC75853NW-E MAX16928BGUP/V+ LC75884W-E LC75832EH-E LC75890W-2H LC75847T-E LC75832WS-E LC75814VS-TLM-E MAX8726EUE+ MAX8570ELT+T FP7720FE9 TPS65132T6YFFT TPS65132WRVCT BU97501KV-E2 BU9795AFV-E2 BU9799KV-E2 ICL7136CMH+D ICM7211AMIQH+TD ICL7116CQH+D AP5727WG-7 FAN7318AMX BD8153EFV-E2