NXP Semiconductors

Data Sheet: Technical Data

S9KEA128P80M48SF0

KEA128 Sub-Family Data Sheet

Supports the following:

S9KEAZ64AMLK(R),

S9KEAZ128AMLK(R),

S9KEAZ64AVLK(R),

S9KEAZ128AVLK(R),

S9KEAZ64ACLK(R),

S9KEAZ128ACLK(R),

S9KEAZ64AMLH(R),

S9KEAZ128AMLH(R),

S9KEAZ64AVLH(R),

S9KEAZ128AVLH(R),

S9KEAZ64ACLH(R) and

S9KEAZ128ACLH(R)

Key features

- Operating characteristics
 - Voltage range: 2.7 to 5.5 V
 - Flash write voltage range: 2.7 to 5.5 V
 - Temperature range (ambient): -40 to 125°C
- Performance
 - Up to 48 MHz Arm® Cortex-M0+ core
 - Single cycle 32-bit x 32-bit multiplier
 - Single cycle I/O access port
- Memories and memory interfaces
 - Up to 128 KB flash
 - Up to 16 KB RAM
- Clocks
 - Oscillator (OSC) supports 32.768 kHz crystal or 4 MHz to 24 MHz crystal or ceramic resonator; choice of low power or high gain oscillators
 - Internal clock source (ICS) internal FLL with internal or external reference, 37.5 kHz pre-trimmed internal reference for 48 MHz system clock
 - Internal 1 kHz low-power oscillator (LPO)

- System peripherals
 - Power management module (PMC) with three power modes: Run, Wait, Stop
 - Low-voltage detection (LVD) with reset or interrupt, selectable trip points
 - Watchdog with independent clock source (WDOG)
 - Programmable cyclic redundancy check module (CRC)
 - Serial wire debug interface (SWD)
 - Aliased SRAM bitband region (BIT-BAND)
 - Bit manipulation engine (BME)
- Security and integrity modules
 - 80-bit unique identification (ID) number per chip
- Human-machine interface
 - Up to 57 general-purpose input/output (GPIO)
 - Up to 37 general-purpose input/output (GPIO)
 - Up to 22 general-purpose input/output (GPIO)
 - Up to 14 general-purpose input/output (GPIO)
 - Up to 71 general-purpose input/output (GPIO)
 Two 32-bit keyboard interrupt modules (KBI)
 - External interrupt (IRQ)

NXP reserves the right to change the production detail specifications as may be required to permit improvements in the design of its products.

- Analog modules
 - One up to 16-channel 12-bit SAR ADC, operation in Stop mode, optional hardware trigger (ADC)
 - Two analog comparators containing a 6-bit DAC and programmable reference input (ACMP)
- Timers
 - One 6-channel FlexTimer/PWM (FTM)
 - Two 2-channel FlexTimer/PWM (FTM)
 - One 2-channel periodic interrupt timer (PIT)
 - One pulse width timer (PWT)
 - One real-time clock (RTC)
- Communication interfaces
 - Two SPI modules (SPI)
 - Up to three UART modules (UART)
 - Two I2C modules (I2C)
 - One MSCAN module (MSCAN)
- Package options
 - 80-pin LQFP
 - 64-pin LQFP

Table of Contents

1 Ord	dering parts	4.2.2 FTM module timing	16
1.1	Determining valid orderable parts	4.3 Thermal specifications	17
2 Par	t identification	4.3.1 Thermal characteristics	17
2.1	Description4	5 Peripheral operating requirements and behaviors	19
2.2	Format	5.1 Core modules	19
2.3	Fields	5.1.1 SWD electricals	19
2.4	Example5	5.2 External oscillator (OSC) and ICS characteristics	20
3 Rat	ings5	5.3 NVM specifications	22
3.1	Thermal handling ratings5	5.4 Analog	23
3.2	Moisture handling ratings	5.4.1 ADC characteristics	23
3.3	ESD handling ratings6	5.4.2 Analog comparator (ACMP) electricals	25
3.4	Voltage and current operating ratings6	5.5 Communication interfaces	26
4 Ge	neral	5.5.1 SPI switching specifications	26
4.1	Nonswitching electrical specifications	5.5.2 MSCAN	29
	4.1.1 DC characteristics	6 Dimensions	29
	4.1.2 Supply current characteristics	3 6.1 Obtaining package dimensions	29
	4.1.3 EMC performance	5 7 Pinout	30
4.2	Switching specifications	5 7.1 Signal multiplexing and pin assignments	30
	4.2.1 Control timing	5 8 Revision History	30

1 Ordering parts

1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to **nxp.com** and perform a part number search for the following device numbers: KEAZ128.

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

Q B KEA A C FFF M T PP N

2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	S = Automotive qualifiedP = Prequalification
В	Memory type	• 9 = Flash
KEA	Kinetis Auto family	• KEA
A	Key attribute	 Z = M0+ core F = M4 W/ DSP & FPU C= M4 W/ AP + FPU
С	CAN availability	N = CAN not available (Blank) = CAN available

Table continues on the next page...

Field	Description	Values
FFF	Program flash memory size	• 128 = 128 KB
М	Maskset revision	 A = 1st Fab version B = Revision after 1st version
Т	Temperature range (°C)	 C = -40 to 85 V= -40 to 105 M = -40 to 125
PP	Package identifier	 LH = 64 LQFP (10 mm x 10 mm) LK = 80 LQFP (14 mm x 14 mm)
N	Packaging type	R = Tape and reel Blank) = Trays

2.4 Example

This is an example part number:

S9KEAZ128AMLK

3 Ratings

3.1 Thermal handling ratings

Symbol Description		Min.	Max.	Unit	Notes
T _{STG}	T _{STG} Storage temperature		150	°C	1
T _{SDR}	Solder temperature, lead-free	_	260	°C	2

- 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
- 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

3.2 Moisture handling ratings

	Symbol Description		Min.	Max.	Unit	Notes
Ī	MSL	Moisture sensitivity level		3		1

1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

3.3 ESD handling ratings

Symbol	Symbol Description		Max.	Unit	Notes
V _{HBM}	V _{HBM} Electrostatic discharge voltage, human body model		+6000	V	1
V _{CDM}	V _{CDM} Electrostatic discharge voltage, charged-device model		+500	V	2
I _{LAT}	Latch-up current at ambient temperature of °C	-100	+100	mA	3

- Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM).
- 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
- 3. Determined according to JEDEC Standard JESD78D, IC Latch-up Test. The test produced the following results:
 - Test was performed at 125 °C case temperature (Class II).
 - I/O pins pass +100/-100 mA I-test with I_{DD} current limit at 400 mA (V_{DD} collapsed during positive injection).
 - I/O pins pass +50/-100 mA I-test with I_{DD} current limit at 1000 mA for V_{DD}.
 - Supply groups pass 1.5 V_{ccmax}.
 - RESET_B pin was only tested with negative I-test due to product conditioning requirement.

3.4 Voltage and current operating ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in the following table may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this document.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pullup resistor associated with the pin is enabled.

Table 1. Voltage and current operating ratings

Symbol	Description	Min.	Max.	Unit
V_{DD}	Digital supply voltage	-0.3	6.0	V
I _{DD}	Maximum current into V _{DD}	_	120	mA
V _{IN}	Input voltage except true open drain pins	-0.3	V _{DD} + 0.3 ¹	V
	Input voltage of true open drain pins	-0.3	6	V
I _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V_{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V

1. Maximum rating of V_{DD} also applies to V_{IN}.

4 General

4.1 Nonswitching electrical specifications

4.1.1 DC characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Table 2. DC characteristics

Symbol		Descriptions	Min	Typical ¹	Max	Unit	
_	(Operating voltage	_	2.7	_	5.5	V
T _{ramp} ²	МС	CU supply ramp rate	85°C	_	_	85	V/ms
·			105°C	_	_	70	
			125°C	_	_	60	
V _{OH}	Output	All I/O pins, except PTA2	5 V, I _{load} = -5 mA	V _{DD} – 0.8	_	_	V
	high voltage	and PTA3, standard-drive strength	3 V, $I_{load} = -2.5 \text{ mA}$	V _{DD} – 0.8	_	_	V
		High current drive pins,	5 V, I _{load} = -20 mA	V _{DD} – 0.8	_	_	V
		high-drive strength ³	3 V, $I_{load} = -10 \text{ mA}$	$V_{DD} - 0.8$	_	_	V
I _{OHT}	Output	Max total I _{OH} for all ports	5 V	_	_	-100	mA
	high current		3 V	_	_	-60	
V _{OL}	Output	All I/O pins, standard-drive	5 V, I _{load} = 5 mA	_	_	0.8	V
	low voltage	roltage High current drive pins,	3 V, I _{load} = 2.5 mA	_	_	0.8	V
	Voltage		5 V, I _{load} =20 mA	_	_	0.8	V
		high-drive strength ³	3 V, I _{load} = 10 mA	_	_	0.8	V
I _{OLT}	Output	Max total I _{OL} for all ports	5 V		_	100	mA
	low current		3 V	_	_	60	
V _{IH}	Input high	All digital inputs	4.5≤V _{DD} <5.5 V	$0.65 \times V_{DD}$	_	_	V
	voltage		2.7≤V _{DD} <4.5 V	$0.70 \times V_{DD}$	_	_	
V _{IL}	Input low voltage	All digital inputs	4.5≤V _{DD} <5.5 V	_	_	0.35 × V _{DD}	V
			2.7≤V _{DD} <4.5 V	_	_	0.30 × V _{DD}	
V _{hys}	Input hysteresis	All digital inputs	_	$0.06 \times V_{DD}$	_	_	mV
I _{In}	Input leakage current	Per pin (pins in high impedance input mode)	$V_{IN} = V_{DD}$ or V_{SS}	_	0.1	1	μA

Table continues on the next page...

Table 2. DC characteristics (continued)

Symbol		Descriptions		Min	Typical ¹	Max	Unit
ll _{intot} l	Total Pins in high impedance leakage combined for all port pins		$V_{IN} = V_{DD}$ or V_{SS}	_	_	2	μА
R _{PU}	Pullup All digital inputs, when resistors enabled (all I/O pins other than PTA2 and PTA3)		_	30.0	_	50.0	kΩ
R _{PU} ⁴	Pullup resistors	PTA2 and PTA3 pins	_	30.0	_	60.0	kΩ
I _{IC}	DC	Single pin limit	$V_{IN} < V_{SS}, V_{IN} > V_{DD}$	-2	_	2	mA
	injection current ^{5,} 6, 7 Total MCU limit sum of all stres			-5	_	25	
C _{In}	Input capacitance, all pins		_	_	_	7	pF
V _{RAM}	RA	M retention voltage	_	2.0	_	_	V

- 1. Typical values are measured at 25 °C. Characterized, not tested.
- 2. Limit applies to both maximum absolute maximum ramp rate and typical operating conditions.
- 3. Only PTB4, PTB5, PTD0, PTD1, PTE0, PTE1, PTH0, and PTH1 support high current output.
- 4. The specified resistor value is the actual value internal to the device. The pullup value may appear higher when measured externally on the pin.
- All functional non-supply pins, except for PTA2 and PTA3, are internally clamped to V_{SS} and V_{DD}. PTA2 and PTA3 are true
 open drain I/O pins that are internally clamped to V_{SS}.
- 6. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger value.
- 7. Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If the positive injection current (V_{In} > V_{DD}) is higher than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure that external V_{DD} load will shunt current higher than maximum injection current when the MCU is not consuming power, such as when no system clock is present, or clock rate is very low (which would reduce overall power consumption).

Table 3. LVD and POR specification

Symbol	Descr	ription	Min	Тур	Max	Unit
V _{POR}	POR re-ar	m voltage ¹	1.5	1.75	2.0	V
V _{LVDH}	threshold—high	oltage detect range (LVDV =	4.2	4.3	4.4	V
V _{LVW1H}	Falling low- voltage warning	Level 1 falling (LVWV = 00)	4.3	4.4	4.5	V
V _{LVW2H}	threshold— high range	Level 2 falling (LVWV = 01)	4.5	4.5	4.6	V
V _{LVW3H}		Level 3 falling (LVWV = 10)	4.6	4.6	4.7	V
V _{LVW4H}		Level 4 falling (LVWV = 11)	4.7	4.7	4.8	V
V _{HYSH}	High range low- warning h		-	100		mV

Table continues on the next page...

Table 3. LVD and POR specification (continued)

Symbol	Descr	iption	Min	Тур	Max	Unit
V_{LVDL}	Falling low-venthreshold—low ra	oltage detect ange (LVDV = 0)	2.56	2.61	2.66	V
V_{LVW1L}	Falling low- voltage warning	Level 1 falling (LVWV = 00)	2.62	2.7	2.78	V
V _{LVW2L}	threshold—low range	Level 2 falling (LVWV = 01)	2.72	2.8	2.88	V
V _{LVW3L}		Level 3 falling (LVWV = 10)	2.82	2.9	2.98	V
V_{LVW4L}		Level 4 falling (LVWV = 11)	2.92	3.0	3.08	V
V _{HYSDL}		Low range low-voltage detect hysteresis		40	_	mV
V _{HYSWL}	Low range low-voltage warning hysteresis		_	80	_	mV
V_{BG}	Buffered band	dgap output ³	1.14	1.16	1.18	V

- 1. Maximum is highest voltage that POR is guaranteed.
- 2. Rising thresholds are falling threshold + hysteresis.
- 3. voltage Factory trimmed at $V_{DD} = 5.0 \text{ V}$, Temp = 125 °C

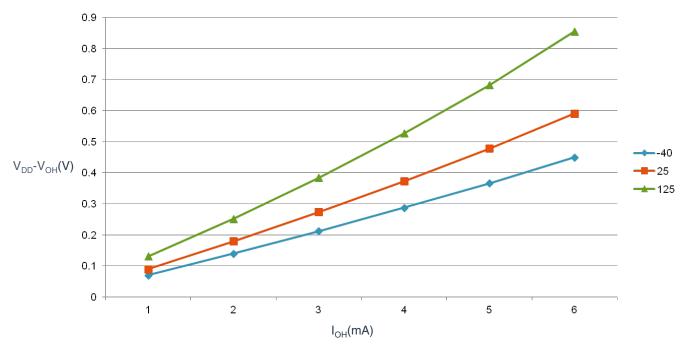


Figure 1. Typical V_{DD} - V_{OH} Vs. I_{OH} (standard drive strength) (V_{DD} = 5 V)

Nonswitching electrical specifications

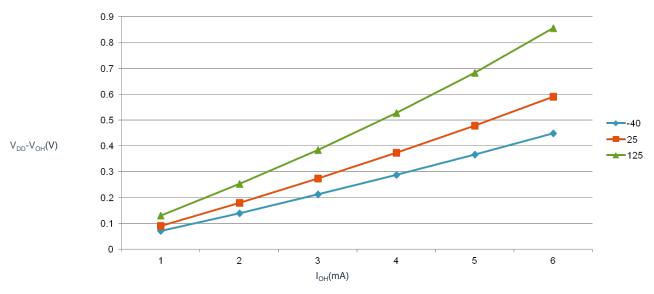


Figure 2. Typical V_{DD} - V_{OH} Vs. I_{OH} (standard drive strength) (V_{DD} = 3 V)

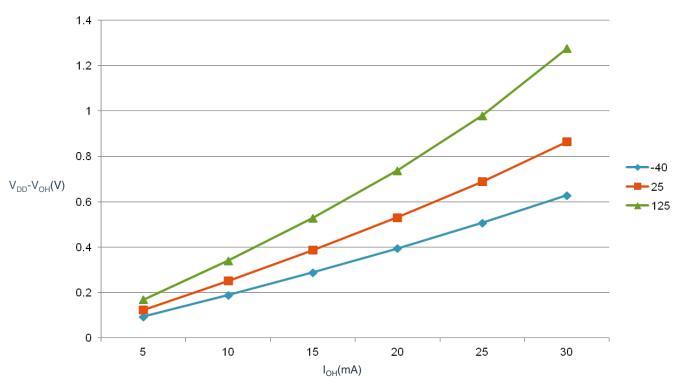


Figure 3. Typical V_{DD} - V_{OH} Vs. I_{OH} (high drive strength) (V_{DD} = 5 V)

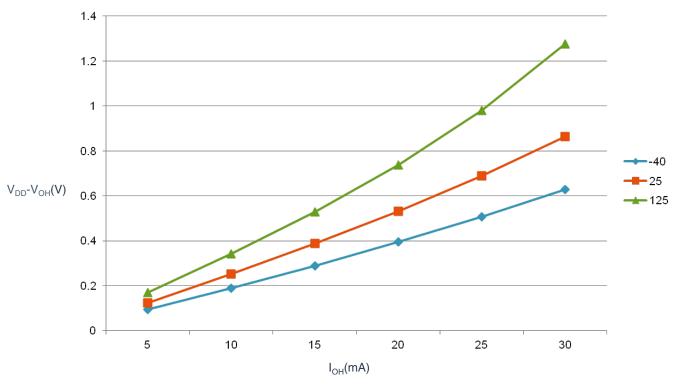


Figure 4. Typical V_{DD} - V_{OH} Vs. I_{OH} (high drive strength) (V_{DD} = 3 V)

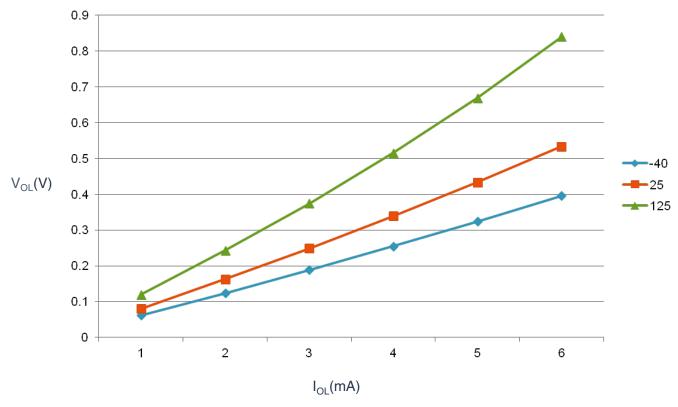


Figure 5. Typical V_{OL} Vs. I_{OL} (standard drive strength) ($V_{DD} = 5 \text{ V}$)

Nonswitching electrical specifications

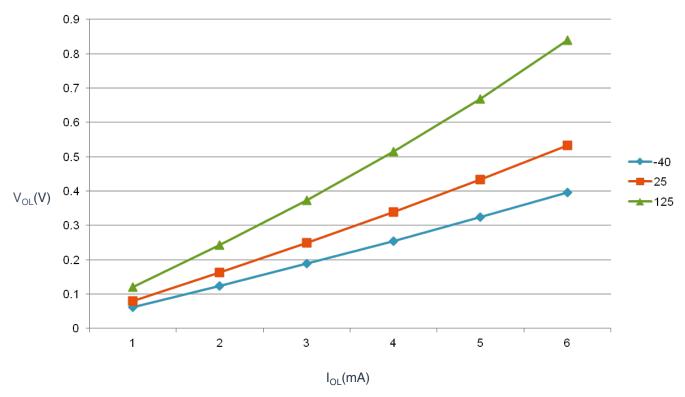


Figure 6. Typical V_{OL} Vs. I_{OL} (standard drive strength) ($V_{DD} = 3 \text{ V}$)

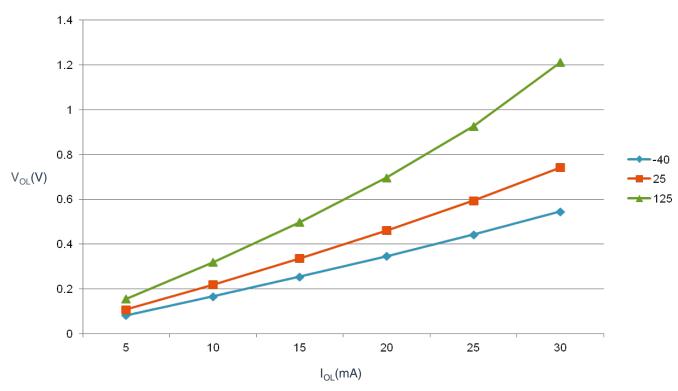


Figure 7. Typical V_{OL} Vs. I_{OL} (high drive strength) ($V_{DD} = 5 \text{ V}$)

13

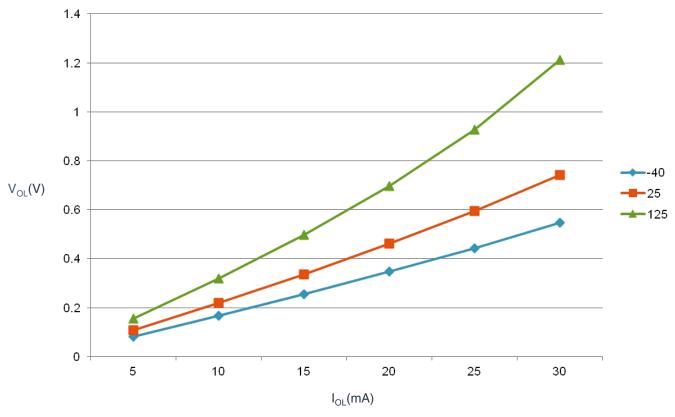


Figure 8. Typical V_{OL} Vs. I_{OL} (high drive strength) ($V_{DD} = 3 \text{ V}$)

4.1.2 Supply current characteristics

This section includes information about power supply current in various operating modes.

Parameter Symbol Core/Bus $V_{DD}(V)$ Typical¹ Max Unit Temp Freq Run supply current FEI 48/24 MHz 5 11.1 -40 to 125 °C RI_{DD} mΑ mode, all modules clocks 24/24 MHz 8 enabled; run from flash 12/12 MHz 5 1/1 MHz 2.4 48/24 MHz 3 11 24/24 MHz 7.9 12/12 MHz 4.9 1/1 MHz 2.3 Run supply current FEI 48/24 MHz -40 to 125 °C RI_{DD} 5 7.8 mΑ mode, all modules clocks 24/24 MHz 5.5 disabled and gated; run from 12/12 MHz 3.8 flash 1/1 MHz 2.3

Table 4. Supply current characteristics

Table continues on the next page...

KEA128 Sub-Family Data Sheet, Rev. 5, 09/2019

Nonswitching electrical specifications

Table 4. Supply current characteristics (continued)

Parameter	Symbol	Core/Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp
		48/24 MHz	3	7.7	_		
		24/24 MHz		5.4	_	_	
		12/12 MHz		3.7	_	1	
		1/1 MHz		2.2	_	1	
Run supply current FBE	RI _{DD}	48/24 MHz	5	14.7	_	mA	-40 to 125 °C
mode, all modules clocks enabled; run from RAM		24/24 MHz		9.8	14.9 ²	1	
enabled, full from hAM		12/12 MHz		6	_	1	
		1/1 MHz		2.4	_		
		48/24 MHz	3	14.6	_	1	
		24/24 MHz		9.6	12.8 ²		
		12/12 MHz		5.9	_		
		1/1 MHz		2.3	_	1	
Run supply current FBE	RI _{DD}	48/24 MHz	5	11.4	_	mA	-40 to 125 °C
mode, all modules clocks disabled and gated; run from		24/24 MHz		7.7	12.5 ²	1	
RAM		12/12 MHz		4.7	_		
		1/1 MHz		2.3	_		
		48/24 MHz	3	11.3	_		
		24/24 MHz		7.6	9.5 ²		
		12/12 MHz		4.6	_		
		1/1 MHz		2.2	_		
Wait mode current FEI	WI_{DD}	48/24 MHz	5	8.4	_	mA	-40 to 125 °C
mode, all modules clocks enabled		24/24 MHz		6.5	7.2 ²		
chabled		12/12 MHz		4.3	_		
		1/1 MHz		2.4	_		
		48/24 MHz	3	8.3	_		
		24/24 MHz		6.4	7.1 ²		
		12/12 MHz		4.2	_		
		1/1 MHz		2.3	_		
Stop mode supply current no	SI_{DD}	_	5	2	170 ²	μΑ	-40 to 125 °C
clocks active (except 1 kHz LPO clock) ³		_	3	1.9	160 ²		-40 to 125 °C
ADC adder to Stop	_	_	5	86	_	μA	-40 to 125 °C
ADLPC = 1			3	82	_		
ADLSMP = 1							
ADCO = 1							
MODE = 10B							
ADICLK = 11B							
ACMP adder to Stop	_	_	5	12	_	μA	-40 to 125 °C
			3	12	_	1	
		l .			1	1	

Table continues on the next page...

Table 4. Supply current characteristics (continued)

Parameter	Symbol	Core/Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp
LVD adder to Stop ⁴	_	_	5	130	_	μΑ	-40 to 125 °C
			3	125	_		

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. The high current is observed at high temperature.
- 3. RTC adder cause <1 μ A I_{DD} increase typically, RTC clock source is 1 kHz LPO clock.
- 4. LVD is periodically woken up from Stop by 5% duty cycle. The period is equal to or less than 2 ms.

4.1.3 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation play a significant role in EMC performance. The system designer must consult the following NXP applications notes, available on **nxp.com** for advice and guidance specifically targeted at optimizing EMC performance.

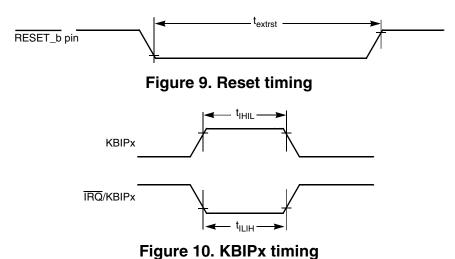
- AN2321: Designing for Board Level Electromagnetic Compatibility
- AN1050: Designing for Electromagnetic Compatibility (EMC) with HCMOS Microcontrollers
- AN1263: Designing for Electromagnetic Compatibility with Single-Chip Microcontrollers
- AN2764: Improving the Transient Immunity Performance of Microcontroller-Based Applications
- AN1259: System Design and Layout Techniques for Noise Reduction in MCU-Based Systems

4.2 Switching specifications

4.2.1 Control timing

Table 5. Control timing

Num	Rating	Symbol	Min	Typical ¹	Max	Unit
1	System and core clock	f _{Sys}	DC	_	48	MHz
2	Bus frequency $(t_{cyc} = 1/f_{Bus})$	f _{Bus}	DC	_	24	MHz
3	Internal low power oscillator frequency	f _{LPO}	0.67	1.0	1.25	KHz
4	External reset pulse width ²	t _{extrst}	1.5 ×	_	_	ns
			t _{cyc}			


Table continues on the next page...

KEA128 Sub-Family Data Sheet, Rev. 5, 09/2019

Table 5.	Control	timing	(continued)
----------	---------	--------	-------------

Num	Rating	ı	Symbol	Min	Typical ¹	Max	Unit
5	Reset low drive		t _{rstdrv}	$34 \times t_{cyc}$	_	_	ns
6	IRQ pulse width	Asynchronous path ²	t _{ILIH}	100	_	_	ns
		Synchronous path ³	t _{IHIL}	$1.5 \times t_{cyc}$	_	_	ns
7	Keyboard interrupt pulse	Asynchronous path ²	t _{ILIH}	100	_	_	ns
	width	Synchronous path	t _{IHIL}	$1.5 \times t_{cyc}$	_	_	ns
8	Port rise and fall time - —		t _{Rise}	_	10.2	_	ns
	Normal drive strength (load = 50 pF) ⁴		t _{Fall}	_	9.5	_	ns
	Port rise and fall time - high	_	t _{Rise}	_	5.4	_	ns
	drive strength (load = 50 pF) ⁴		t _{Fall}	_	4.6	_	ns

- 1. Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.
- 2. This is the shortest pulse that is guaranteed to be recognized as a RESET pin request.
- 3. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.
- Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range -40 °C to 125 °C.

4.2.2 FTM module timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

Table 6. FTM input timing

Function	Symbol	Min	Max	Unit
Timer clock frequency	f _{Timer}	f _{Bus}	f _{Sys}	Hz
External clock frequency	f _{TCLK}	0	f _{Timer} /4	Hz

Table continues on the next page...

Table 6.	FTM input ti	iming (continued)
----------	--------------	-------------------

Function	Symbol	Min	Max	Unit
External clock period	t _{TCLK}	4	_	t _{cyc}
External clock high time	t _{clkh}	1.5	_	t _{cyc}
External clock low time	t _{clkl}	1.5	_	t _{cyc}
Input capture pulse width	t _{ICPW}	1.5	_	t _{cyc}

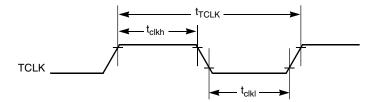


Figure 11. Timer external clock

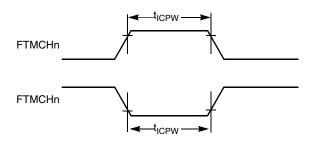


Figure 12. Timer input capture pulse

4.3 Thermal specifications

4.3.1 Thermal characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Thermal specifications

Table 7. Thermal attri	ib	utes
------------------------	----	------

Board type	Symbol	Description	64 LQFP	80 LQFP	Unit	Notes
Single-layer (1S)	$R_{\theta JA}$	Thermal resistance, junction to ambient (natural convection)	71	57	°C/W	1, 2
Four-layer (2s2p)	$R_{\theta JA}$	Thermal resistance, junction to ambient (natural convection)	53	44	°C/W	1, 3
Single-layer (1S)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	59	47	°C/W	1, 3
Four-layer (2s2p)	R _{0JMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	46	38	°C/W	1, 3
_	$R_{\theta JB}$	Thermal resistance, junction to board	35	28	°C/W	4
_	$R_{ heta JC}$	Thermal resistance, junction to case	20	15	°C/W	5
_	$\Psi_{ m JT}$	Thermal characterization parameter, junction to package top outside center (natural convection)	5	3	°C/W	6

- Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per JEDEC JESD51-2 with the single layer board (JESD51-3) horizontal.
- 3. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the solder pad on the bottom of the package. Interface resistance is ignored.
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization.

The average chip-junction temperature (T_I) in °C can be obtained from:

$$T_I = T_A + (P_D \times \theta_{IA})$$

Where:

 $T_A = Ambient temperature, °C$

 θ_{JA} = Package thermal resistance, junction-to-ambient, °C/W

$$P_{\rm D} = P_{\rm int} + P_{\rm I/O}$$

 $P_{int} = I_{DD} \times V_{DD}$, Watts - chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins - user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_I (if $P_{I/O}$ is neglected) is:

$$P_D = K \div (T_J + 273 \, ^{\circ}C)$$

Solving the equations above for K gives:

$$K = P_D \times (T_A + 273 \text{ }^{\circ}C) + \theta_{JA} \times (P_D)^2$$

KEA128 Sub-Family Data Sheet, Rev. 5, 09/2019

19

where K is a constant pertaining to the particular part. K can be determined by measuring P_D (at equilibrium) for an known T_A . Using this value of K, the values of P_D and P_D and P_D are obtained by solving the above equations iteratively for any value of P_D .

5 Peripheral operating requirements and behaviors

5.1 Core modules

5.1.1 SWD electricals

Table 8. SWD full voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	2.7	5.5	V
J1	SWD_CLK frequency of operation			
	Serial wire debug	0	24	MHz
J2	SWD_CLK cycle period	1/J1	_	ns
J3	SWD_CLK clock pulse width			
	Serial wire debug	20	_	ns
J4	SWD_CLK rise and fall times	_	3	ns
J9	SWD_DIO input data setup time to SWD_CLK rise	10	_	ns
J10	SWD_DIO input data hold time after SWD_CLK rise	3	_	ns
J11	SWD_CLK high to SWD_DIO data valid	_	35	ns
J12	SWD_CLK high to SWD_DIO high-Z	5	_	ns

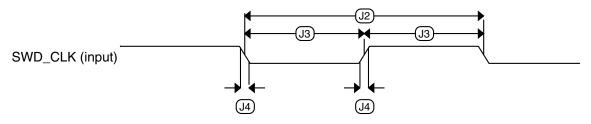


Figure 13. Serial wire clock input timing

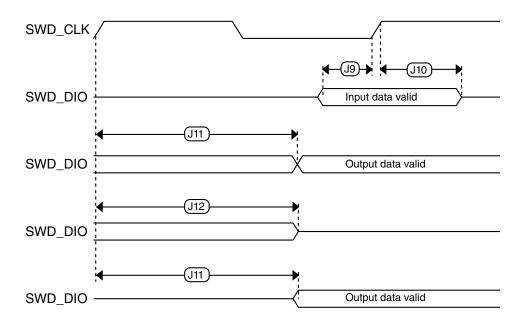


Figure 14. Serial wire data timing

5.2 External oscillator (OSC) and ICS characteristics

Table 9. OSC and ICS specifications (temperature range = -40 to 125 °C ambient)

Num	(Characteristic	Symbol	Min	Typical ¹	Max	Unit
1	Crystal or	Low range (RANGE = 0)	f _{lo}	31.25	32.768	39.0625	kHz
	resonator frequency	High range (RANGE = 1)	f _{hi}	4	_	24	MHz
2	Le	oad capacitors	C1, C2		See Note ²		
3	Feedback resistor	Low Frequency, Low-Power Mode ³	R _F	_	_	_	ΜΩ
		Low Frequency, High-Gain Mode		_	10	_	ΜΩ
		High Frequency, Low-Power Mode		_	1	_	ΜΩ
		High Frequency, High-Gain Mode		_	1	_	ΜΩ
4	Series resistor -	Low-Power Mode ³	R _S	_	0	_	kΩ
	Low Frequency	High-Gain Mode		_	200	_	kΩ
5	Series resistor - High Frequency	Low-Power Mode ³	R _S	_	0	_	kΩ
	Series resistor -	4 MHz		_	0	_	kΩ
	High Frequency, High-Gain Mode	8 MHz		_	0	_	kΩ

Table continues on the next page...

Table 9. OSC and ICS specifications (temperature range = -40 to 125 °C ambient) (continued)

Num		Characteristic	Symbol	Min	Typical ¹	Max	Unit
		16 MHz		_	0	_	kΩ
6	Crystal start-up	Low range, low power	t _{CSTL}	_	1000	_	ms
	time low range = 32.768 kHz	Low range, high gain		_	800	_	ms
	crystal; High	High range, low power	t _{CSTH}	_	3	_	ms
	range = 20 MHz crystal ^{4,5}	High range, high gain		_	1.5	_	ms
7	Internal r	eference start-up time	t _{IRST}	_	20	50	μs
8	Internal reference	ce clock (IRC) frequency trim range	f _{int_t}	31.25	_	39.0625	kHz
9	Internal reference clock frequency, factory trimmed	T = 125 °C, V _{DD} = 5 V	f _{int_ft}	_	37.5	_	kHz
10	DCO output frequency range	FLL reference = fint_t, flo, or fhi/RDIV	f _{dco}	40	_	50	MHz
11	Factory trimmed internal oscillator accuracy	T = 125 °C, V _{DD} = 5 V	Δf _{int_ft}	-0.8	_	0.8	%
12	Deviation of IRC over temperature when trimmed at T = 25 °C, V _{DD} = 5 V	Over temperature range from -40 °C to 125°C	Δf_{int_t}	-1	_	0.8	%
13	Frequency accuracy of DCO output using factory trim value	Over temperature range from -40 °C to 125°C	Δf_{dco_ft}	-2.3	_	0.8	%
14	FLL	acquisition time ^{4,6}	t _{Acquire}	_	_	2	ms
15		f DCO output clock (averaged er 2 ms interval) ⁷	C_{Jitter}	_	0.02	0.2	%f _{dco}

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. See crystal or resonator manufacturer's recommendation.
- 3. Load capacitors (C₁,C₂), feedback resistor (R_F) and series resistor (R_S) are incorporated internally when RANGE = HGO =
- 4. This parameter is characterized and not tested on each device.
- 5. Proper PC board layout procedures must be followed to achieve specifications.
- 6. This specification applies to any time the FLL reference source or reference divider is changed, trim value changed, or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 7. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

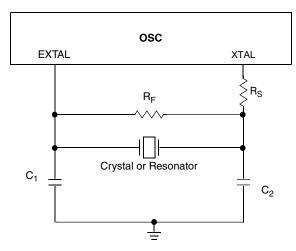


Figure 15. Typical crystal or resonator circuit

5.3 NVM specifications

This section provides details about program/erase times and program/erase endurance for the flash memories.

Table 10. Flash characteristics

Characteristic	Symbol	Min ¹	Typical ²	Max ³	Unit ⁴
Supply voltage for program/erase –40 °C to 125 °C	V _{prog/erase}	2.7	_	5.5	V
Supply voltage for read operation	V _{Read}	2.7	_	5.5	V
NVM Bus frequency	f _{NVMBUS}	1	_	24	MHz
NVM Operating frequency	f _{NVMOP}	0.8	1	1.05	MHz
Erase Verify All Blocks	t _{VFYALL}	_	_	2605	t _{cyc}
Erase Verify Flash Block	t _{RD1BLK}	_	_	2579	t _{cyc}
Erase Verify Flash Section	t _{RD1SEC}	_	_	485	t _{cyc}
Read Once	t _{RDONCE}	_	_	464	t _{cyc}
Program Flash (2 word)	t _{PGM2}	0.12	0.13	0.31	ms
Program Flash (4 word)	t _{PGM4}	0.21	0.21	0.49	ms
Program Once	t _{PGMONCE}	0.20	0.21	0.21	ms
Erase All Blocks	t _{ERSALL}	95.42	100.18	100.30	ms
Erase Flash Block	t _{ERSBLK}	95.42	100.18	100.30	ms
Erase Flash Sector	t _{ERSPG}	19.10	20.05	20.09	ms
Unsecure Flash	t _{UNSECU}	95.42	100.19	100.31	ms
Verify Backdoor Access Key	t _{VFYKEY}	_	_	482	t _{cyc}
Set User Margin Level	t _{MLOADU}	_	_	415	t _{cyc}
FLASH Program/erase endurance T _L to T _H = -40 °C to 125 °C	n _{FLPE}	10 k	100 k	_	Cycles

Table continues on the next page...

Table 10. Flash characteristics (continued)

Characteristic	Symbol	Min ¹	Typical ²	Max ³	Unit ⁴
Data retention at an average junction temperature of T _{Javg} = 85°C after up to 10,000 program/erase cycles	t _{D_ret}	15	100	_	years

- 1. Minimum times are based on maximum $f_{\mbox{\scriptsize NVMOP}}$ and maximum $f_{\mbox{\scriptsize NVMBUS}}$
- 2. Typical times are based on typical $f_{\mbox{\scriptsize NVMOP}}$ and maximum $f_{\mbox{\scriptsize NVMBUS}}$
- 3. Maximum times are based on typical $f_{\mbox{\scriptsize NVMOP}}$ and typical $f_{\mbox{\scriptsize NVMBUS}}$ plus aging
- 4. $t_{cyc} = 1 / f_{NVMBUS}$

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Flash Memory Module section in the reference manual.

5.4 Analog

5.4.1 ADC characteristics

Table 11. 5 V 12-bit ADC operating conditions

Characteri stic	Conditions	Symbol	Min	Typ ¹	Max	Unit	Comment
Reference	• Low	V _{REFL}	V_{SSA}	_	V _{DDA} /2	V	_
potential	• High	V _{REFH}	$V_{DDA}/2$	_	V_{DDA}		
Supply	Absolute	V_{DDA}	2.7	_	5.5	V	_
voltage	Delta to V_{DD} (V_{DD} - V_{DDA})	ΔV_{DDA}	-100	0	+100	mV	_
Input voltage		V _{ADIN}	V_{REFL}	_	V _{REFH}	V	_
Input capacitance		C _{ADIN}	_	4.5	5.5	pF	_
Input resistance		R _{ADIN}	_	3	5	kΩ	_
Analog source	12-bit mode • f _{ADCK} > 4 MHz	R _{AS}	_	_	2	kΩ	External to MCU
resistance	• f _{ADCK} < 4 MHz			_	5		
	10-bit mode • f _{ADCK} > 4 MHz		_	_	5		
	• f _{ADCK} < 4 MHz		_	_	10		
	8-bit mode		_	_	10		
	(all valid f _{ADCK})						
ADC	High speed (ADLPC=0)	f _{ADCK}	0.4	_	8.0	MHz	_
conversion clock frequency	Low power (ADLPC=1)		0.4	_	4.0		

Peripheral operating requirements and behaviors

1. Typical values assume $V_{DDA} = 5.0 \text{ V}$, Temp = 25°C, $f_{ADCK} = 1.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

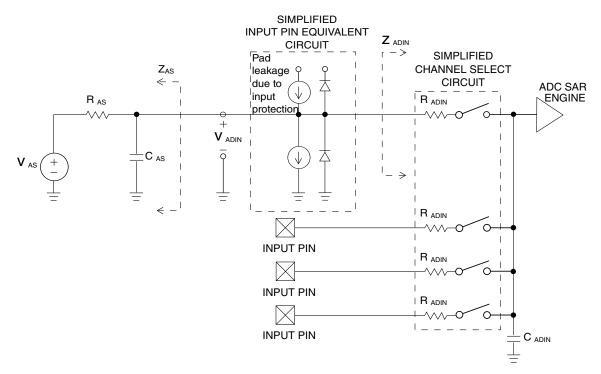


Figure 16. ADC input impedance equivalency diagram

Table 12. 12-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$)

Characteristic	Conditions	Symbol	Min	Typ ¹	Max	Unit
Supply current		I _{DDA}	_	133	_	μΑ
ADLPC = 1						
ADLSMP = 1						
ADCO = 1						
Supply current		I _{DDA}	_	218	_	μΑ
ADLPC = 1						
ADLSMP = 0						
ADCO = 1						
Supply current		I _{DDA}	_	327	_	μΑ
ADLPC = 0						
ADLSMP = 1						
ADCO = 1						
Supply current		I _{DDA}	_	582	990	μΑ
ADLPC = 0						
ADLSMP = 0						
ADCO = 1						
Supply current	Stop, reset, module off	I _{DDA}		0.011	1	μΑ

Table continues on the next page...

Table 12. 12-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

Characteristic	Conditions	Symbol	Min	Typ ¹	Max	Unit
ADC asynchronous clock source	High speed (ADLPC = 0)	f _{ADACK}	2	3.3	5	MHz
	Low power (ADLPC = 1)		1.25	2	3.3	
Conversion time (including sample time)	Short sample (ADLSMP = 0)	t _{ADC}	_	20	_	ADCK cycles
	Long sample (ADLSMP = 1)		_	40	_	
Sample time	Short sample (ADLSMP = 0)	t _{ADS}	_	3.5	_	ADCK cycles
	Long sample (ADLSMP = 1)		_	23.5	_	
Total unadjusted Error ²	12-bit mode	E _{TUE}	_	±5.0	_	LSB ³
	10-bit mode		_	±1.5	_	
	8-bit mode		_	±0.8	_	
Differential Non-	12-bit mode	DNL	_	±1.5	_	LSB ³
Liniarity	10-bit mode		_	±0.4	_	
	8-bit mode		_	±0.15	_	
Integral Non-Linearity	12-bit mode	INL	_	±1.5	_	LSB ³
	10-bit mode		_	±0.4	_	
	8-bit mode		_	±0.15	_	
Zero-scale error ⁴	12-bit mode	E _{ZS}	_	±1.0	_	LSB ³
	10-bit mode		_	±0.2	_	
	8-bit mode		_	±0.35	_	
Full-scale error ⁵	12-bit mode	E _{FS}	_	±2.5	_	LSB ³
	10-bit mode		_	±0.3	_	
	8-bit mode		_	±0.25	_	
Quantization error	≤12 bit modes	E _Q	_	_	±0.5	LSB ³
Input leakage error ⁶	all modes	E _{IL}		I _{In} x R _{AS}		mV
Temp sensor slope	-40 °C–25 °C	m	_	3.266	_	mV/°C
	25 °C–125 °C		_	3.638	_	
Temp sensor voltage	25 °C	V _{TEMP25}	_	1.396	_	V

^{1.} Typical values assume $V_{DDA} = 5.0 \text{ V}$, Temp = 25 °C, $f_{ADCK} = 1.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

^{2.} Includes quantization

^{3. 1} LSB = $(V_{REFH} - V_{REFL})/2^N$

^{4.} $V_{ADIN} = V_{SSA}$ 5. $V_{ADIN} = V_{DDA}$

^{6.} I_{In} = leakage current (refer to DC characteristics)

5.4.2 Analog comparator (ACMP) electricals

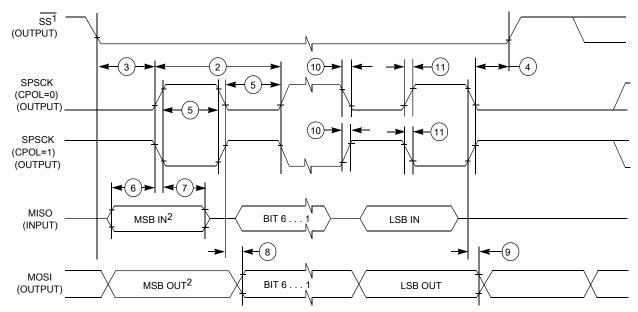
Table 13. Comparator electrical specifications

Characteristic	Symbol	Min	Typical	Max	Unit	
Supply voltage	V_{DDA}	2.7	_	5.5	V	
Supply current (Operation mode)	I _{DDA}	_	10	20	μΑ	
Analog input voltage	V _{AIN}	V _{SS} - 0.3	_	V_{DDA}	V	
Analog input offset voltage	V_{AIO}	_	_	40	mV	
Analog comparator hysteresis (HYST=0)	V _H	_	15	20	mV	
Analog comparator hysteresis V _H (HYST=1)		_	20	30	mV	
Supply current (Off mode)	I _{DDAOFF}	_	60	_	nA	
Propagation Delay	t _D	_	0.4	1	μs	

5.5 Communication interfaces

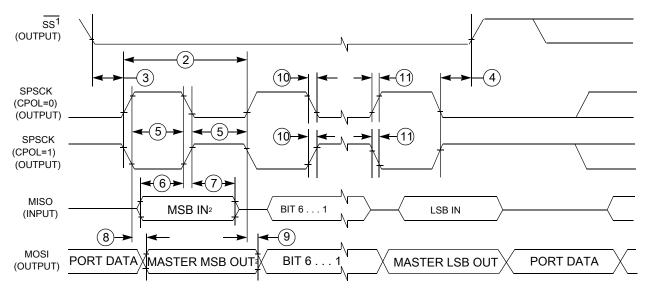
5.5.1 SPI switching specifications

The serial peripheral interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. See the SPI chapter of the chip's reference manual for information about the modified transfer formats used for communicating with slower peripheral devices. All timing is shown with respect to 20% V_{DD} and 80% V_{DD} , unless noted, and 25 pF load on all SPI pins. All timing assumes slew rate control is disabled and high-drive strength is enabled for SPI output pins.


Table 14. SPI master mode timing

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
1	f _{op}	Frequency of operation	f _{Bus} /2048	f _{Bus} /2	Hz	f _{Bus} is the bus clock
2	t _{SPSCK}	SPSCK period	2 x t _{Bus}	2048 x t _{Bus}	ns	$t_{Bus} = 1/f_{Bus}$
3	t _{Lead}	Enable lead time	1/2	_	t _{SPSCK}	_
4	t _{Lag}	Enable lag time	1/2	_	t _{SPSCK}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{Bus} - 30	1024 x t _{Bus}	ns	_
6	t _{SU}	Data setup time (inputs)	8	_	ns	_
7	t _{HI}	Data hold time (inputs)	8	_	ns	_
8	t _v	Data valid (after SPSCK edge)	_	25	ns	_
9	t _{HO}	Data hold time (outputs)	20	_	ns	_

Table continues on the next page...


Table 14. SPI master mode timing (continued)

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
10	t _{RI}	Rise time input	_	t _{Bus} – 25	ns	_
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	_	25	ns	_
	t _{FO}	Fall time output				

- 1. If configured as an output.
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 17. SPI master mode timing (CPHA=0)

- 1.If configured as output
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 18. SPI master mode timing (CPHA=1)

KEA128 Sub-Family Data Sheet, Rev. 5, 09/2019

Table 15. SPI slave mode timing

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
1	f _{op}	Frequency of operation	0	f _{Bus} /4	Hz	f _{Bus} is the bus clock as defined in Control timing.
2	t _{SPSCK}	SPSCK period	4 x t _{Bus}	_	ns	$t_{Bus} = 1/f_{Bus}$
3	t _{Lead}	Enable lead time	1	_	t _{Bus}	_
4	t _{Lag}	Enable lag time	1	_	t _{Bus}	_
5	twspsck	Clock (SPSCK) high or low time	t _{Bus} - 30	_	ns	_
6	t _{SU}	Data setup time (inputs)	15	_	ns	_
7	t _{HI}	Data hold time (inputs)	25	_	ns	_
8	t _a	Slave access time	_	t _{Bus}	ns	Time to data active from high-impedance state
9	t _{dis}	Slave MISO disable time	_	t _{Bus}	ns	Hold time to high- impedance state
10	t _v	Data valid (after SPSCK edge)	_	25	ns	_
11	t _{HO}	Data hold time (outputs)	0	_	ns	_
12	t _{RI}	Rise time input	_	t _{Bus} - 25	ns	_
	t _{Fl}	Fall time input				
13	t _{RO}	Rise time output	_	25	ns	_
	t _{FO}	Fall time output				

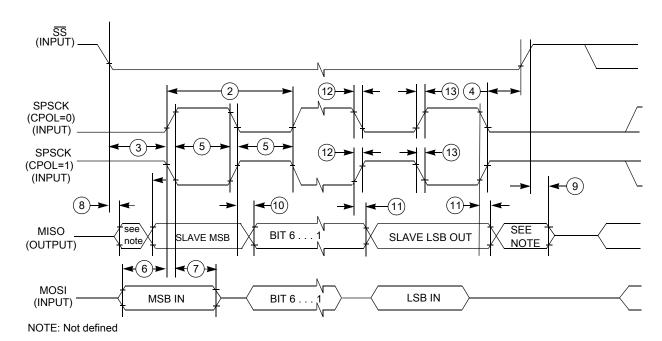


Figure 19. SPI slave mode timing (CPHA = 0)

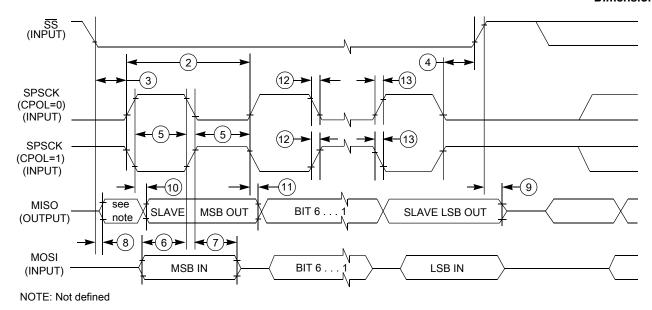


Figure 20. SPI slave mode timing (CPHA=1)

5.5.2 MSCAN

Table 16. MSCAN wake-up pulse characteristics

Parameter	Symbol	Min	Тур	Max	Unit
MSCAN wakeup dominant pulse filtered	t _{WUP}	-	-	1.5	μs
MSCAN wakeup dominant pulse pass	t _{WUP}	5	-	-	μs

6 Dimensions

6.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to **nxp.com** and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
64-pin LQFP	98ASS23234W
80-pin LQFP	98ASS23237W

7 Pinout

7.1 Signal multiplexing and pin assignments

For the pin muxing details see section Signal Multiplexing and Signal Descriptions of KEA128 Reference Manual.

8 Revision History

The following table provides a revision history for this document.

Table 17. Revision History

Rev. No.	Date	Substantial Changes
Rev. 1	11 March 2014	Initial Release
Rev. 2	18 June 2014	 Parameter Classification section is removed. Classification column is removed from all the tables in the document. New section added - Supply current characteristics.
Rev. 3	18 July 2014	 Added supported part numbers. ESD handling ratings section is updated. Figures in DC characteristics section are updated. Specs updated in following tables: Table 9.
Rev. 4	03 Sept 2014	Data Sheet type changed to "Technical Data".
Rev. 5	23 September 2019	Added row T _{ramp} in Table 2.

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to unidentified vulnerabilities. Customers are responsible for the design and operation of their applications and products to reduce the effect of these vulnerabilities on customer's applications and products, and NXP accepts no liability for any vulnerability that is discovered. Customers should implement appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP. the NXP logo. NXP SECURE CONNECTIONS FOR A SMARTER WORLD. COOLFLUX. EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamlQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2014–2019 NXP B.V.

Document Number S9KEA128P80M48SF0 Revision 5, 09/2019

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for ARM Microcontrollers - MCU category:

Click to view products by NXP manufacturer:

Other Similar products are found below:

R7FS3A77C2A01CLK#AC1 CP8363AT MB96F119RBPMC-GSE1 MB9BF122LPMC1-G-JNE2 MB9BF122LPMC-G-JNE2 MB9BF128SAPMC-GE2 MB9BF218TBGL-GE1 MB9BF529TBGL-GE1 26-21/R6C-AT1V2B/CT 5962-8506403MQA MB9AF342MAPMC-G-JNE2 MB96F001YBPMC1-GSE1 MB9BF121KPMC-G-JNE2 VA10800-D000003PCA CP8547AT CY9AF156NPMC-G-JNE2 MB9BF104NAPMC-G-JNE1 CY8C4724FNI-S402T ADUCM410BCBZ-RL7 GD32f303RGT6 NHS3152UK/A1Z MK26FN2M0CAC18R EFM32TG230F32-D-QFN64 EFM32TG232F32-D-QFP64 EFM32TG825F32-D-BGA48 MB9AFB44NBBGL-GE1 MB9BF304RBPMC-G-JNE2 MB9BF416RPMC-G-JNE2 MB9AF155MABGL-GE1 MB9BF306RBPMC-G-JNE2 MB9BF618TBGL-GE1 ATSAMS70N21A-CN MK20DX64VFT5 MK50DX128CMC7 MK51DN256CMD10 MK51DX128CMC7 MK53DX256CMD10 MKL25Z32VFT4 LPC1754FBD80 STM32F030K6T6TR STM32L073VBT6 LPC11U24FET48301, AT91M42800A-33AU AT91SAM7L64-CU ATSAM3N0AA-MU ATSAM3N0CA-CU ATSAM3SD8BA-MU ATSAM4LC2BA-UUR ATSAM4LC4BA-MU ATSAM4LS2AA-MU