TJA1081G

FlexRay node transceiver

Rev. 1 — 28 October 2016

Product data sheet

1. General description

The TJA1081G is a FlexRay transceiver that is fully compliant with FlexRay electrical physical layer specification ISO 17458-4:2013 (see <u>Ref. 1</u> and <u>Ref. 2</u>). It is intended for communication systems from 2.5 Mbit/s to 10 Mbit/s and provides an advanced interface between the protocol controller and the physical bus in a FlexRay network.

The TJA1081G features enhanced low-power modes, optimized for ECUs that are permanently connected to the battery.

The TJA1081G provides differential transmit capability to the network and differential receive capability to the FlexRay controller. It offers excellent EMC performance as well as effective ESD protection.

The TJA1081G actively monitors system performance using dedicated error and status information (that any microcontroller can read), along with internal voltage and temperature monitoring.

The TJA1081G supports mode control as used in the TJA1080A (see Ref. 3) and is fully functionally and pin compatible with the TJA1081B (see Ref. 4).

2. Features and benefits

2.1 Optimized for time triggered communication systems

- Compliant with ISO 17458-4:2013 (see Ref. 2)
- Automotive product qualification in accordance with AEC-Q100
- Data transfer rates from 2.5 Mbit/s to 10 Mbit/s
- Very low ElectroMagnetic Emissions (EME) to support unshielded cable, meeting latest industry standards
- Differential receiver with wide common-mode range for high ElectroMagnetic Immunity (EMI), meeting latest industry standards
- Enhanced EMC performance compared with TJA1081B
- Auto I/O level adaptation to host controller supply voltage V_{IO}
- Can be used in 14 V, 24 V and 48 V powered systems
- Instant transmitter shut-down interface (via BGE pin)
- Independent power supply ramp-up for V_{BAT}, V_{CC} and V_{IO}

2.2 Low-power management

- Low-power management including inhibit switch
- Very low current in Sleep and Standby modes

FlexRay node transceiver

- V_{BAT} operating range: 4.75 V to 60 V
- Gap-free specification
- Local and remote wake-up
- Supports remote wake-up via dedicated data frames
- Wake-up source recognition

2.3 Diagnosis (detection and signaling)

- Enhanced supply monitoring of V_{BAT}, V_{CC} and V_{IO}
- Overtemperature detection
- Short-circuit detection on bus lines
- V_{BAT} power-on flag (first battery connection and cold start)
- Clamping diagnosis on pin TXEN
- BGE status feedback

2.4 Protection

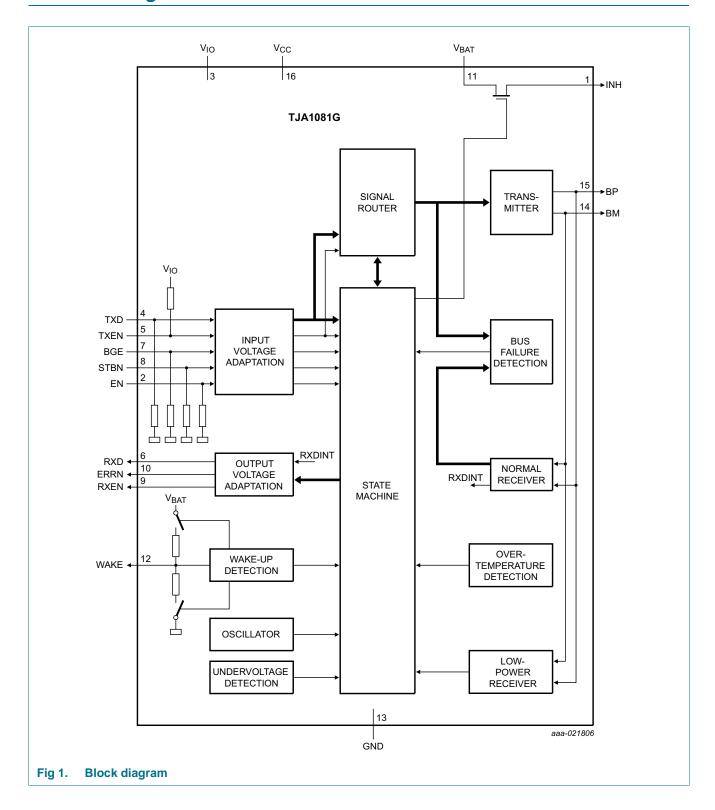
- Bus pins protected against ±6 kV ESD pulses according to IEC 61000-4-2 and HBM
- Pins V_{BAT} and WAKE protected against ±6 kV ESD pulses according to IEC 61000-4-2
- Bus pins protected against transients in automotive environment (according to ISO 7637 class C)
- Bus pins short-circuit proof to battery voltage (14 V, 24 V and 48 V) and ground
- Fail-silent behavior in the event of an undervoltage on pins V_{BAT}, V_{CC} or V_{IO}
- Passive behavior of bus lines while the transceiver is not powered
- No reverse currents from the digital input pins to V_{IO} or V_{CC} when the transceiver is not powered

2.5 Functional classes according to FlexRay electrical physical layer specification (see Ref. 2)

- Bus driver voltage regulator control
- Bus driver bus guardian interface
- Bus driver logic level adaptation
- Bus driver remote wake-up

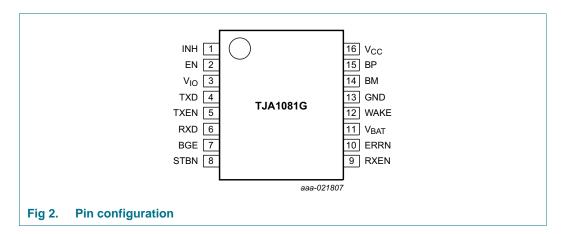
3. Quick reference data

Table 1. Quick reference data


Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC}	supply voltage		4.75	-	5.25	V
V _{uvd(VCC)}	undervoltage detection voltage on pin V_{CC}		4.45	-	4.72	V
I _{CC}	supply current	Normal mode; $V_{BGE} = V_{IO}$; $V_{TXEN} = 0 \text{ V}$	-	37	50	mA
V_{BAT}	battery supply voltage		4.75	-	60	V
$V_{uvd(VBAT)}$	undervoltage detection voltage on pin V _{BAT}		4.45	-	4.715	V
I _{BAT}	battery supply current	low-power modes; no load on pin INH	-	-	55	μА
		normal-power modes	-	-	1	mA
V _{IO}	supply voltage on pin V _{IO}		2.8	-	5.25	V
V _{uvd(VIO)}	undervoltage detection voltage on pin V _{IO}		2.55	-	2.765	V
I _{IO}	supply current on pin V _{IO}	Normal and Receive-only modes; $V_{TXD} = V_{IO}$	-	-	1	mA
V _{ESD}	electrostatic discharge voltage	IEC 61000-4-2 on pins BP and BM to ground	-6	-	+6	kV

4. Ordering information

Table 2. Ordering information


Type number	Package		
	Name	Description	Version
TJA1081GTS	SSOP16	SSOP16: plastic shrink small outline package; 16 leads; body width 5.3 mm	SOT338-1

5. Block diagram

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3. Pin description

Symbol	Pin	Type[1]	Description
INH	1	AO	inhibit output for switching external voltage regulator
EN	2	I	enable input; enabled when HIGH; internal pull-down
V _{IO}	3	Р	supply voltage for V _{IO} voltage level adaptation
TXD	4	I	transmit data input; internal pull-down
TXEN	5	I	transmitter enable input; when HIGH transmitter disabled; internal pull-up
RXD	6	0	receive data output
BGE	7	I	bus guardian enable input; when LOW transmitter disabled; internal pull-down
STBN	8	I	standby input; low-power mode when LOW; internal pull-down
RXEN	9	0	receive data enable output; when LOW bus activity detected
ERRN	10	0	error diagnoses output; when LOW error detected
V_{BAT}	11	Р	battery supply voltage
WAKE	12	Al	local wake-up input; internal pull-up or pull-down (depends on voltage at pin WAKE)
GND	13	G	ground
BM	14	AIO	bus line minus
BP	15	AIO	bus line plus
V _{CC}	16	Р	supply voltage (+5 V)

^[1] AO: analog output; AI: analog input; I: digital input (V_{IO} related); O: digital output (V_{IO} related); I/O: digital input/output (V_{IO} related); AIO: analog input/output; P: power supply; G: ground.

TJA1081G

7. Functional description

The block diagram of the transceiver is shown in Figure 1.

7.1 Operating modes

The TJA1081G supports the following operating modes:

- Normal (normal-power mode)
- Receive-only (normal-power mode)
- Standby (low-power mode)
- Go-to-sleep (low-power mode)
- Sleep (low-power mode)
- PowerOff

7.1.1 Bus activity and idle detection

The following mechanisms for activity and idle detection are valid in normal power modes:

- If the absolute differential voltage on the bus lines is higher than |V_{i(dif)det(act)}| for t_{det(act)(bus)}, activity is detected on the bus lines. Pin RXEN is switched LOW, releasing pin RXD:
 - if, after activity has been detected on the bus, the differential voltage on the bus lines is lower than $V_{\text{IL}(\text{dif})}$, pin RXD will go LOW
 - if, after activity has been detected on the bus, the differential voltage on the bus lines is higher than V_{IH(dif)}, pin RXD will go HIGH
- If the absolute differential voltage on the bus lines is lower than |V_{i(dif)det(act)}| for t_{det(idle)(bus)}, idle is detected on the bus lines. Pin RXEN is switched HIGH, blocking pin RXD (which is switched HIGH or remains HIGH)

7.1.2 Signaling on pin ERRN

Pin ERRN provides either error information or wake-up information. The behavior of ERRN is determined by the host (via pins STBN and EN) and not by the operating mode.

If STBN is LOW, pin ERRN is configured to signal a wake-up event. When STBN and EN are both HIGH, pin ERRN is configured to provide an error alert. Signaling on pin ERRN is described in Table 4.

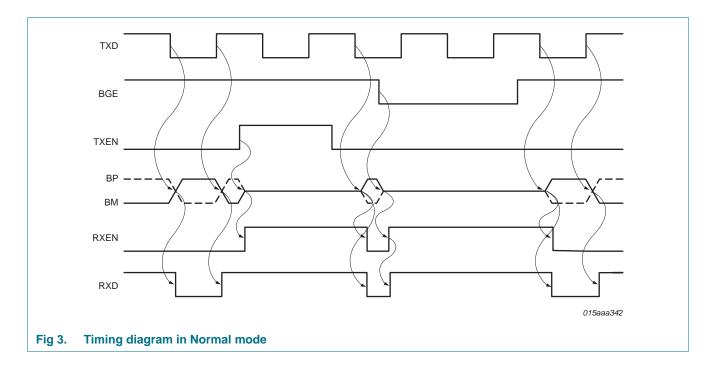
If pin ERRN goes LOW in Standby mode or Sleep mode to signal a wake-up event, the host can switch the TJA1081G to Receive only mode (STBN \rightarrow H) to determine if the wake-up is local or remote. A LOW level on ERRN in Receive only mode (provided the transition to Receive only mode was not triggered by EN going LOW in Normal mode) indicates a remote wake-up was detected. A HIGH level on ERRN signals a local wake-up.

If EN had been forced HIGH after an earlier wake-up event (to switch the TJA1081G to Normal mode), ERRN will always indicate the error detection status (in both Normal and Receive only modes).

Table 4. Signaling on pin ERRN

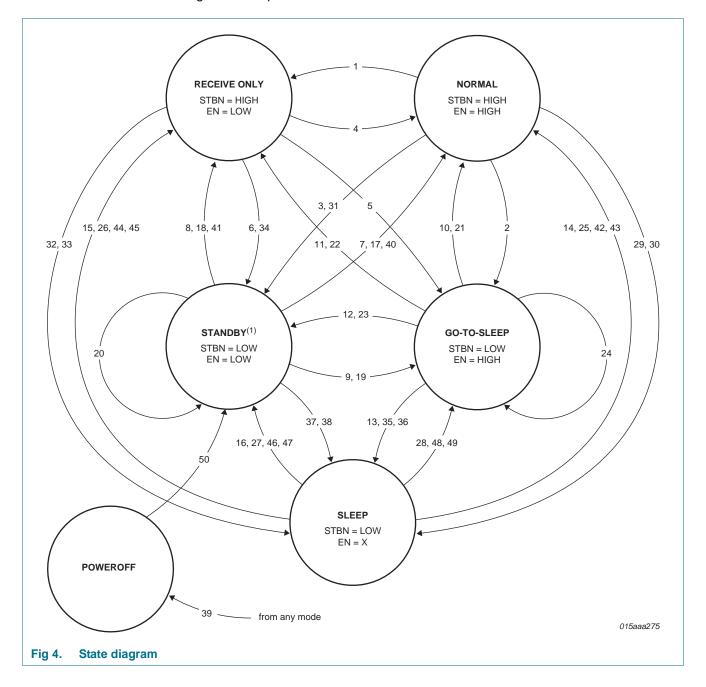
STBN	EN	Conditions	ERRN
Normal	mode ac	tive	
Н	Н	no error detected	HIGH
Н	Н	error detected	LOW
Receive	e only mo	de active	
Н	L	a wake-up was detected (ERRN went LOW in Standby/Sleep mode; EN was LOW) before the TJA1081G was switched to Receive only mode	
		local wake-up detected	HIGH
		remote wake-up detected	LOW
Н	L	EN was forced HIGH previously in response to an earlier wake-up event before the transition to Receive only mode	
		no error detected	HIGH
		error detected	LOW
Standb	y or Sleep	modes active	
L	X	no local or remote wake-up detected	HIGH
L	X	local or remote wake-up detected	LOW

ERRN is in a high-impedance state in PowerOff mode.


7.1.3 Signaling on pins RXEN and RXD

The TJA1081G operating mode determines signaling on pins RXEN and RXD, as detailed in Table 5.

Table 5. RXEN and RXD signaling


-	RXEN		RXD	Transmitter	INH		
mode	LOW	HIGH	LOW	HIGH			
Normal	bus active	bus idle	DATA_0	DATA_1 or idle	enabled	HIGH	
Receive-only	-				disabled		
Go-to-Sleep	local or remote	no local or remote	local or remote	no local or remote			
Standby	wake-up detected[1]	wake-up detected	wake-up detected[1]	wake-up detected			
Sleep	-					floating	
PowerOff	high impedance		HIGH				

[1] Valid if V_{IO} and $(V_{CC}$ or $V_{BAT})$ are present.

7.1.4 Operating mode transitions

State transitions are summarized in the state transition diagram in <u>Figure 4</u> and detailed in <u>Table 6</u> to <u>Table 9</u>. Numbers are used to represent the state transitions. The numbers in the diagram correspond to the numbers in the third column in the tables.

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors N.V. 2016. All rights reserved.

State transitions forced by EN and STBN Table 6.

 \rightarrow indicates the action that initiates a transaction; $1\rightarrow$ and $2\rightarrow$ indicated the consequences of a transaction.

Transition	Direction to	Transition	Pin		Flag			
from mode	mode	number	STBN	EN	UV _{VIO}	UV _{VBAT}	UV _{VCC}	PWON
Normal	Receive-only	1	Н	\rightarrow L	cleared	cleared	cleared	cleared
	Go-to-sleep	2	\rightarrow L	Н	cleared	cleared	cleared	cleared
	Standby	3	\rightarrow L	\rightarrow L	cleared	cleared	cleared	cleared
Receive-only	Normal	4	Н	\rightarrow H	cleared	cleared	cleared	Х
	Go-to-sleep	5	\rightarrow L	\rightarrow H	cleared	cleared	cleared	Х
	Standby	6	\rightarrow L	L	cleared	cleared	cleared	Х
Standby	Normal	7	\rightarrow H	\rightarrow H	cleared	cleared	cleared	Х
:	Receive-only	8	\rightarrow H	L	cleared	cleared	cleared	Х
	Go-to-sleep	9	L	\rightarrow H	cleared	cleared	Х	Х
Go-to-sleep	Normal	10	\rightarrow H	Н	cleared	cleared	cleared	Х
:	Receive-only	11	\rightarrow H	\rightarrow L	cleared	cleared	cleared	Х
	Standby	12	L	\rightarrow L	cleared	cleared	Х	Х
	Sleep	13	L	Н	cleared	cleared	Х	Х
Sleep	Normal	14	\rightarrow H	Н	cleared	cleared	cleared	Х
	Receive-only	15	\rightarrow H	L	cleared	cleared	cleared	Х
	Standby	16	\rightarrow H	Х	cleared	cleared	Х	X

Hold time of go-to-sleep is less than $t_{h(gotosleep)}$.

Hold time of go-to-sleep becomes greater than $t_{\mbox{\scriptsize h(gotosleep)}}.$

 $Transition \ to \ a \ non-low-power \ mode \ is \ blocked \ when \ the \ voltage \ on \ pin \ V_{CC} \ is \ below \ V_{uvd(VCC)} \ for \ longer \ than \ t_{det(uv)(VCC)}.$

© NXP Semiconductors N.V. 2016. All rights reserved.

Table 7.

Table 7. State transitions forced by a wake-up \rightarrow indicates the action that initiates a transaction; $1\rightarrow$ and $2\rightarrow$ indicated the consequences of a transaction.

Transition	Direction to			Flag	Flag				
from mode	mode	number	STBN	EN	UV _{VIO}	UV _{VBAT}	UV _{VCC}	PWON	
Standby	Normal	17	Н	Н	cleared	cleared	1 → cleared	X	
	Receive-only	18	Н	L	cleared	cleared	1 → cleared	Χ	
	Go-to-sleep	19	L	Н	cleared	cleared	1 → cleared	X	
	Standby	20	L	L	cleared	cleared	1 → cleared	X	
Go-to-sleep	Normal	21	Н	Н	cleared	cleared	1 → cleared	X	
	Receive-only	22	Н	L	cleared	cleared	1 → cleared	X	
	Standby	23	L	L	cleared	cleared	1 → cleared	X	
	Go-to-sleep	24	L	Н	cleared	cleared	1 → cleared	X	
Sleep	Normal	25	Н	Н	1 → cleared	1 → cleared	1 → cleared	X	
	Receive-only	26	Н	L	1 → cleared	1 → cleared	1 → cleared	X	
	Standby	27	L	L	1 → cleared	1 → cleared	1 → cleared	Χ	
	Go-to-sleep	28	L	Н	1 → cleared	$1 \rightarrow cleared$	1 → cleared	X	

^[1] Setting the wake flag clears the $\rm UV_{VIO},\, \rm UV_{VBAT}$ and $\rm UV_{VCC}$ flags.

Transition via Standby mode.

© NXP Semiconductors N.V. 2016. All rights reserved.

Table 8. State transitions forced by an undervoltage condition

ightarrow indicates the action that initiates a transaction; 1ightarrow and 2ightarrow indicated the consequences of a transaction.

Transition from	Direction to	Transition	Flag	Flag					
mode	mode	number	UV _{VIO}	UV _{VBAT}	UV _{vcc}	PWON			
Normal	Sleep	29	→ set	cleared	cleared	cleared			
	Sleep	30	cleared	→ set	cleared	cleared			
	Standby	31	cleared	cleared	\rightarrow set	cleared			
Receive-only	Sleep	32	\rightarrow set	cleared	cleared	X			
	Sleep	33	cleared	→ set	cleared	X			
	Standby	34	cleared	cleared	\rightarrow set	X			
Go-to-sleep	Sleep	35	\rightarrow set	cleared	cleared	X			
	Sleep	36	cleared	→ set	cleared	X			
Standby	Sleep	37	\rightarrow set	cleared	X	X			
	Sleep	38	cleared	→ set	X	X			
Х	PowerOff	39	X	Х	Х	X			

- $\mbox{UV}_{\mbox{VIO}}, \mbox{UV}_{\mbox{VBAT}}$ or $\mbox{UV}_{\mbox{VCC}}$ detected clears the wake flag.
- Transition already completed when the voltage on pin V_{CC} is below $V_{uvd(VCC)}$ for longer than $t_{det(uv)(VCC)}$.
- $\mathsf{UV}_{\mathsf{VIO}}$ overrules $\mathsf{UV}_{\mathsf{VCC}}.$
- $\mathsf{UV}_{\mathsf{VBAT}}$ overrules $\mathsf{UV}_{\mathsf{VCC}}.$
- V_{DIG} (the internal digital supply voltage to the state machine) < $V_{\text{th(det)POR}}$.

All information provided in this document is subject to legal disclaimers

© NXP Semiconductors N.V. 2016. All rights reserved.

Table 9. State transitions forced by an undervoltage recovery

 \rightarrow indicates the action that initiates a transaction; \rightarrow 1 and \rightarrow 2 are the consequences of a transaction.

Transition	Direction to	Transition	Pin		Flag			
from mode	mode	number	STBN	EN	UV _{VIO}	UV _{VBAT}	UV _{VCC}	PWON
Standby	Normal	40	Н	Н	cleared	cleared	→ cleared	X
	Receive-only	41	Н	L	cleared	cleared	\rightarrow cleared	Х
Sleep	Normal	42	Н	Н	cleared	\rightarrow cleared	cleared	Х
	Normal	43	Н	Н	\rightarrow cleared	cleared	cleared	Х
	Receive-only	44	Н	L	cleared	→ cleared	cleared	X
	Receive-only	45	Н	L	→ cleared	cleared	cleared	Х
	Standby	46	L	L	cleared	→ cleared	cleared	Х
	Standby	47	L	L	→ cleared	cleared	cleared	Х
	Go-to-sleep	48	L	Н	cleared	→ cleared	cleared	Х
	Go-to-sleep	49	L	Н	→ cleared	cleared	cleared	Х
PowerOff	Standby	50	X	Х	X	X	X	\rightarrow set

- $[1] \quad \text{Transition already completed when the voltage on pin V_{CC} is above $V_{uvr(VCC)}$ for longer than $t_{rec(uv)(VCC)}$. }$
- The voltage on pin V_{BAT} is above $V_{uvr(VBAT)}$ for longer than $t_{rec(uv)(VBAT)}$ AND V_{DIG} (the internal digital supply voltage to the state machine) > V_{tf}

FlexRay node transceiver

7.1.5 Normal mode

In Normal mode, the transceiver is able to transmit and receive data via bus lines BP and BM. The output of the normal receiver is connected directly to pin RXD.

Transmitter behavior in Normal mode, with no TXEN timeout (see <u>Section 7.4.7</u>) and the temperature flag not set (TEMP HIGH = 0; see <u>Table 11</u>), is detailed in <u>Table 10</u>.

In this mode, pin INH is set HIGH.

Table 10. Transmitter function table

BGE	TXEN	TXD	Transmitter
L	X	X	transmitter is disabled
X	Н	X	transmitter is disabled
Н	L	Н	transmitter is enabled; the bus lines are actively driven; BP is driven HIGH and BM is driven LOW
Н	L	L	transmitter is enabled; the bus lines are actively driven; BP is driven LOW and BM is driven HIGH

The first LOW level detected on pin TXD when pin BGE is HIGH and pin TXEN is LOW activates the transmitter.

7.1.6 Receive-only mode

In Receive-only mode, the transceiver can only receive data. The transmitter is disabled, regardless of the voltage levels on pins BGE and TXEN.

In this mode, pin INH is set HIGH.

7.1.7 Standby mode

Standby mode is a low-power mode featuring very low current consumption. In this mode, the transceiver cannot transmit or receive data. The low-power receiver is activated to monitor the bus for wake-up patterns.

A transition to Standby mode can be triggered by applying the appropriate levels on pins EN and STBN (see <u>Figure 4</u> and <u>Table 6</u>) or if an undervoltage is detected on pin V_{CC} (see <u>Figure 4</u> and <u>Section 7.1.9</u>).

In this mode, pin INH is set HIGH.

If the wake flag is set, pins RXEN and RXD are driven LOW; otherwise pins RXEN and RXD are set HIGH (see Section 7.2).

7.1.8 Go-to-sleep mode

In this mode, the transceiver behaves as in Standby mode. If Go-to-sleep mode remains active longer than the go-to-sleep hold time $(t_{h(gotosleep)})$ and the wake flag has been cleared previously, the transceiver switches to Sleep mode regardless of the voltage on pin EN.

7.1.9 Sleep mode

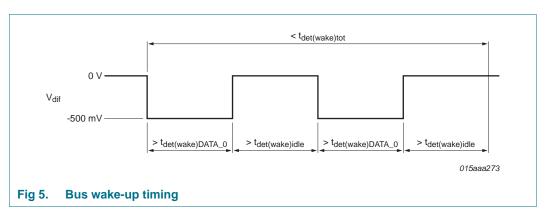
Sleep mode is a low-power mode. The only difference between Sleep mode and Standby mode is that pin INH is set floating in Sleep mode. A transition to Sleep mode is triggered from all other modes when the UV_{VIO} flag or the UV_{VBAT} flag is set (see <u>Table 8</u>).

FlexRay node transceiver

When the wake flag is set and V_{IO} is valid, the undervoltage flags are reset. The transceiver switches from Sleep mode to the mode indicated by the levels on pins EN and STBN (see Table 8).

7.2 Wake-up mechanism

From Sleep mode (pin INH floating), the transceiver enters Standby mode if the wake flag is set. Consequently, pin INH is switched on (HIGH).

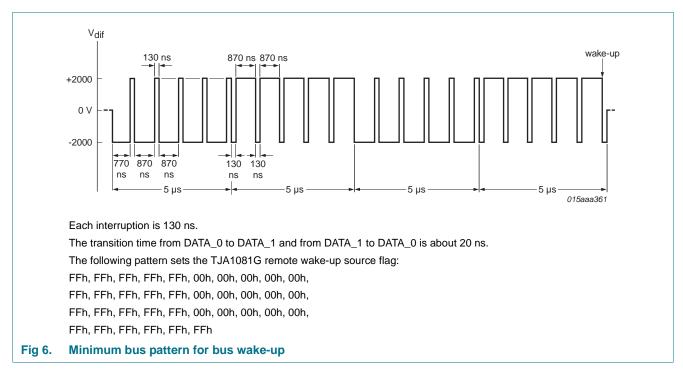

If an undervoltage is not detected on pins V_{IO} , V_{CC} or V_{BAT} , the transceiver switches immediately to the mode indicated by the levels on pins EN and STBN.

In Standby, Go-to-sleep and Sleep modes, pins RXD, RXEN and ERRN are driven LOW if the wake flag is set.

7.2.1 Remote wake-up

7.2.1.1 Bus wake-up via wake-up pattern

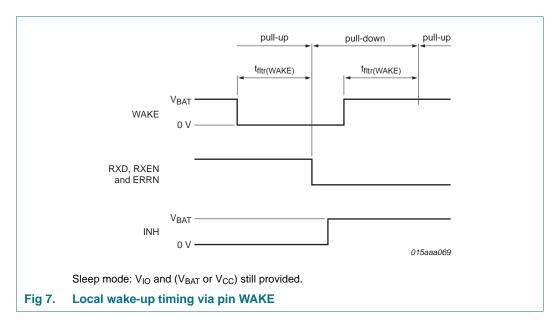
A valid wake-up pattern on the bus triggers a remote wake-up. A valid remote wake-up pattern consists of a DATA_0, DATA_1 or idle, DATA_0, DATA_1 or idle sequence. The DATA_0 phases must last at least $t_{det(wake)DATA_0}$ and the DATA_1 or idle phases at least $t_{det(wake)idle}$. The entire sequence must be completed within $t_{det(wake)tot}$.



7.2.1.2 Bus wake-up via dedicated FlexRay data frame

If the TJA1081G receives a dedicated data frame that emulates a valid wake-up pattern as detailed Figure 6, the remote wake-up source flag is set.

Due to the Byte Start Sequence (BSS) preceding each byte, the DATA_0 and DATA_1 phases for the wake-up symbol are interrupted every 1 μ s. For 10 Mbit/s, the maximum interruption time is 130 ns. Such interruptions do not prevent the transceiver from recognizing the wake-up pattern in the payload of a data frame.


The remote wake-up source flag is not set if an invalid wake-up pattern is received.

7.2.2 Local wake-up via pin WAKE

If the voltage on pin WAKE is lower than $V_{th(det)(WAKE)}$ for longer than $t_{fltr(WAKE)}$ (falling edge on pin WAKE), a local wake-up event on pin WAKE is detected. At the same time, the biasing of this pin is switched to pull-down.

If the voltage on pin WAKE is higher than $V_{th(det)(WAKE)}$ for longer than $t_{fltr(WAKE)}$, the biasing of this pin is switched to pull up and a local wake-up is not detected.

FlexRay node transceiver

7.3 Fail-silent behavior

To ensure fail-silent behavior, a reset mechanism for the digital state machine has been implemented along with undervoltage detection.

If an undervoltage is detected on pins V_{CC} , V_{IO} and/or V_{BAT} , the transceiver switches to a low-power mode. This action ensures that the transmitter and receiver are passive when an undervoltage is detected and that their behavior is defined.

The digital state machine is supplied by V_{CC} , V_{IO} or V_{BAT} . Therefore, the digital state machine is properly supplied as long as the voltage on pin V_{CC} , V_{IO} or V_{BAT} remains above 4.5 V.

If the voltage on all pins (i.e. V_{CC} , V_{IO} and V_{BAT}) breaks down, a reset signal is transmitted to the digital state machine. The reset signal is transmitted as soon as the internal supply voltage to the digital state machine is no longer high enough to guarantee proper operation. This precaution ensures that the digital state machine is passive, and its behavior defined, when an undervoltage is detected.

7.3.1 V_{BAT} undervoltage

If the UV_{VBAT} flag is set, the transceiver enters Sleep mode (pin INH is switched off) regardless of the voltage levels on pins EN and STBN. If the undervoltage recovers, the transceiver switches to the mode determined by the voltages on pins EN and STBN.

7.3.2 V_{CC} undervoltage

If the UV_{VCC} flag is set, the transceiver switches to Standby mode regardless of the voltage levels on pins EN and STBN. If the undervoltage recovers or the wake flag is set, mode switching via pins EN and STBN is again enabled.

7.3.3 V_{IO} undervoltage

If the voltage on pin V_{IO} is lower than $V_{uvd(VIO)}$ for longer than $t_{det(uv)(VIO)}$ (even if the UV_{VIO} flag is reset) pins EN, STBN, TXD and BGE are set LOW (internally) and pin TXEN is set HIGH (internally). If the UV_{VIO} flag is set, the transceiver enters Sleep mode (pin INH is switched off). If the undervoltage recovers or the wake flag is set, mode switching via pins EN and STBN is again enabled.

7.4 Flags

7.4.1 Local wake-up source flag

The local wake-up source flag can only be set in a low-power mode. When a wake-up event is detected on pin WAKE (see <u>Section 7.2.2</u>), the local wake-up source flag is set. The local wake-up source flag is reset by entering a low-power mode.

7.4.2 Remote wake-up source flag

The remote wake-up source flag can only be set in a low-power mode if pin V_{BAT} is within its operating range. When a remote wake-up event is detected on the bus lines (see Section 7.2.1), the remote wake-up source flag is set. The remote wake-up source flag is reset by entering a low-power mode.

FlexRay node transceiver

7.4.3 Wake flag

The wake flag is set if the local or remote wake-up source flag is set. The wake flag is reset by entering a low-power mode or by setting one of the undervoltage flags.

7.4.4 Power-on flag

If the internal supply voltage to the digital section rises above the minimum operating level, the PWON power-on flag is set. The PWON flag is reset when the TJA1081G enters Normal mode.

7.4.5 Temperature medium flag

If the junction temperature exceeds $T_{j(warn)(medium)}$ in a normal-power mode, the temperature medium flag is set. The temperature medium flag is reset when the junction temperature drops below $T_{j(warn)(medium)}$ (in a normal-power mode or after the status register has been read in a low-power mode). No action is taken when this flag is set.

7.4.6 Temperature high flag

If the junction temperature exceeds $T_{j(dis)(high)}$ in a normal-power mode, the temperature high flag is set. If a negative edge is applied to pin TXEN while the junction temperature is below $T_{i(dis)(high)}$ in a normal-power mode, the temperature high flag is reset.

The transmitter is disabled when the temperature high flag is set.

7.4.7 TXEN clamped flag

If pin TXEN is LOW for longer than $t_{detCL(TXEN)}$, the TXEN clamped flag is set. If pin TXEN is HIGH, the TXEN clamped flag is reset. The transmitter is disabled when the TXEN clamped flag is set.

7.4.8 Bus error flag

The bus error flag is set if pin TXEN is LOW, pin BGE is HIGH and the data received on the bus lines (pins BP and BM) is different to that received on pin TXD. The transmission of any valid communication element, including a wake-up pattern, is not detected as a bus error.

The bus error flag is reset if the data on the bus lines (pins BP and BM) is the same as on pin TXD or if the transmitter is disabled. No action is taken when the bus error flag is set.

7.4.9 UV_{VBAT} flag

If the voltage on pin V_{BAT} is lower than $V_{uvd(VBAT)}$ for longer than $t_{det(uv)(VBAT)}$, the UV_{VBAT} flag is set. The UV_{VBAT} flag is reset if the voltage is higher than $V_{uvr(VBAT)}$ for longer than $t_{to(uvr)(VBAT)}$ or by setting the wake flag; see <u>Section 7.3.1</u>.

7.4.10 UV_{VCC} flag

In a non-low-power mode, the UV_{VCC} flag is set if the voltage on pin V_{CC} is lower than $V_{uvd(VCC)}$ for longer than $t_{det(uv)(VCC)}$. In a low-power mode, the UV_{VCC} flag is set if the voltage on pin V_{CC} is lower than $V_{uvd(VCC)}$ for longer than $t_{to(uvd)(VCC)}$. The UV_{VCC} flag is reset if the voltage on pin V_{CC} is higher than $V_{uvr(VCC)}$ for longer than $t_{to(uvr)(VCC)}$ or the wake flag is set; see Section 7.3.2.

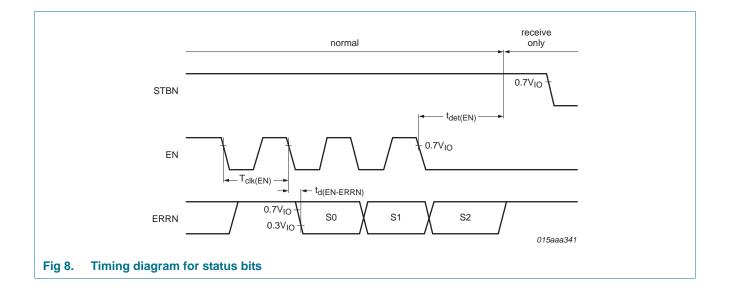
7.4.11 UV_{VIO} flag

If the voltage on pin V_{IO} is lower than $V_{uvd(VIO)}$ for longer than $t_{to(uvd)(VIO)}$, the UV_{VIO} flag is set. The UV_{VIO} flag is reset if the voltage on pin V_{IO} is higher than $V_{uvr(VIO)}$ for longer than $t_{to(uvr)(VIO)}$ or the wake flag is set; see Section 7.3.3.

7.5 Status register

Pin ERRN goes LOW when one or more of status bits S4 to S10 is set. The contents of the status register (<u>Table 11</u>) can be read out on pin ERRN using the input signal on pin EN as a clock. The timing diagram is shown in Figure 8.

The status register is accessible if:


- UV_{VIO} flag is not set and the voltage on pin V_{IO} is between 4.75 V and 5.25 V
- UV_{VCC} flag is not set and the voltage on pin V_{IO} is between 2.8 V and 4.75 V

If an edge is not detected on pin EN for $t_{det(EN)}$ after reading the status register, status bits S4 to S10 are cleared provided the corresponding flags have been reset.

Table 11. Status bits

Bit number	Status bit	Description
S0	LOCAL WAKEUP	local wake-up source flag is redirected to this bit
S1	REMOTE WAKEUP	remote wake-up source flag is redirected to this bit
S2	-	not used; always set
S3	PWON	status bit set means that PWON flag has been set previously
S4	BUS ERROR	status bit set means that bus error flag has been set previously
S5	TEMP HIGH	status bit set means temperature high flag has been set previously
S6	TEMP MEDIUM	status bit set means that temperature medium flag has been set previously
S7	TXEN CLAMPED	status bit set means that TXEN clamped flag has been set previously
S8	UVVBAT	status bit set means UV _{VBAT} flag has been set previously
S9	UVVCC	status bit set means UV _{VCC} flag has been set previously
S10	UVVIO	status bit set means UV _{VIO} flag has been set previously
S11	BGE FEEDBACK	BGE feedback (status bit reset if pin BGE LOW; status bit set if pin BGE HIGH)
S12	-	not used; always reset

FlexRay node transceiver

8. Limiting values

Table 12. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). All voltages are referenced to ground.

Symbol	Parameter	Conditions		Min	Max	Unit
V _x	voltage on pin x	on pin V _{BAT}	[1]	-0.3	+60	V
		on pins V _{CC} , V _{IO} , BGE, TXEN, TXD, EN and STBN	[1]	-0.3	+5.5	V
		on pins INH, WAKE	[1]	-0.3	$V_{BAT} + 0.3$	V
		on pins ERRN, RXD and RXEN	[1]	-0.3	$V_{IO} + 0.3$	V
		on pins BP and BM with resect to pins V_{BAT} , WAKE, INH, GND and each other	[1]	-60	+60	V
I _{O(INH)}	output current on pin INH			-1	-	mΑ
I _{o(WAKE)}	output current on pin WAKE	pin GND not connected		-15	-	mΑ
V _{trt}	transient voltage	on pins BM and BP	[2]			
		pulse 1		-100	-	V
		pulse 2a		-	75	V
		pulse 3a		-150	-	V
		pulse 3b		-	100	V
T _{stg}	storage temperature			-55	+150	°C
T _{vj}	virtual junction temperature		[3]	-40	+150	°C
T _{amb}	ambient temperature			-40	+125	°C
V _{ESD}	electrostatic discharge	IEC 61000-4-2 (150 pF, 330 Ω)	[4]			
	voltage	on pins BP and BM to ground		-6.0	+6.0	kV
		on pin V _{BAT} to ground	[5]	-6.0	+6.0	kV
		on pin WAKE to ground	[6]	-6.0	+6.0	kV
		Human Body Model (HBM); 100 pF, 1.5 kΩ	[7]			
		on pins BP and BM to ground		-6.0	+6.0	kV
		on pins V _{BAT} and WAKE to ground		-4.0	+4.0	kV
		on any other pin		-2.0	+2.0	kV
		Machine Model (MM); 200 pF, 0.75 μ H, 10 Ω ; any pin	[8]	-100	+100	V
		Charged Device Model (CDM); field induced charge; 4 pF	[9]			
		on corner pins		-750	+750	V
		on any other pin		-500	+500	V

^[1] The device can sustain voltages up to the specified values over the product lifetime, provided applied voltages (including transients) never exceed these values.

- [4] According to TS 62228 (2007), Section 4.3; DIN EN IEC 61000-4-2.
- [5] With 100 nF from V_{BAT} to GND.
- [6] With 3.3 $k\Omega$ in series.
- [7] According to AEC-Q100-002.
- [8] According to AEC-Q100-003.
- [9] According to AEC-Q100-011 Rev-C1. The classification level is C4B.

TJA1081G

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors N.V. 2016. All rights reserved.

^[2] According to TS 62228 (2007), Section 4.2.4; parameters for standard pulses defined in ISO 7637-2:2004-09-15.

^[3] In accordance with IEC 60747-1. An alternative definition of T_{vj} is: $T_{vj} = T_{amb} + P \times R_{th(j-a)}$, where $R_{th(j-a)}$ is a fixed value to be used for the calculation of T_{vj} . The rating for T_{vj} limits the allowable combinations of power dissipation (P) and ambient temperature (T_{amb}).

9. Thermal characteristics

Table 13. Thermal characteristics

Symbol	Parameter	Conditions	Тур	Unit
R _{th(j-a)}	thermal resistance from junction to ambient	dual-layer board [1]	96	K/W
		four-layer board [2]	72	K/W

- [1] According to JEDEC JESD51-2, JESD51-3 and JESD51-5 at natural convection on 1s board with thermal via array under the exposed pad connected to the second copper layer.
- [2] According to JEDEC JESD51-2, JESD51-5 and JESD51-7 at natural convection on 2s2p board. Board with two inner copper layers (thickness: 35 μm) and thermal via array under the exposed pad connected to the first inner copper layer.

10. Static characteristics

Table 14. Static characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Pin V _{BAT}			<u> </u>		'	'
V_{BAT}	battery supply voltage		4.75	-	60	V
I _{BAT}	battery supply current	low-power modes; no load on pin INH	-	-	55	μА
		normal-power modes	-	-	1	mA
$V_{uvd(VBAT)}$	undervoltage detection voltage on pin V _{BAT}		4.45	-	4.715	V
V _{uvr(VBAT)}	undervoltage recovery voltage on pin V _{BAT}		4.475	-	4.74	V
V _{uvhys(VBAT)}	undervoltage hysteresis voltage on pin V _{BAT}		25	-	290	mV
Pin V _{CC}				<u>'</u>		
V _{CC}	supply voltage		4.75	-	5.25	V
I _{CC}	supply current	low-power modes	-1	+2	+10	μΑ
		Normal mode; V _{BGE} = 0 V; V _{TXEN} = V _{IO} ; Receive-only mode	-	13	21	mA
		Normal mode; V _{BGE} = V _{IO} ; V _{TXEN} = 0 V	-	37	50	mA
		Normal mode; $V_{BGE} = V_{IO}; \ V_{TXEN} = 0 \ V;$ $R_{bus} = \infty \ \Omega$	-	14	22	mA
V _{uvd(VCC)}	undervoltage detection voltage on pin V_{CC}		4.45	-	4.72	V
V _{uvr(VCC)}	undervoltage recovery voltage on pin V _{CC}		4.47	-	4.74	V
V _{uvhys(VCC)}	undervoltage hysteresis voltage on pin V _{CC}		20	-	290	mV
Pin V _{IO}			•			
V _{IO}	supply voltage on pin V _{IO}		2.8	-	5.25	V

Table 14. Static characteristics ... continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{IO}	supply current on pin V _{IO}	low-power modes; V _{TXEN} = V _{IO}	–1	+2	+10	μА
		Normal and Receive-only modes; V _{TXD} = V _{IO}	-	-	1	mA
I _{r(VIO)}	reverse current on pin V _{IO}	from digital input pins; PowerOff mode; $V_{TXEN} = 5.25 \text{ V};$ $V_{TXD} = 5.25 \text{ V};$ $V_{BGE} = 5.25 \text{ V};$ $V_{EN} = 5.25 \text{ V};$ $V_{STBN} = 5.25 \text{ V};$ $V_{CC} = V_{IO} = 0 \text{ V}$	-5	-	+5	μА
$V_{uvd(VIO)}$	undervoltage detection voltage on pin V_{IO}		2.55	-	2.765	V
$V_{uvr(VIO)}$	undervoltage recovery voltage on pin V _{IO}		2.575	-	2.79	V
$V_{uvhys(VIO)}$	undervoltage hysteresis voltage on pin $V_{\rm IO}$		25	-	240	mV
Pin EN			'			
V_{IH}	HIGH-level input voltage		0.7V _{IO}	-	5.5	V
V _{IL}	LOW-level input voltage		-0.3	-	0.3V _{IO}	V
I _{IH}	HIGH-level input current	$V_{EN} = 0.7 V_{IO}$	3	-	15	μА
I _{IL} Pin STBN	LOW-level input current	V _{EN} = 0 V	-1	0	+1	μΑ
V _{IH}	HIGH-level input voltage		0.7V _{IO}	-	5.5	V
V _{IL}	LOW-level input voltage		-0.3	-	0.3V _{IO}	V
I _{IH}	HIGH-level input current	$V_{STBN} = 0.7V_{IO}$	3	-	15	μΑ
I _{IL}	LOW-level input current	V _{STBN} = 0 V	-1	0	+1	μA
Pin TXEN	'	OTBIN				
V _{IH}	HIGH-level input voltage		0.7V _{IO}	-	5.5	V
V _{IL}	LOW-level input voltage		-0.3	-	0.3V _{IO}	V
I _{IH}	HIGH-level input current	$V_{TXEN} = V_{IO}$	-1	0	+1	μΑ
I _{IL}	LOW-level input current	$V_{TXEN} = 0.3V_{IO}$	-300	-	-50	μΑ
IL	leakage current	V _{TXEN} = 5.25 V; V _{IO} = 0 V	-1	0	+1	μΑ
Pin BGE						
V _{IH}	HIGH-level input voltage		0.7V _{IO}	-	5.5	V
V _{IL}	LOW-level input voltage		-0.3	-	0.3V _{IO}	V
I _{IH}	HIGH-level input current	$V_{BGE} = 0.7V_{IO}$	3	-	15	μΑ
I _{IL}	LOW-level input current	V _{BGE} = 0 V	-1	0	+1	μΑ
Pin TXD		-				
V _{IH}	HIGH-level input voltage	normal-power modes	0.6V _{IO}	-	V _{IO} + 0.3	V
V _{IL}	LOW-level input voltage	normal-power modes	-0.3	-	0.4V _{IO}	V
I _{IH}	HIGH-level input current	$V_{TXD} = V_{IO}$	3	_	15	μΑ

FlexRay node transceiver

Table 14. Static characteristics ... continued

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
I _{IL}	LOW-level input current	normal-power modes; V _{TXD} = 0 V		-5	0	+5	μΑ
		low-power modes		-1	0	+1	μΑ
ILI	input leakage current	$V_{TXD} = 5.25 \text{ V}; V_{IO} = 0 \text{ V}$		-1	0	+1	μΑ
C _i	input capacitance	not tested; with respect to all other pins at ground; $V_{TXD} = 100 \text{ mV}$; f = 5 MHz	[1]	-	5	10	pF
Pin RXD				'		'	
I _{OH}	HIGH-level output current	$V_{RXD} = V_{IO} - 0.4 \text{ V};$ $V_{IO} = V_{CC}$		-20	-	-1	mA
I _{OL}	LOW-level output current	V _{RXD} = 0.4 V		1	-	20	mA
V _{OH}	HIGH-level output voltage	$I_{OH(RXD)} = -1 \text{ mA}$	[1]	V _{IO} – 0.4	-	V _{IO}	V
V _{OL}	LOW-level output voltage	I _{OL(RXD)} = 1 mA	<u>[1]</u>	-	-	0.4	V
Vo	output voltage	when undervoltage on $V_{IO}; V_{CC} \ge 4.75 \ V;$ $R_L = 100 \ k\Omega$ to ground		-	-	0.5	V
		$R_L = 100 \text{ k}\Omega \text{ to } V_{IO};$ power off		V _{IO} – 0.5	-	V _{IO}	V
Pin ERRN					·		
I _{OH}	HIGH-level output current	$V_{ERRN} = V_{IO} - 0.4 \text{ V};$ $V_{IO} = V_{CC}$		-8	-3	-0.5	mA
I _{OL}	LOW-level output current	$V_{ERRN} = 0.4 V$		0.5	2	8	mA
V _{OH}	HIGH-level output voltage	$I_{OH(ERRN)} = -0.5 \text{ mA}$	[1]	V _{IO} – 0.4	-	V_{IO}	V
V_{OL}	LOW-level output voltage	$I_{OL(ERRN)} = 0.5 \text{ mA}$	[1]	-	-	0.4	V
lL	leakage current	$0 \text{ V} \leq V_{ERRN} \leq V_{IO};$ power off		-5	0	+5	μΑ
Vo	output voltage	when undervoltage on V_{IO} ; $V_{CC} > 4.75 V$; $R_L = 100 kΩ$ to ground		-	-	0.5	V
		$R_L = 100 \text{ k}\Omega \text{ to ground};$ power off		-	-	0.5	V
Pin RXEN		·					•
I _{OH}	HIGH-level output current	$V_{RXEN} = V_{IO} - 0.4 V;$ $V_{IO} = V_{CC}$		-8	-3	-0.5	mA
I _{OL}	LOW-level output current	V _{RXEN} = 0.4 V		0.5	2	8	mA
V _{OH}	HIGH-level output voltage	$I_{OH(RXEN)} = -0.5 \text{ mA}$	<u>[1]</u>	V _{IO} – 0.4	-	V _{IO}	V
V _{OL}	LOW-level output voltage	$I_{OL(RXEN)} = 0.5 \text{ mA}$	<u>[1]</u>	-	-	0.4	V
IL	leakage current	$0 \text{ V} \leq V_{RXEN} \leq V_{IO};$ power off		-5	0	+5	μΑ

FlexRay node transceiver

Table 14. Static characteristics ... continued

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Vo	output voltage	when undervoltage on V_{IO} ; $V_{CC} > 4.75 \text{ V}$; $R_L = 100 \text{ k}\Omega$ to ground		-	-	0.5	V
		$R_L = 100 \text{ k}\Omega \text{ to V}_{IO};$ power off		V _{IO} – 0.5	-	V _{IO}	V
Pins BP and I	ВМ						
$V_{o(idle)(BP)}$	idle output voltage on pin BP	Normal or Receive-only mode; $V_{TXEN} = V_{IO}$; 4.5 $V \le V_{CC} \le 5.25 \text{ V}$		0.4V _{CC}	0.5V _{CC}	0.6V _{CC}	V
		Standby, Go-to-sleep or Sleep mode		-0.1	0	+0.1	V
$V_{o(idle)(BM)}$	idle output voltage on pin BM	Normal or Receive-only mode; $V_{TXEN} = V_{IO}$; 4.5 $V \le V_{CC} \le 5.25 \text{ V}$		0.4V _{CC}	0.5V _{CC}	0.6V _{CC}	V
		Standby, Go-to-sleep or Sleep mode		-0.1	0	+0.1	V
I _{o(idle)} BP	idle output current on pin BP	$-60 \text{ V} \le \text{V}_{BP} \le +60 \text{ V}$; with respect to ground and V_{BAT}		-7.5	-	+7.5	mA
I _{o(idle)} BM	idle output current on pin BM	$-60 \text{ V} \le \text{V}_{BM} \le +60 \text{ V}$; with respect to ground and V_{BAT}		-7.5	-	+7.5	mA
V _{o(idle)(dif)}	differential idle output voltage		[2]	-25	0	+25	mV
V _{OH(dif)}	differential HIGH-level output voltage	$4.75 \text{ V} \le \text{V}_{CC} \le 5.25 \text{ V}$	[2]	600	-	2000	mV
		$4.45 \text{ V} \le \text{V}_{CC} \le 5.25 \text{ V}$	[2]	530	-	2000	mV
$V_{OL(dif)}$	differential LOW-level output voltage	$4.75 \text{ V} \le \text{V}_{CC} \le 5.25 \text{ V}$	[2]	-2000	-	-600	mV
		$4.45 \text{ V} \le \text{V}_{CC} \le 5.25 \text{ V}$	[2]	-2000	-	-530	mV
V _{IH(dif)}	differential HIGH-level input voltage	normal-power modes; $-10 \text{ V} \le \text{V}_{cm} \le +15 \text{ V};$ see Figure 10	[3] [4]	150	210	300	mV
V _{IL(dif)}	differential LOW-level input voltage	normal-power modes; $-10 \text{ V} \le \text{V}_{cm} \le +15 \text{ V};$ see Figure 10	[3] [4]	-300	-210	-150	mV
		low-power modes; see Figure 10	[4]	-400	-300	-100	mV
$ \Delta V_{i(dif)(H\text{-}L)} $	differential input volt. diff. betw. HIGH- and LOW-levels (abs. value)	normal-power modes; V _{cm} = 2.5 V	<u>[4]</u>	-30	-	+30	mV
$ V_{i(dif)det(act)} $	activity detection differential input voltage (absolute value)	normal-power modes		150	210	300	mV

FlexRay node transceiver

 Table 14.
 Static characteristics ...continued

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
$ I_{O(sc)} $	short-circuit output current (absolute value)	on pin BP; $-5 \text{ V} \leq \text{V}_{BP} \leq +60 \text{ V} \\ \text{R}_{sc} \leq 1 \Omega; t_{sc} \geq 1500 \mu\text{s}$	[5] [6]	-	-	60	mA
		$ \begin{aligned} &\text{on pin BM;} \\ &-5 \text{ V} \leq \text{V}_{BM} \leq \text{+60 V} \\ &\text{R}_{sc} \leq 1 \Omega; t_{sc} \geq \text{1500 } \mu s \end{aligned} $	[5] [6]	-	-	60	mA
		on pins BP and BM; $R_{sc} \leq 1~\Omega;~t_{sc} \geq 1500~\mu s; \\ V_{BP} = V_{BM}$	[5] [6]	-	-	60	mA
R _{i(BP)}	input resistance on pin BP	idle level; $R_{\text{bus}} = \infty \Omega$		10	18	40	kΩ
R _{i(BM)}	input resistance on pin BM	idle level; $R_{\text{bus}} = \infty \Omega$		10	18	40	kΩ
$R_{i(dif)(BP-BM)}$	differential input resistance between pin BP and pin BM	idle level; $R_{bus} = \infty \Omega$		20	36	80	kΩ
I _{LI(BP)}	input leakage current on pin BP	power off; $V_{BP} = V_{BM} = 5 \text{ V}$; all other pins connected to GND; GND connected to 0 V		-5	0	+5	μА
		loss of ground; $V_{BP} = V_{BM} = 0 \text{ V}$; all other pins connected to 16 V via 0Ω	[1]	-1600		+1600	μА
I _{LI(BM)}	input leakage current on pin BM	power off; $V_{BP} = V_{BM} = 5 \text{ V}$; all other pins connected to GND; GND connected to 0 V		-5	0	+5	μА
		loss of ground; $V_{BP} = V_{BM} = 0 \text{ V}$; all other pins connected to 16 V via 0Ω	[1]	-1600		+1600	μА
V _{cm(bus)(DATA_0)}	DATA_0 bus common-mode voltage			$0.4V_{CC}$	0.5V _{CC}	0.6V _{CC}	V
V _{cm(bus)(DATA_1)}	DATA_1 bus common-mode voltage			$0.4V_{CC}$	0.5V _{CC}	0.6V _{CC}	V
$\Delta V_{\sf cm(bus)}$	bus common-mode voltage difference			-30	0	+30	mV
C _{i(BP)}	input capacitance on pin BP	with respect to all other pins at ground; V _{BP} = 100 mV; f = 5 MHz	[1]	-	8	15	pF
$C_{i(BM)}$	input capacitance on pin BM	with respect to all other pins at ground; V _{BM} = 100 mV; f = 5 MHz	[1]	-	8	15	pF
$C_{i(dif)(BP ext{-}BM)}$	differential input capacitance between pin BP and pin BM	with respect to all other pins at ground; V _(BM-BP) = 100 mV; f = 5 MHz	[1]	-	2	5	pF
$Z_{o(eq)TX}$	transmitter equivalent output impedance	Normal mode; $R_{bus} = 40~\Omega \text{ or } 100~\Omega;$ $C_{bus} = 100~\text{pF}$	[1] [7]	35	-	100	Ω

TJA1081G NXP Semiconductors

FlexRay node transceiver

Table 14. Static characteristics ... continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Pin INH						
V _{OH(INH)}	HIGH-level output voltage on pin INH	$I_{INH} = -0.2 \text{ mA}$	V _{BAT} – 0.8	V _{BAT} – 0.3	V_{BAT}	V
		$I_{INH} = -1 \text{ mA}; V_{BAT} \ge 5.5 \text{ V}$	V _{BAT} –	-	V_{BAT}	V
I _{L(INH)}	leakage current on pin INH	Sleep mode	-5	0	+5	μΑ
I _{OL(INH)}	LOW-level output current on pin INH	V _{INH} = 0 V	-7	-4	-1	mA
Pin WAKE						
V _{th(det)(WAKE)}	detection threshold voltage on pin WAKE	low-power mode	2	-	3.75	V
V _{hys}	hysteresis voltage		0.3	-	1.2	V
I _{IL}	LOW-level input current	$V_{WAKE} = 2 V \text{ for}$ t > t _{fltr(WAKE)}	3	-	11	μΑ
		V _{WAKE} = 0 V	-2	-	-0.3	μΑ
I _{IH}	HIGH-level input current	$V_{WAKE} = 3.75 \text{ V for}$ t > t _{fltr(WAKE)} ; 4.75 V ≤ V _{BAT} ≤ 60 V	-11	-	-3	μА
		$V_{WAKE} = V_{BAT}$	0.2	-	2	μΑ
Temperature p	rotection					
T _{j(warn)(medium)}	medium warning junction temperature	V _{BAT} > 5.5 V	155	165	175	°C
T _{j(dis)(high)}	high disable junction temperature	V _{BAT} > 5.5 V	180	190	200	°C
Power-on rese	t		,			
V _{th(det)POR}	power-on reset detection threshold voltage	of internal digital circuitry	3.0	-	3.4	V
V _{th(rec)POR}	power-on reset recovery threshold voltage	of internal digital circuitry	3.1	-	3.5	V
V _{hys(POR)}	power-on reset hysteresis voltage	of internal digital circuitry	100	-	500	mV

- [1] Not tested in production; guaranteed by design.
- Values also guaranteed when the signal on TXD is constant for between 100 ns and 4400 ns before the first edge.
- [3] Activity detected previously.
- [4] V_{cm} is the BP/BM common mode voltage.
- [5] R_{sc} is the short-circuit resistance; voltage difference between bus pins BP and BM is 60 V max.
- [6] t_{sc} is the minimum duration of the short circuit.
- $$\begin{split} Z_{o(eq)TX} = 50~\Omega \times (V_{bus(100)} V_{bus(40)})/(2.5 \times V_{bus(40)} V_{bus(100)}) \text{ where:} \\ V_{bus(100)} \text{ is the differential output voltage on a load of } 100~\Omega \text{ and } 100~\text{pF in parallel} \end{split}$$
 - $V_{bus(40)}$ is the differential output voltage on a load of 40 Ω and 100 pF in parallel when driving a DATA_1.

11. Dynamic characteristics

Table 15. Dynamic characteristics

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Pins BP and B	М					,	
$t_{d(TXD-bus)}$	delay time from TXD to bus	Normal mode; see Figure 9	[1] [2]				
		DATA_0		-	-	60	ns
		DATA_1		-	-	60	ns
$\Delta t_{d(TXD\text{-bus})}$	delay time difference from TXD to bus	Normal mode; between DATA_0 and DATA_1; see Figure 10	[1] [2] [3]	-4	-	+4	ns
t _{d(bus-RXD)}	delay time from bus to RXD	Normal mode; $V_{cm} = 2.5 \text{ V}$; $C_{RXD} = 25 \text{ pF}$; see Figure 10	[3]				
		DATA_0		-	-	75	ns
		DATA_1		-	-	75	ns
$\Delta t_{ ext{d(bus-RXD)}}$	delay time difference from bus to RXD	Normal mode; V _{cm} = 2.5 V; C _{RXD} = 25 pF; between DATA_0 and DATA_1; see Figure 10	[3]	-5	-	+5	ns
$t_{d(TXEN\text{-busidle})}$	delay time from TXEN to bus idle	Normal mode; see Figure 9		-	50	75	ns
t _{d(TXEN-busact)}	delay time from TXEN to bus active	Normal mode; see Figure 9		-	51	75	ns
$\Delta t_{d(TXEN ext{-bus})}$	delay time difference from TXEN to bus	Normal mode; between TXEN-to-bus active and TXEN-to-bus idle; TXD LOW; see Figure 9		-50	-	+50	ns
t _{d(BGE-busidle)}	delay time from BGE to bus idle	Normal mode; see Figure 9		-	50	75	ns
t _{d(BGE-busact)}	delay time from BGE to bus active	Normal mode; see Figure 9		-	53	75	ns
$t_{d(TXENH-RXDH)}$	delay time from TXEN HIGH to RXD HIGH	Normal mode; TXD LOW		-	-	325	ns
Bus slope							
t _{r(dif)(bus)}	bus differential rise time	20 % to 80 %	<u>[1]</u>	6	-	18.75	ns
		DATA_0 to idle; -300 mV to -30 mV; Normal mode		-	-	30	ns
t _{f(dif)(bus)}	bus differential fall time	80 % to 20 %	[1]	6	-	18.75	ns
		idle to DATA_0; -30 mV to -300 mV; Normal mode		-	-	30	ns
		DATA_1 to idle; 300 mV to 30 mV; Normal mode		-	-	30	ns
$\Delta t_{(r-f)(dif)}$	difference between differential rise and fall time	80 % to 20 %		-3	-	+3	ns

FlexRay node transceiver

 Table 15.
 Dynamic characteristics ...continued

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Pin RXD			·			·	
t _r	rise time	C _{RXD} = 15 pF; 20 % to 80 %		-	-	9	ns
		C _{RXD} = 25 pF; 20 % to 80 %		-	-	10.75	
t _f	fall time	C _{RXD} = 15 pF; 80 % to 20 %		-	-	9	ns
		C _{RXD} = 25 pF; 80 % to 20 %		-	-	10.75	
t _(r+f)	sum of rise and fall time	C _{RXD} = 15 pF; 20 % to 80 % and 80 % to 20 %		-	-	13	ns
		C _{RXD} = 25 pF; 20 % to 80 % and 80 % to 20 %		-	-	16.5	ns
		C_{RXD} = 10 pF load at end of 50 Ω µstrip with 1 ns delay; 20 % to 80 % and 80 % to 20 %; simulation only		-	-	16.5	ns
$\Delta t_{(r-f)}$	difference between rise and fall time	C _{RXD} = 15 pF; 20 % to 80 %		- 5	-	+5	ns
		C _{RXD} = 25 pF; 20 % to 80 %		-5	-	+5	ns
		C_{RXD} = 10 pF load at end of 50 Ω μ strip with 1 ns delay; 20 % to 80 % and 80 % to 20 %; simulation only		- 5	-	+5	ns
WAKE symbol	detection						
t _{det(wake)DATA_0}	DATA_0 wake-up detection time	Standby or Sleep mode;		1	-	4	μS
t _{det(wake)idle}	idle wake-up detection time	$-10 \text{ V} \le \text{V}_{cm} \le +15 \text{ V}$		1	-	4	μS
t _{det(wake)tot}	total wake-up detection time			50	-	115	μS
t _{sup(int)wake}	wake-up interruption suppression time		[4]	130	-	1000	ns
Reaction time				1			
t _{d(wakedet-INHH)}	delay time from wake-up detection to INH HIGH	low-power mode; $R_{L(INH\text{-}GND)}$ = 100 kΩ; V_{INH} = 2 V		-	-	35	μS
t _{d(event-ERRNL)}	delay time from event detection to ERRN LOW	low-power mode		-	-	10	μS
t _{d(wakedet-RXDL)}	delay time from wake-up detection to RXD LOW	low-power mode		-	-	10	μS
t _{d(STBNX-moch)}	delay time from STBN changing to mode change			-	-	100	μS
t _{d(ENX-moch)}	delay time from EN changing to mode change			-	-	100	μS
Undervoltage (detection						
t _{det(uv)(VCC)}	undervoltage detection time on pin V_{CC}	V _{CC} = 4.35 V		5	-	100	μS
t _{to(uvd)(VCC)}	undervoltage detection time-out time on pin V_{CC}			100	-	670	ms
t _{rec(uv)(VCC)}	undervoltage recovery time on pin V_{CC}	V _{CC} = 4.85 V		5	-	100	μS
t _{to(uvr)(VCC)}	undervoltage recovery time-out time on pin V _{CC}			1	-	5.2	ms

FlexRay node transceiver

 Table 15.
 Dynamic characteristics ...continued

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
t _{det(uv)(VIO)}	undervoltage detection time on pin V _{IO}	V _{IO} = 2.45 V		5	-	100	μS
$t_{to(uvd)(VIO)}$	undervoltage detection time-out time on pin $V_{\rm IO}$			100	-	670	ms
t _{rec(uv)(VIO)}	undervoltage recovery time on pin V_{IO}	V _{IO} = 2.9 V		5	-	100	μS
t _{to(uvr)(VIO)}	undervoltage recovery time-out time on pin V_{IO}			1	-	5.2	ms
t _{det(uv)(VBAT)}	undervoltage detection time on pin V_{BAT}	V _{BAT} = 4.35 V		5	-	100	μS
t _{rec(uv)(VBAT)}	undervoltage recovery time on pin V_{BAT}	V _{BAT} = 4.85 V		5	-	100	μS
t _{to(uvr)(VBAT)}	undervoltage recovery time-out time on pin V_{BAT}			1	-	5.2	ms
Activity detec	etion					·	·
t _{det(act)(bus)}	activity detection time on bus pins	V_{dif} : 0 mV \rightarrow 400 mV; $V_{cm} = 2.5$ V;		100	-	200	ns
t _{det(idle)(bus)}	idle detection time on bus pins	V_{dif} : 400 mV \rightarrow 0 mV; V_{cm} = 2.5 V;		50	-	200	ns
$\Delta t_{ m det(act ext{-idle})}$	difference between active and idle detection time	V _{cm} = 2.5 V		-75	-	+75	ns
Mode control	pins						'
t _d (STBN-RXD)	STBN to RXD delay time	STBN HIGH to RXD HIGH; remote or local wake-up source flag set		3	-	12	μS
t _{fltr(STBN)}	filter time on pin STBN	rising and falling edges		3	-	10	μS
t _{d(STBN-stb)}	delay time from STBN to standby mode	STBN LOW to Standby mode; Receive-only mode	[5]	-	-	10	μS
t _{h(gotosleep)}	go-to-sleep hold time			20	35	50	μS
Status registe	er						
t _{det(EN)}	detection time on pin EN	for mode control		5	-	20	μS
T _{clk(EN)}	clock period on pin EN	EN signal used as clock for reading status bits; see Figure 8		1	-	5	μS
t _{d(EN-ERRN)}	delay time from EN to ERRN	when reading status bits; see Figure 8		-	-	0.5	μS
Pin WAKE	,		1		1	ı	1
t _{fltr(WAKE)}	filter time on pin WAKE	low-power modes; falling edge on pin WAKE; 5.5 $V \le V_{BAT} \le 27 V$		2.9	-	100	μS
		low-power modes; falling edge on pin WAKE; $27 \text{ V} \leq \text{V}_{BAT} \leq 60 \text{ V}$		2.9	-	175	μ\$

FlexRay node transceiver

Table 15. Dynamic characteristics ...continued

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Miscellaneous					•		
t _{detCL(TXEN)}	TXEN clamp detection time			650	-	2600	μS
t _{d(busact-RXDL)}	delay time from bus active to RXD LOW	Normal mode; $V_{cm} = 2.5 \text{ V}$; $C_{RXD} = 25 \text{ pF}$; see Figure 9	[6] [7]	100	-	275	ns
t _{d(busidle-RXDH)}	delay time from bus idle to RXD HIGH	Normal mode; $V_{cm} = 2.5 \text{ V}$; $C_{RXD} = 25 \text{ pF}$; see Figure 9	[6] [8]	100	-	275	ns

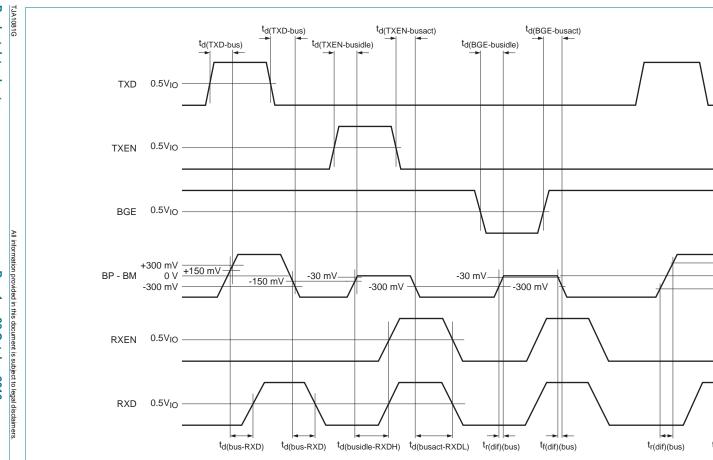
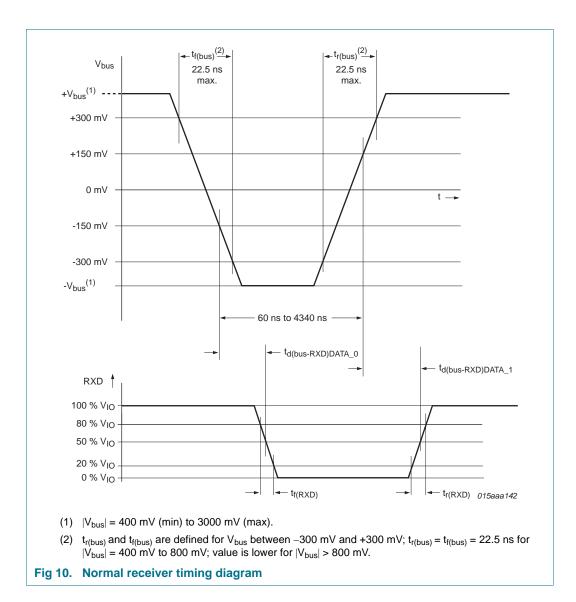
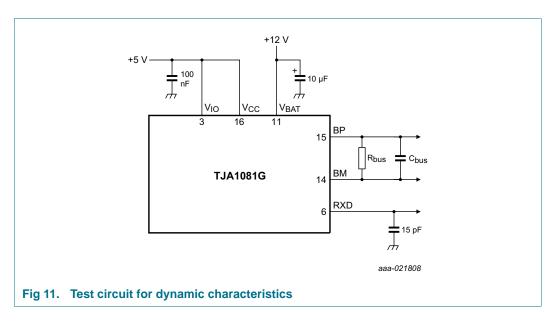

- [1] Values also guaranteed when the signal on TXD is constant for between 100 ns and 4400 ns before the first edge.
- [2] Sum of rise and fall times on TXD (20 % to 80 % on V_{IO}) is 9 ns (max).
- [3] Guaranteed for $V_{bus(dif)} = \pm 300$ mV and $V_{bus(dif)} = \pm 150$ mV; $V_{bus(dif)}$ is the differential bus voltage $V_{BP} V_{BM}$.
- [4] The minimum value is guaranteed when the phase that was interrupted was present continuously for at least 870 ns.
- [5] The same parameter is guaranteed by design for the transition from Normal to Go-to-sleep mode.
- [6] Not tested in production; guaranteed by design.
- [7] $t_{d(busact-RXDL)} = t_{d(bus-RXD)} + t_{det(act)(bus)}$.
- [8] $t_{d(busidle-RXDH)} = t_{d(bus-RXD)} + t_{det(idle)(bus)}$

Fig 9.


Detailed timing diagram

32 of 46

FlexRay node transceiver

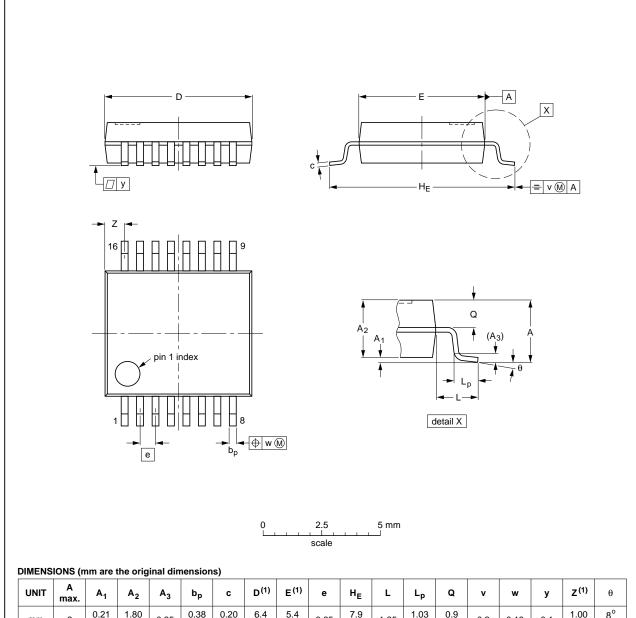


12. Application information

Further information on the application of the TJA1081G can be found in NXP application hints *AH102 TJA1081B/TJA1081G FlexRay node transceiver* (*Ref. 5*).

FlexRay node transceiver

13. Test information


13.1 Quality information

This product has been qualified in accordance with the Automotive Electronics Council (AEC) standard *Q100 Rev-G - Failure mechanism based stress test qualification for integrated circuits*, and is suitable for use in automotive applications.

14. Package outline

SSOP16: plastic shrink small outline package; 16 leads; body width 5.3 mm

SOT338-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	2	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	6.4 6.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	1.00 0.55	8° 0°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT338-1		MO-150	-			99-12-27 03-02-19
	•	•				

Fig 12. Package outline SOT338-1 (SSOP16)

All information provided in this document is subject to legal disclaimers.

15. Soldering of SMD packages

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365* "Surface mount reflow soldering description".

15.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

15.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- Through-hole components
- Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- · Board specifications, including the board finish, solder masks and vias
- · Package footprints, including solder thieves and orientation
- The moisture sensitivity level of the packages
- Package placement
- Inspection and repair
- Lead-free soldering versus SnPb soldering

15.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- Solder bath specifications, including temperature and impurities

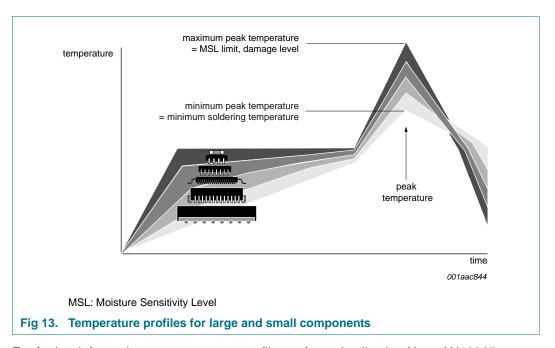
15.4 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see <u>Figure 13</u>) than a SnPb process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with Table 16 and 17

Table 16. SnPb eutectic process (from J-STD-020D)

Package thickness (mm)	Package reflow temperature (°C)				
	Volume (mm³)				
	< 350	≥ 350			
< 2.5	235	220			
≥ 2.5	220	220			


Table 17. Lead-free process (from J-STD-020D)

Package thickness (mm)	Package reflow temperature (°C)					
	Volume (mm ³)					
	< 350	350 to 2000	> 2000			
< 1.6	260	260	260			
1.6 to 2.5	260	250	245			
> 2.5	250	245	245			

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 13.

FlexRay node transceiver

For further information on temperature profiles, refer to Application Note *AN10365* "Surface mount reflow soldering description".

16. Appendix: EPL 3.0.1 to TJA1081G parameter conversion

Table 18. EPL 3.0.1 to TJA1081G conversion

EPL 3.0.1				TJA1081G			
Symbol	Min	Max	Unit	Symbol	Min	Max	Unit
dBDRxAsym	-	5	ns	$\Delta t_{d(bus\text{-RXD})}$	-	5	ns
dBDRx10	-	75	ns	t _{d(bus-RXD)}	-	75	ns
dBDRx01	-	75	ns	t _{d(bus-RXD)}	-	75	ns
dBDRxai	50	275	ns	t _{d(busidle-RXDH)}	100	275	ns
dBDRxia	100	325	ns	t _{d(busact-RXDL)}	100	275	ns
dBDTxAsym	-	4	ns	$\Delta t_{d(TXD\text{-bus})}$	-	4	ns
dBDTx10	-	75	ns	t _{d(TXD-bus)}	-	60	ns
dBDTx01	-	75	ns	t _{d(TXD-bus)}	-	60	ns
dBDTxai	-	75	ns	t _{d(TXEN-busidle)}	-	75	ns
dBDTxia	-	75	ns	t _{d(TXEN-busact)}	-	75	ns
dBusTxai	-	30	ns	t _{r(dif)(bus)(DATA_0-idle)}	-	30	ns
dBusTxia	-	30	ns	t _{f(dif)(bus)(idle-DATA_0)}	-	30	ns
dBusTx01	6	18.75	ns	t _{r(dif)(bus)}	6	18.75	ns
dBusTx10	6	18.75	ns	t _{f(dif)(bus)}	6	18.75	ns
uBDTx _{active}	600	2000	mV	$V_{OH(dif)}$	600	2000	mV
uBDTx _{idle}	0	30	mV	V _{O(idle)(dif)}	-25	+25	mV
uV _{DIG-OUT-HIGH}	80	100	%	V _{OH(RXD)}	$V_{IO}-0.4$	V_{IO}	V
uV _{DIG-OUT-LOW}	-	20	%	$V_{OL(RXD)}$	-	0.4	V
	- 70	70	%	V _{IH(TXEN)}	0.7V _{IO}	5.5	V
				V _{IH(EN)}	0.7V _{IO}	5.5	V
				V _{IH(STBN)}	0.7V _{IO}	5.5	V
				V _{IH(BGE)}	0.7V _{IO}	5.5	V
uV _{DIG-IN-LOW}	30	-	%	V _{IL(TXEN)}	-0.3	0.3V _{IO}	V
				V _{IL(EN)}	-0.3	0.3V _{IO}	V
				V _{IL(STBN)}	-0.3	0.3V _{IO}	V
				$V_{IL(BGE)}$	-0.3	0.3V _{IO}	V
uData0	-300	-150	mV	$V_{IL(dif)}$	-300	-150	mV
uData1	150	300	mV	$V_{IH(dif)}$	150	300	mV
uData1- uData0	-30	+30	mV	$\Delta V_{i(dif)(H-L)}$	-30	+30	mV
dBDActivityDetection	100	250	ns	t _{det(act)(bus)}	100	200	ns
dBDIdleDetection	50	200	ns	t _{det(idle)(bus)}	50	200	ns
R _{CM1} , R _{CM2}	10	40	kΩ	R _{i(BP)} , R _{i(BM)}	10	40	kΩ
uCM	-10	+15	V	V _{cm} [1]	-10	+15	V
iBM _{GNDShortMax}	-	60	mA	I _{O(sc)(BM)}	-	60	mA
iBP _{GNDShortMax}	-	60	mA	I _{O(sc)(BP)}	-	60	mA
iBM _{BAT48ShortMax}	-	72	mA	I _{O(sc)(BM)}	-	60	mA

 Table 18.
 EPL 3.0.1 to TJA1081G conversion ...continued

EPL 3.0.1				TJA1081G			
Symbol	Min	Max	Unit	Symbol	Min	Max	Unit
iBP _{BAT48ShortMax}	-	72	mA	I _{O(sc)(BP)}	-	60	mA
iBM _{BAT27ShortMax}	-	60	mA	I _{O(sc)(BM)}	-	60	mA
iBP _{BAT27ShortMax}	-	60	mA	I _{O(sc)(BP)}	-	60	mA
uBias - Non-Low-Power	1800	3200	mV	$V_{o(idle)(BP)}, V_{o(idle)(BM)}$ [2]	1800	3150	mV
uBias - Low-Power	-200	+200	mV	$V_{o(idle)(BP)}, V_{o(idle)(BM)}$ [3]	-0.1	+0.1	V
dBDWakePulseFilter	1	500	μS	t _{fltr(WAKE)}	2.9	100	μS
dWU _{0Detect}	1	4	μS	t _{det(wake)DATA_0}	1	4	μS
dWU _{IdleDetect}	1	4	μS	t _{det(wake)idle}	1	4	μS
dWU _{Timeout}	48	140	μS	t _{det(wake)tot}	50	115	μS
uV _{BAT-WAKE} (V _{CC} implemented)	-	7	V	V _{BAT}	4.75	60	V
uBDUVV _{BAT}	4	5.5	V	V _{uvd(VBAT)}	4.45	4.715	V
uBDUVV _{CC}	4	-	V	V _{uvd(VCC)}	4.45	4.72	V
dBDUVV _{CC}	-	1000	ms	t _{det(uv)(VCC)}	5	100	mA mA mA mA mV v μs μs μs ν 5 V v μs ms μA μA μA mA m
				t _{to(uvd)(VCC)}	100	670	ms
iBP _{Leak}	-	25	μΑ	I _{LI(BP)}	-5	+5	μΑ
iBM _{Leak}	-	25	μΑ	I _{LI(BM)}	-5	+5	μΑ
Functional class: BD voltage regula	tor control			implemented; see Section 2	2. <u>5</u>		
Functional class: Bus Driver logic le	evel adaptat	ion		implemented; see Section 2	2. <u>5</u>		
Functional class: Bus Driver - Bus (guardian inte	erface		implemented; see Section 2	2.5		
Device qualification according to Al	EC-Q100 (R	ev. F)		see Section 2.1			
T _{AMB_Class1}	-40	+125	°C	T _{amb}	-40	+125	°C
dBDTxDM	-50	+50	ns	$\Delta t_{d(TXEN-bus)}$	-50	+50	μS
iBM _{-5VshortMax}	-	60	mA	I _{O(sc)(BM)}	-	60	mA
iBP _{-5VshortMax}	-	60	mA	I _{O(sc)(BP)}	-	60	mA
iBM _{BPShortMax}	-	60	mA	I _{O(sc)(BP-BM)}	-	60	mA
iBP _{BMShortMax}	-	60	mA	I _{O(sc)(BM-BP)}	-	60	mA
iBM _{BAT60} ShortMax	-	90	mA	I _{O(sc)(BM)}	-	60	mA
iBP _{BAT60ShortMax}	-	90	mA	I _{O(sc)(BP)}	-	60	mA
dBDUVV _{BAT}	-	1000	ms	t _{det(uv)(VBAT)}	5	100	μS
uUV _{IO}	2	-	V	V _{uvd(VIO)}	2.55	2.765	V
dBDUVV _{IO}	-	1000	ms	t _{det(uv)(VIO)}	5	100	μS
				t _{to(uvd)(VIO)}	100	670	ms
dBDWakeupReaction _{local}	-	100	μS	t _{d(wakedet-INHH)}	-	35	μS
				t _{d(event-ERRNL)}	-	10	μS
				t _{d(wakedet-RXDL)}	-	10	μS
dBDWakeupReaction _{remote}	-	100	μS	t _{d(wakedet-INHH)}	-	35	μS
				t _{d(event-ERRNL)}	-	10	μS
				t _{d(wakedet-RXDL)}	-	10	μS

 Table 18.
 EPL 3.0.1 to TJA1081G conversion ...continued

EPL 3.0.1				TJA1081G			
Symbol	Min	Max	Unit	Symbol	Min	Max	Unit
dBDTxActiveMax	650	2600	μS	t _{detCL(TXEN)}	650	2600	μS
dBDModeChange	-	100	μS	t _d (STBNX-moch)	-	100	μS
				t _{d(ENX-moch)}	-	100	μS
dReactionTime _{ERRN}	-	100	μS	t _{d(event-ERRNL)}	-	10	μS
uINH1 _{Not_Sleep}	uVBAT – 1 V	-	V	V _{OH(INH)}	V _{BAT} – 0.8	V_{BAT}	V
iINH1 _{Leak}	-	10	μΑ	I _{L(INH)}	-5	+5	μΑ
uData0_LP	-400	-100	mV	V _{IL(dif)} (pins BP and BM)	-400	-100	mV
dWU _{Interrupt}	0.13	1	μS	t _{sup(int)wake}	130	1000	ns
uBDLogic_1	-	60	%	V _{IH(TXD)}	0.6V _{IO}	V _{IO} + 0.3 V	V
uBDLogic_0	40	-	%	$V_{IL(TXD)}$	-0.3	0.4V _{IO}	V
dBDRV _{CC}	-	10	ms	t _{rec(uv)(VCC)}	5	100	μS
				t _{to(uvr)(VCC)}	1	5.2	ms
dBDRV _{BAT}	-	10	ms	t _{rec(uv)(VBAT)}	5	100	μS
				t _{to(uvr)(VBAT)}	1	5.2	
dBDRV _{IO}	-	10	ms	t _{rec(uv)(VIO)}	5	100	μS
			$\begin{array}{c} t_{to(uvr)(VBAT)} \\ t_{to(uvr)(VBAT)} \\ \\ ms & t_{rec(uv)(VIO)} \\ \\ t_{to(uvr)(VIO)} \\ \\ 00 & \mu A & I_{LI(BP)} \\ \\ 00 & \mu A & I_{LI(BM)} \\ \end{array}$	t _{to(uvr)(VIO)}	1	5.2	ms
iBP _{LeakGND}	-	1600	μΑ	I _{LI(BP)}	-1600	+1600	μΑ
iBM _{LeakGND}	-	1600	μΑ	I _{LI(BM)}	-1600	+1600	μΑ
Functional class: Bus Driver Rem	ote Wakeup	•		implemented; see Section 2.5			
Functional class: Increased Voltage	ge Amplitude	Fransmit	ter	implemented; see Section 2.5			
uESD _{EXT}	6	-	kV	V _{ESD} : HBM on pins BP and BM to GND	6	-	kV
				$ V_{\text{ESD}} \text{: HBM}$ on pins V_{BAT} and WAKE to GND	4	-	kV
uESD _{INT}	2	-	kV	V _{ESD} (HBM on any other pin)	2	-	kV
uESD	6	-	kV	IEC 61000-4-2 on pins BP, BM, V _{BAT} and WAKE	6	-	kV
dBDRxD _{R15} + dBDRxD _{F15}	-	13	ns	t _(r+f) (pin RXD; 15 pF load)	-	13	ns
dBDRxD _{R15} – dBDRxD _{F15}	-	5	ns	$ \Delta t_{(r-f)} $ (pin RXD)	-	5	ns
C_BDTxD	-	10	pF	C _I (pin TXD)	-	10	pF
dBDTxRxai	-	325	ns	t _{d(TXENH-RXDH)}	-	325	ns
uV _{DIG-OUT-UV}	-	500	mV	$V_{O(ERRN)}$; with $V_{IO} < V_{uvd(VIO)}$	-	500	mV
				$V_{O(RXD)}$; with $V_{IO} < V_{uvd(VIO)}$	-	500	mV
				$V_{O(RXEN)}$; with $V_{IO} < V_{uvd(VIO)}$	-	500	mV
valid operating modes when V_{BAT} implemented)	≥ 5.5 V; V _{CC}	= nomin	al (if	Normal, Receive only, Standby	, Sleep		
valid operating modes when V _{BAT}	≥ 7 V; V _{CC} =	nominal		Normal, Receive only, Standby	, Sleep		

FlexRay node transceiver

Table 18. EPL 3.0.1 to TJA1081G conversion ...continued

EPL 3.0.1	EPL 3.0.1				TJA1081G			
Symbol	Min	Max	Unit	Symbol	Min	Max	Unit	
uV _{DIG-OUT-OFF}	product specific			V _{O(ERRN)} [4]	-	0.5	V	
				V _{O(RXD)} [4]	$V_{IO}-0.5$	V_{IO}	V	
				V _{O(RXEN)} [4]	$V_{IO}-0.5$	V_{IO}	V	
R _{BDTransmitter}	product-	product-specific		$Z_{o(eq)TX}$	35	100	Ω	
RxD signal sum of rise and fall time at TP4_CC	-	16.5	ns	$t_{(r+f)(RXD)}$ (10 pF load on 50 Ω µstrip; simulated)	-	16.5	ns	
uV _{BAT-WAKE} (no V _{CC})	-	5.5	V	V _{BAT} (operating range)	4.75	60	V	
dBDRxD _{R25} + dBDRxD _{F25}	-	16.5	ns	t _{(r+f)(RXD)} (25 pF load)	-	16.5	ns	
$ dBDRxD_{R25} - dBDRxD_{F25} $	-	5	ns	$\Delta t_{(r-f)(RXD)}$	-5	+5	ns	
dBusTxDif	-	3	ns	$\Delta t_{(r-f)(dif)}$ (on bus)	-3	+3	ns	
RxD signal difference of rise and fall time at TP4_CC	-	5	ns	$ \Delta t_{(r-f)(RXD)} $ (10 pF load on 50 Ω µstrip; simulated)	-	5	ns	

^[1] V_{cm} is the BP/BM common mode voltage (V_{BP} + V_{BM}/2) and is specified in conditions column for V_{IH(dif)} and V_{IH(dif)} for pins BP and BM; see <u>Table 14</u>. V_{cm} is tested on a receiving bus driver with a transmitting bus driver that has a ground offset voltage in the range –12.5 V to +12.5 V and that transmits a 50/50 pattern.

- [3] The nominal voltage is 0 mV.
- [4] Power off.

^[2] Min: $V_{o(idle)(BP)} = V_{o(idle)(BM)} = 0.4V_{CC} = 0.4 \times 4.5 \text{ V} = 1800 \text{ mV}$; max value: $V_{o(idle)(BP)} = V_{o(idle)(BM)} = 0.6V_{CC} = 0.6 \times 5.25 \text{ V} = 3150 \text{ mV}$; the nominal voltage is 2500 mV.

17. Abbreviations

Table 19. Abbreviations

Abbreviation	Description
BSS	Byte Start Sequence
CDM	Charged Device Model
ECU	Electronic Control Unit
EMC	ElectroMagnetic Compatibility
EME	ElectroMagnetic Emission
EMI	ElectroMagnetic Immunity
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model
TSS	Transmission Start Sequence

18. References

- [1] EPL FlexRay Communications System Electrical Physical Layer Specification Version 3.0.1, FlexRay Consortium
- [2] ISO 17458-4:2013 Road vehicles FlexRay Communications System part 4: Electrical physical layer specification
- [3] TJA1080A FlexRay transceiver data sheet, www.nxp.com
- [4] TJA1081B FlexRay transceiver data sheet, www.nxp.com
- [5] AH1102 TJA1081B/TJA1081G FlexRay node transceiver application hints, available from NXP Semiconductors

19. Revision history

Table 20. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
TJA1081G v.1	20161028	Product data sheet	-	-

20. Legal information

20.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

20.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

20.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

NXP Semiconductors products in such equipment or applications and

therefore such inclusion and/or use is at the customer's own risk.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

FlexRay node transceiver

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

20.4 Licenses

NXP ICs with FlexRay functionality

This NXP product contains functionality that is compliant with the FlexRay specifications.

These specifications and the material contained in them, as released by the FlexRay Consortium, are for the purpose of information only. The FlexRay Consortium and the companies that have contributed to the specifications shall not be liable for any use of the specifications.

The material contained in these specifications is protected by copyright and other types of Intellectual Property Rights. The commercial exploitation of the material contained in the specifications requires a license to such Intellectual Property Rights.

These specifications may be utilized or reproduced without any modification, in any form or by any means, for informational purposes only. For any other purpose, no part of the specifications may be utilized or reproduced, in any form or by any means, without permission in writing from the publisher.

The FlexRay specifications have been developed for automotive applications only. They have neither been developed nor tested for non-automotive applications.

The word FlexRay and the FlexRay logo are registered trademarks.

20.5 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

21. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

TJA1081G

FlexRay node transceiver

22. Contents

1	General description	7.4.10	UV _{VCC} flag	
2	Features and benefits		UV _{VIO} flag	
2.1	Optimized for time triggered communication	7.5	Status register	
	systems 1	8	Limiting values	21
2.2	Low-power management 1	9	Thermal characteristics	22
2.3	Diagnosis (detection and signaling) 2	10	Static characteristics	22
2.4	Protection	11	Dynamic characteristics	
2.5	Functional classes according to FlexRay	12	Application information	
	electrical physical layer			
	specification (see Ref. 2) 2		Test information	
3	Quick reference data		Quality information	
4	Ordering information 3		Package outline	
5	Block diagram 4	15	Soldering of SMD packages	
6	Pinning information 5	15.1	Introduction to soldering	
6.1	Pinning	15.2	Wave and reflow soldering	36
6.2	Pin description	15.3	Wave soldering	
7	Functional description 6	15.4	Reflow soldering	37
7.1	Operating modes 6	16	Appendix: EPL 3.0.1 to TJA1081G	
7.1.1	Bus activity and idle detection 6		parameter conversion	
7.1.2	Signaling on pin ERRN		Abbreviations	43
7.1.3	Signaling on pins RXEN and RXD 8		References	43
7.1.4	Operating mode transitions 9		Revision history	43
7.1.5	Normal mode		Legal information	
7.1.6	Receive-only mode		Data sheet status	
7.1.7	Standby mode14		Definitions	
7.1.8	Go-to-sleep mode	20.3	Disclaimers	
7.1.9	Sleep mode		Licenses	45
7.2	Wake-up mechanism		Trademarks	45
7.2.1	Remote wake-up		Contact information	45
7.2.1.1	Bus wake-up via wake-up pattern	22	Contents	
7.2.1.2	Bus wake-up via dedicated FlexRay		Outcomes	70
7.00	data frame			
7.2.2	Local wake-up via pin WAKE			
7.3	Fail-silent behavior			
7.3.1 7.3.2	V _{BAT} undervoltage			
7.3.3	V _{CC} undervoltage			
7.3.3	Flags			
7. 4 .1	Local wake-up source flag			
7.4.2	Remote wake-up source flag			
7.4.3	Wake flag			
7.4.4	Power-on flag			
7.4.5	Temperature medium flag			
7.4.6	Temperature high flag			
7.4.7	TXEN clamped flag			
7.4.8	Bus error flag			
7.4.9	UV _{VBAT} flag			

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Interface - Specialised category:

Click to view products by NXP manufacturer:

Other Similar products are found below:

CY7C910-51LMB MC33689DPEWR2 MC33975ATEKR2 MEC1632-AUE NVT4555UKZ RKSAS4 HMC677G32 LPC47N207-JV FTP-637DSL633R SM712GX04LF04-BA MC33689DPEW PCA9704PWJ MCW1001A-I/SS HOA6241-001 SC74HC4066ADTR2G AS3935-BQFT NCN5120MNTWG NCN5150DR2G NCN8025MTTBG C100N50Z4A DG407AK/883B SRT2-ATT01 TDA8035HN/C1/S1J LTC1694CS5#TRMPBF TLE9221SXXUMA2 DS90UB947TRGCRQ1 NCS2300MUTAG HMC677LP5E HMC677LP5ETR LTC1756EGN#PBF LTC1955EUH#PBF LT3669EUFD-2#PBF MXL1543BCAI MAX3170CAI+ XL1192D TLE9221SX CP82C59AZ KTU1109EFAA-TR CH368L CH7307C-DEF LTC1694CS5#TRPBF LTC1694IS5#TRM 73S8024RN-20IMF 73S8024RN-IL/F 78P2352-IGT/F DS2406+ DS2413P+ DS2413P+T&R DS28E17Q+ DS8113-RNG+