ODU MEDI-SNAP® Miniature circular connectors with Push-Pull locking as well as Break-Away function PLASTIC HOUSING METAL HOUSING ## **ODU MEDI-SNAP®** ### **FEATURES** - 75 % lighter than comparable metal connectors - Easy installation and maintenance - Space-saving design - High chemical resistance - Fully sterilizable - Quick mating with Push-Pull locking - Easy-to-release Break-Away function ### **APPLICATIONS** - Medical - Industrial - Digital test and measurement All shown connectors are according to IEC 61984:2008 (VDE 0627:2009-11); connectors without breaking capacity (COC). 0DU MEDI-SNAP $^{\tiny \circledcirc}$ is UL-approved under File E110586. Issue: 2020-07 Printed on certified recycled paper. ## TABLE OF CONTENTS | THE UDU CURPURATE GRUUP | <u>4</u> | |---|-----------------| | PRODUCT INFORMATION | 10 | | ODU Connector Portfolio at a glance | 12 | | The circular connector ODU MEDI-SNAP® with plastic and metal housing | | | Push-Pull locking functionality Break-Away locking functionality | | | Product features at a glance | 15 | | Turned contacts | <u>15</u> | | CONFICURATION CHIRELINE | 4.0 | | CONFIGURATION GUIDELINE | | | Connector configuration — step by step | <u>18</u> | | ODU MEDI-SNAP® WITH PLASTIC HOUSING SIZE 1 | 22 | | Summary | 24 | | Styles | 26 | | Codings Contact inserts and PCB layouts | 37 | | Cable collet system | <u>38</u> | | Accessories | | | ODIT MEDI CNAD® DDEAK ANNAY DLUCS CITE 4 | EO | | ODU MEDI-SNAP® BREAK-AWAY PLUGS size 1 | | | SummaryStyles | <u>54</u> | | Codings | 55 | | Contact inserts | 57 | | Accessories | <u>58</u> | | ODU MEDI-SNAP® WITH PLASTIC HOUSING SIZE 2 | 60 | | Summary | | | Styles | | | Codings | 68 | | Contact inserts and PCB layouts Cable collet system | | | Accessories | | | ODU MEDI-SNAP® BREAK-AWAY PLUGS SIZE 2 | 78 | | | | | SummaryStyles | <u>80</u>
81 | | Codings | 82 | | Contact inserts | 83 | | Accessories | <u>84</u> | | ODU MEDI-SNAP® WITH METAL HOUSING SIZE 1 | 86 | | Summary | | | Styles | 90 | | Codings | 94 | | Contact inserts and PCB layouts Cable collet system | 100 | | Accessories | | | TOOLS, CRIMP INFORMATION, PROCESSING INSTRUCTIONS, ACCESSORIES | 106 | | | | | Crimping tools/assembly tools | | | Wrench for device front nuts | | | Removal tools for crimp-clip-contacts | | | TECHNICAL INFORMATION | 112 | | International protection classes acc. IEC 60529:2013 (VDE 0470-1:2014-09) | | | Explanations and details of safety requirement, inspections, and voltage data | 115 | | Housing materials and insulator materials | | | Conversions/AWG | | | Current load of turned contacts | | | Autoclaving of ODU MEDI-SNAP® | | | Technical terms | <u>124</u> | # A PERFECT ALLIANCE Creating connections, building alliances, collaborating into the future: Whether two technical components come together to form a unit or people come together to strive for great results — the key is to aspire to achieve superb results. This goal drives our work. Perfect connections that inspire and deliver on the promises. ### ODU GROUP OVERVIEW - Almost 80 years of experience in connector technology - Over 2,300 employees worldwide - Sales subsidiaries in China, Denmark, France, Germany, Hong Kong, Italy, Japan, Korea, Romania, Sweden, UK and the US as well as 5 production and logistics sites - All technologies under one roof: Design and development, machine tool and special machine construction, injection, stamping, turning, surface technology, assembly and cable assembly As of February 2020 ### **CERTIFICATES & APPROVALS** - ISO 9001 - IATF 16949 - ISO 13485 - ISO 14001 - ISO 50001 - Wide range of UL, CSA, VG and VDE approvals - UL Wiring Harnesses certified For a complete list of our certifications and approvals, please visit our website. ### **WORLDWIDE CUSTOMER PROXIMITY** ## CONNECTIONS THAT LIVE UP TO ANY REQUIREMENT ### **ELECTRICAL CONTACTS** - Versatile contact technologies - Outstanding reliability and durability - Current-carrying capacity of up to 2,400 A - · Rugged and universal contact systems - · Stamping technology for customer-specific high volume solutions - Very high vibration resistance - Low, stable contact resistance ### CABLE ASSEMBLY - Complete system solutions from one source based on years of expertise - State-of-the-art production facilities with 100 % end testing - Cable assembly available for ODU products - Overmolding in silicone, hot-melt and high-pressure procedures - · Customer-specific labeling and cable printing - · Wide range of standard cables and accessories available - Prototype, small series and high volume production - Rapid prototyping ### CIRCULAR CONNECTORS - Circular connector series in robust metal or plastic housing - · Contacts for soldering, crimping and PCB termination - Different locking systems available: Push-Pull and Screw-Locking options or Break-Away function for quick release - 2 up to 55 contacts - Protection classes IP50 to IP69 - Autoclavable for medical applications - Hybrid inserts for combined transmission - Including cable assembly system solution from one source ### APPLICATION AND CUSTOMER-SPECIFIC SOLUTIONS - Contacts, connectors and cable assemblies for the highest technical requirements as well as special applications - First-class implementation expertise - High level of vertical manufacturing all competences and key technologies under one roof - Expert advice based on mutual partnership - · Short development and production paths ### **MODULAR CONNECTORS** - Application-specific hybrid interface - · For manual mating and automatic docking - Flexible modular construction and highest packing density - For the transmission of signals, power, high current, high voltage, HF signals (coax), media, high-speed data or fiber optics - Variety of locking options available - Mating cycles scalable as required from 10,000 to over 100,000 (1 million) - Including cable assembly system solution from one source ### MASS INTERCONNECT SOLUTIONS - For testing printed circuit boards (PCBs) and electronically assembled units - Innovative engagement option: electromechanical version - 8 tensioning points stop the frame distorting - Very high flexibility thanks to ODU-MAC® modules - Adapter frame (ITA) with tolerance compensation - Including cable assembly system solution from one source ### **HEAVY DUTY CONNECTORS** - Extremely durable even under extreme / harsh environments - High vibration resistance - Up to 400 A (higher currents upon request) ## PRINTED CIRCUIT BOARDS CONNECTORS - Maximum flexibility in application designs - High resilience and outstanding quality - Including cable assembly system solution from one source ### HIGH PERFORMANCE CONNECTOR TECHNOLOGY FOR DEMANDING KEY MARKETS ### MORE THAN A CONNECTION Contacts, connectors and cable assembly system solutions meeting the most demanding technical market requirements — ODU's connector solutions and value-added services are characterized by their exclusive focus on meeting the customer's needs. - Precise implementation of application-specific requirements regarding design, functionality, cost and exclusivity - Modified connector solutions derived from standard products - One-to-one local expertise and fair, friendly consulting - Short development and production paths ### **DEVELOPMENT OF CUSTOM SOLUTIONS** Demands that can't be pigeon-holed call for creative specialists who think outside the box. ODU offers the type of expertise that focuses solely on the specific requirements of our customers. For every development order we get, we not only perform a thorough check to make sure it's feasible, we intensively incorporate our customers in the ongoing design process. This guarantees impressive, custom-fit final end products. ODU MEDI-SNAP® ## PRODUCT INFORMATION | ODU Connector Portfolio at a glance | 12 | |--|-----------| | The circular connector ODU MEDI-SNAP® with plastic and metal housing | . 13 | | Push-Pull locking functionality | . 14 | | Break-Away locking functionality | . 14 | | Product features at a glance | <u>15</u> | | Turned contacts | . 15 | ## **ODU CONNECTOR PORTFOLIO AT A GLANCE** | | Coding | Size | No. of possible
mechanical codings | Plug diameter in mm | Max. cable
diameter in mm | Number of
max. contacts | Solder | Crimp | PCB | IP protection degree
IEC 60529:2013 in
mated condition | IP protection degree
IEC 60529:2013 in
unmated condition | Housing material | From page | |------------------------|----------------|------|---------------------------------------|---------------------|------------------------------|----------------------------|--------|-------|-----|--|--|-------------------|-----------| | ODU MEDI-SNAP® PLASTIC |)ve | | | | | | | | | | | PSU
Crow Block | | | | Pin and groove | 1 | 6 | 13.7 | 6.5 | 14 | • | • | • | Up to | Up to
IP68 | Gray, Black | 24 | | | Pin a | | | | | | | | | | 55 | PEI
Black | | | | Pin and groove | 2 | 3 | 18.5 | 9.2 | 26 | | | | Up to | IP50 | PSU | 62 | | | Pin and | L | 3 | 10.5 | J.L | 20 | | | | IP64 | 11 30 | Gray | <u>02</u> | | ODU MEDI-SNAP® METAL |)ve | | | | | | | | | | | | | | | Pin and groove | 1 | 3 | 14 | 6.5 | 14 | • | • | • | Up to
IP64 | Up to
IP68 | Metal
(Brass) | 88 | ### ADDITIONAL ODU PUSH-PULL CIRCULAR CONNECTOR SERIES: - Coding over pin and groove - 2-40 contacts - 6 sizes - IP50 and IP68 - Contacts for solder, crimp and PCB termination - Coding over half-shell - 2-27 contacts - Low weight - IP67 - 3 sizes - Plastic connector plug housing - Coding over half-shell - 2–27 contacts / mixed inserts - 5 sizes - IP50 and IP68 with same outer diameter possible - Contacts for solder, crimp and PCB termination - Coding over insulator - 2-10 contacts/ mixed inserts - 3 sizes
- IP50 and IP68 with same outer diameter possible - Contacts for solder, crimp and PCB termination - Push-Pull and Break-Away version - 3-55 contacts - 6 sizes - Watertight IP68 - Easy-Clean and High-Density version - Tested acc. MIL - Low weight (aluminium connector plug housing) # THE CIRCULAR CONNECTOR MEDI-SNAP® WITH PLASTIC AND METAL HOUSING The ODU MEDI-SNAP® combines distinctive coding options with 2,000 / 5,000 mating cycles depending on the connector style. The efficient plastic connector is available both with user-friendly Push-Pull locking and the easy-to-release Break-Away function, which comes as a premolded plug & play solution. The ODU MEDI-SNAP® portfolio offers also a High-Voltage solution for up to 1,000 V AC / 16 A including a hot-plugging prevention. Its space-saving product design enables top performance even in the smallest available construction space. Because of its plastic housing, this connector is up to 75 % lighter than comparable metal products. The great diversity makes the ODU MEDI-SNAP® perfectly suited to your requirements in medical technology, industrial electronics as well as digital test and measurement technology. The IEC 60601-1:2012 (VDE 0750-1:2013-12) standard has special requirements. In detail it defines strict requirements in regards to protection against electrical shock of medical devices and their components for both patients and operators. The various protection measures (MOP: Means Of Protection) are described in detail from page 25 and 63. ### **VERSATILE CONFIGURATION OPTIONS** There are 8 color codings, up to 6 mechanical codings, 2 sizes, 3 termination types and a wide range of different contact inserts available. ## PUSH-PULL LOCKING FUNCTIONALITY The proven Push-Pull locking ensures establishing connections easily in less than a second. It is **self-securing** — this means that an accidental release by pulling on the cable can be precluded. During the mating process, the connector's locking claws will lock into place in the corresponding grooves in the receptacle and form a dependable connection between the connector and the receptacle. Consequently, when the connection is properly established, an unintentional demating of the connection by pulling on the cable cannot take place. The connection can only be released deliberately, by just pulling back the connector's outer sleeve. ODU MEDI-SNAP® Push-Pull connectors from ODU are available in 2 different standard sizes with diameters from 13.7 mm to 18.5 mm. ## BREAK-AWAY LOCKING FUNCTIONALITY The efficient Break-Away locking allows an easy mating and demating of connections within fractions of a second just like the Push-Pull locking. But furthermore it also features an **emergency release** which enables demating the connection when needed by pulling on the cable. During mating, the connector's locking claws will lock into place in the corresponding grooves in the receptacle and form a dependable connection between the connector and the receptacle. The sloping shape of the locking claws ensures the "breaking away" of the connection when the connector or cable is pulled with a defined force. ODU MEDI-SNAP® Break-Away connectors are available in 2 different standard sizes in diameters from 13.4 to 18 mm. # PRODUCT FEATURES AT A GLANCE #### WIDE VARIETY OF DESIGNS - Plastic housing in two sizes - Metal housing in one size - Outer diameter of 13.4 mm to 18.5 mm - 2 to 26 contacts - IP50, IP64 and IP67 in mated condition / IP68 in unmated condition - Overmolded as well as freely configurable solutions ### APPLICATIONS AND MATERIALS The ODU MEDI-SNAP® housings are available in plastic (PSU Gray / Black as well as PEI Black) or brass. Special material housing in PSU White or PEI Gray available on request. The variety of the ODU MEDI-SNAP® allows it to adapt to your requirements in medical technology, industrial electronics as well as digital measurement and testing technology. Under general application conditions, the temperature range of the ODU MEDI-SNAP® lies between -50 °C and a maximum of +120 °C, even up to +134 °C in the case of autoclavable connectors (see page 123). ### **TURNED CONTACTS** Turned contacts are available in diameter 0.5 mm to 2 mm in the following termination types: Solder, crimp and PCB. Mating cycles > 5.000 Material Brass Plating Au ### **TERMINATION TECHNOLOGIES** | | Insulator
material
PEEK | Contact
material
BRASS | |--------------------------------|-------------------------------|------------------------------| | Crimp termination ¹ | • | • | | Solder termination | • | • | | PCB termination (on PCB) | • | • | $^{^{\}rm 1}$ Crimp-clip contacts available with diameters of 0.7 mm and 0.9 mm ### STANDARD PIN CONTACTS Information on diameters, termination types and current carrying capacity can be found after the inserts. ODU MEDI-SNAP® ## **CONFIGURATION GUIDELINE** Connector configuration — step by step # BIT BY BIT TO THE PERFECT CONNECTION ODU offers you high-quality connectors and comprehensive services for the complete assembly. From connectors to watertight grouting, we provide the complete system from a single source. ## YOUR WAY TO AN INDIVIDUAL CONNECTION: HOW TO CONFIGURE WITH THE PART NUMBER KEY. This shows you how ODU's part number key is composed. In the first part of the configuration, select the connector plug housing (such as style and size) of the connector. In the middle part of the part number key, you configure the contact insert and then the cable entry. $^{^{\}scriptsize 1}$ Other insulation materials on request ## CORRECT CONFIGURING - STEP BY STEP The perfect product for you in just a few steps. These stepby-step instructions show you how to configure your own individual product with the ODU part number key based on a sample configuration. Connector in style 1 / size 1 / series 0DU MEDI-SNAP $^{\circ}$ / coding 0 $^{\circ}$ / connector plug housing plastic, Gray / insulator PEEK / 14 contacts / pin (solder) Au / termination cross-section AWG 28 / cable diameter 5.3–6.5 mm / standard back nut in the color Blue **BLUE** #### 6. STEP: INSULATOR MATERIAL (SEE POSITION 8) 8 9 10 11 12 13 14 15 16 17 18 19 S 1 1 М 0 7 0 **PEEK** 7. STEP: CONTACT INSERT (SEE POSITIONS 9 AND 10) SEE PAGE 38 8 9 10 11 12 13 14 15 16 17 18 19 S 1 М 0 7 0 1 14 CONTACTS 8. STEP: CONTACT TYPE / SURFACE (SEE POSITION 11) 9 10 11 12 13 14 15 16 17 18 19 0 S 4 0 1 1 SOLDER (PIN) 9. STEP: CONTACT DIAMETER (SEE POSITION 12) 2 3 8 9 10 11 12 13 14 15 16 17 18 19 1 S 0 7 0 1 1 М 4 М DIAMETER 0.5 mm 10. STEP: TERMINATION CROSS-SECTION (SEE POSITIONS 13 AND 14) 1 2 3 5 10 11 12 13 14 15 16 17 18 19 S 0 7 С 0 1 1 М 1 4 М **AWG 28** 11. STEP: CABLE COLLET SYSTEM (SEE POSITIONS 16 AND 17) 1 2 5 9 10 11 12 13 14 15 16 17 18 19 S 0 7 С С 0 1 1 М 1 М 0 MIN. CABLE DIAMETER 5.3 mm MAX. CABLE DIAMETER 6.5 mm 12. STEP: COLOR STANDARD BACK NUT (SEE POSITION 18) SEE PAGE 45 9 10 11 12 13 14 15 16 17 18 19 1 2 6 0 С С 0 1 4 М S 1 1 М ODU MEDI-SNAP® # ODU MEDI-SNAP® WITH PLASTIC HOUSING SIZE 1 | Summary | 24 | |---------------------------------|-----------| | Styles | 26 | | Codings | <u>37</u> | | Contact inserts and PCB layouts | 38 | | Cable collet system | 44 | | Accessories | 45 | ## SUMMARY ODU MEDI-SNAP® PLASTIC HOUSING SIZE 1 The ODU MEDI-SNAP® with plastic housing in size 1 is coded by pin and groove. These circular connectors can have a variety of configurations: numerous styles of connectors, receptacles and in-line receptacles as well as various termination types, contact inserts and color codings. - Coding over pin and groove - 7 color codings - 6 mechanical codings - 2-14 contacts - 3 termination types - Contacts for solder, crimp and PCB termination - A selection of numerous connectors as well as receptacles and in-line receptacles - IP50 / IP64 and IP67 available in mated condition - Up to 5,000 mating cycles For assembly instructions, please refer to our website: www.odu-connectors.com/downloads/assembly-instructions ### IEC 60601-1:2012 ### MEANS OF OPERATOR PROTECTION (MOOP) / MEANS OF PATIENT PROTECTION (MOPP) Table is valid for working voltage of medical device max. 250 V AC (degree of pollution 2). For working voltage of connectors see insert configuration. | MOOP/MOPP | Clearance distance
to the test finger
mm | Creepage distances
to the test finger | Test voltage
VAC | |-----------|--|--|---------------------| | 1 M00P | ≥ 2 | ≥ 2.5 | 1,500 | | 2 MOOP | ≥ 4 | ≥ 5 | 3,000 | | 1 MOPP | ≥ 2.5 | ≥ 4 | 1,500 | | 2 MOPP | ≥ 5 | ≥ 8 | 4,000 | The information refers to all plugs in mated condition on page $\underline{24}$. $^{^{1}}$ As per IEC 60601-1:2012 (VDE 0750-1:2013-12) 2 IP68 in unmated condition ## STRAIGHT PLUG ### Push-Pull styles ¹ Back nuts for cable bend reliefs have to be ordered in the same color as the connector housing. The color coding is based on the cable bend relief. $^{^{\}rm 2}$ Cable bend reliefs have to be ordered separately (see page $\underline{50}$). ## STRAIGHT PLUG ### Push-Pull styles ¹Back nuts for cable bend reliefs have to be ordered in the same color as the connector housing. The color coding is based on the cable bend relief. $^{^{2}}$ Cable bend reliefs have to be ordered separately (see page $\underline{50}).$ ## RIGHT-ANGLED PLUG ## Push-Pull styles ¹Back nuts for cable bend reliefs have to be ordered in the same color as the connector housing. The color coding is based on the cable bend relief. $^{^{2}}$ Cable bend reliefs have to be ordered separately (see page $\underline{50}\xspace$). ## **BREAK-AWAY CONNECTOR** ### Break-Away styles ### **TECHNICAL DATA** - Contact inserts (starting on page <u>57</u>) - Explanation of the degrees of protection (starting on page 114) - IP50 as straight version (see page <u>59</u>) - IP67 with overmolding in combination receptacle style 4/E/A (see page 59) - IP67 as right-angled version in an assembled and
potted condition and in combination with receptacle style 4/E/A (see page 58) - The complete housing with molded insulators made of plastic¹ - Break-Away connectors available in PSU - May not be inserted into metal housing - Suited for all ODU MEDI-SNAP® receptacles and in-line receptacles made of plastic - Available with solder contacts ### NEW! Chapter **Break-Away Plugs** from page 52 ¹In the case of this style, the connector housing as well as the insulator are made of the housing material PSU. ## IN-LINE RECEPTACLE ### Suitable for creating a cable-cable connection ¹ Back nuts for cable bend reliefs have to be ordered in the same color as the connector housing. The color coding is based on the cable bend relief. $^{^{\}rm 2}$ Cable bend reliefs have to be ordered separately (see page $\underline{50}$). ### **TECHNICAL DATA** - Contact inserts and PCB layouts (see page 38) - Explanation of the degrees of protection (see page $\underline{114}$) - IP50 in reference to the tightness of the end device - Anti-rotation feature - With color coding ### TECHNICAL DATA - Contact inserts and PCB layouts (see page $\underline{38}$) - Explanation of the degrees of protection (see page 114) - IP50 in reference to the tightness of the end device - Anti-rotation feature - With color coding - Right-angled PCB contact possible (see page 42) ¹ Depending on the insert G 8 ### **TECHNICAL DATA** - Contact inserts and PCB layouts (see page <u>38</u>) - Explanation of the degrees of protection (see page <u>114</u>) - IP50 in reference to the tightness of the end device - Anti-rotation feature - With color coding #### **TECHNICAL DATA** - Contact inserts and PCB layouts (see page <u>38</u>) - Explanation of the degrees of protection (see page $\underline{114}$) - IP50 in reference to the tightness of the end device - Anti-rotation feature - With color coding - Right-angled PCB contact possible (see page <u>42</u>) ¹ Depending on the insert 32 ### **TECHNICAL DATA** - Contact inserts and PCB layouts (see page <u>38</u>) - Explanation of the degrees of protection (see page $\underline{114}$) - IP50 in reference to the tightness of the end device - Anti-rotation feature - Receptacle made of PSU material is available in Gray and Black, other colors on request. ¹ Depending on the insert 33 ### **TECHNICAL DATA** - Contact inserts and PCB layouts (see page <u>38</u>) - ullet Explanation of the degrees of protection (see page $\underline{114}$) - IP50 in reference to the tightness of the end device - IP64 in combination with connector style 4 in mated condition (page $\underline{27}$) - IP67 in combination with Break-Away Plug style 5 as right-angled version in an assembled and potted condition (page <u>55</u>) - IP67 in combination with Break-Away Plug style 5 as overmolded version (page $\underline{59}$) - Anti-rotation feature - With color coding ¹ Depending on the insert 34 ### **TECHNICAL DATA** - Contact inserts and PCB layouts (see page 38) - Explanation of the degrees of protection (see page <u>114</u>) - IP50 in reference to the tightness of the end device - IP64 in combination with connector style 4 in mated condition (page 27) - IP67 in combination with Break-Away Plug style 5 as right-angled version in an assembled and potted condition (page 55) - IP67 in combination with Break-Away Plug style 5 as overmolded version (page $\underline{59}$) - Anti-rotation feature - Receptacle made of PSU material is available in Gray and Black, other colors on request ### TECHNICAL DATA - Contact inserts and PCB layouts (see page <u>38</u>) - Explanation of the degrees of protection (see page 114) - IP68 in reference to the tightness of the end device - IP64 in combination with connector style 4 in mated condition (page $\underline{27}$) - IP67 in combination with Break-Away Plug style 5 as right-angled version in an assembled and potted condition (page 55) - IP67 in combination with Break-Away Plug style 5 as overmolded version (page <u>79</u>) - Anti-rotation feature - Receptacle made of PSU material is available in Gray and Black, other colors on request ¹ Depending on the insert ² IP68 in unmated condition Size (1) G 2 ### **TECHNICAL DATA** - Contact configuration from page 38 - Explanation of the degrees of protection (see page $\underline{114}$) - IP50 in reference to the tightness of the end device (min. panel thickness 4 mm) - One-piece receptacle available in PSU - The complete housing with molded insulators made of plastic¹ - Anti-rotation feature - Snap-in assembly Protective cover for termination area on page 49 $^{^{1}}$ In the case of this style, the connector housing as well as the insulator are made of the housing material PSU. ### **CODINGS** ### HOUSING MATERIAL | | Angle | Receptacle
front view | |---|-------|--------------------------| | 0 | 0° | | | A | 40° | | | С | 60° | | | E | 80° | | | Н | 170° | | | J | 205° | | | | | | | | Housing material ¹ | Biocompatible
material³ | |------------|---|----------------------------| | Standard | Plastic, Gray
(PSU) | • | | Standard | Plastic, Black
(PSU) | • | | Standard | Plastic, Black
(PEI),
autoclavable ² | not
available | | On request | Plastic, White
(PSU) | not
available | | On request | Plastic,
Gray (PEI),
autoclavable² | • | S 3 G DIN EN ISO 10993-5:2009-10: Tests for in vitro cytotoxicity. Testing determines whether toxic components from the material cause cell damage. DIN EN ISO 10993-10:2014-10: Tests for irritation and skin sensitization. The test for skin irritations and skin sensitization is designed to determine irritating and sensitizing characteristics of medical products. DIN EN ISO 10993-11:2018-09: Tests for systemic toxicity. DIN EN ISO 10993-18:2009-08: Chemical characterization of medical device materials within a risk management process. $^{^1}$ Styles A5 and G2 only available with housing material PSU 2 More detailed information on the topic of "autoclaving" on page $\underline{123}$ ³ Biocompatibility acc. to DIN EN ISO 10993: ### **CONTACT INSERTS** | of
ontact | er
ts | Contact t | ype | | | rt num
key
insert | | Contact
style | Contact
diameter | Single con-
tact nominal
current ¹ | Nominal
current
insert | Clearance and
creepage dis-
tance contact
to contact | Test
voltage ² | Test
volt-
age ^{6,8} | Operat-
ing volt-
age ^{6,7} | Termi-
nation
diameter | | ination
-section | Viev
termina | | |--------------|----------|--|--------|------|--------|-------------------------|---|------------------|---------------------|---|------------------------------|---|------------------------------|-------------------------------------|---|---|--|---|-----------------|----------------| | | | Termination | Socket | Pin | | | | | mm | A | A | mm | SAE
kv DC | IEC
kV RMS | IEC
V RMS | mm | AWG | mm² | Pin
piece | Socke
piece | | | | 0.11 | | | Р | N | 0 | | | 15 | 15 | 1 | 1.6 | 0.67 | 38 | 1.4 | 18 | 1 | | | |) 2 | 2 | Solder | L | М | Р | Н | 0 | 0 | 1.3 | | | | | | | 1.1 | 20 | 0.5 | | (Ç | | , . | - | Print straight ⁴ | Q | | Р | 0 | 0 | | 1.5 | 12 | 12 | 1.3 | 1.9 | 0.67 | 48 | 0.7 | - | - | | | | | | Angled ⁴ | | | _ | | _ | Α | | 45 | 45 | 0.0 | 4.6 | 0.07 | 27 | 0.8 | - | - | | | | | | Solder | L | М | P
P | Н | 9 | 0 | | 15 | 15 | 0.9 | 1.6 | 0.67 | 37 | 1.4 | 18
20 | 0.5 | | 00 | | 3 | 35 | Print straight ⁴ | | | | | | | 1.3 | 12 | 12 | 1.2 | 1.9 | 0.67 | 48 | 0.7 | _ | - | | | | | | Angled ⁴ | Q | | Р | 0 | 9 | Α | | | | | | | | 0.8 | - | - | | | | | | Solder | L | М | J | Н | 0 | | | 10 | 10 | 0.9 | 1.6 | 0.67 | 37 | 1.1 | 20 | 0.5 | | | | | | Juluei | _ | IVI | J | G | 0 | | | 7.5 | 7.5 | 1.2 | 1.9 | 0.67 | 48 | 0.85 | 22 | 0.38 | 2-6 | | | 4 | 4 | Crimp ³ | N | Р | J | Н | 0 | 0 | 0.9 | 10 | 10 | 0.9 | 1.6 | 0.67 | 37 | - | 20-24 | 0.5-0.25 | | | | | | | | | J | G | 0 | | | 7.5 | 7.5 | | 4.0 | 0.07 | 40 | - | 22–26 | 0.38-0.15 | | 6 | | | | Print straight ⁴ | Q | | J | 0 | 0 | Α | | 7.5 | 7.5 | 1.2 | 1.9 | 0.67 | 48 | 0.7 | - | - | | | | | | Angled ⁴ | | | J | Н | 0 | A | | 10 | 7.5 | 0.5 | 1.35 | 0.67 | 25 | 1.1 | 20 | 0.5 | | | | | | Solder | L | М | J | G | 0 | | | 7.5 | 5.6 | 0.8 | 1.6 | 0.67 | 35 | 0.85 | 22 | 0.38 | | | | | | 0: 2 | ,. | _ | J | Н | 0 | 0 | 0.0 | 10 | 7.5 | 0.5 | 1.35 | 0.67 | 25 | - | 20-24 | 0.5-0.25 | (0) | 0 | | 5 | 5 | Crimp ³ | N | Р | J | G | 0 | | 0.9 | | | | | | | - | 22-26 | 0.38-0.15 | (63) | (6) | | | | Print straight ⁴ | Q | | J | 0 | 0 | | | 7.5 | 5.6 | 0.8 | 1.6 | 0.67 | 35 | 0.7 | - | - | | | | | | Angled ⁴ | O. | | | | | Α | | | | | | | | 0.6 | - | - | | | | | | Solder | L | М | F | G | 0 | | | 7.5 | 5.6 | 0.65 | 1.35 | 0.67 | 33 | 0.85 | 22 | 0.38 | | | | | | | | | F | D | 0 | 0 | 0.7 | 6 | 4.5 | 0.85 | 1.6 | 0.67 | 36 | 0.65 | 26 | 0.15 | 6 | 6 | | Е | | Crimp ³ | N | Р | F | G | 0 | | 0.7 | 7.5 | 5.6 | 0.65 | 1.35 | 0.67 | 33 | 0.5 | 22–26 | 0.38-0.15 | | (C | | | | Print straight ⁴
Angled ⁴ | Q | | F | 0 | 0 | Α | | 6 | 4.5 | 0.85 | 1.6 | 0.67 | 36 | 0.6 | _ | _ | | 9 | | | | _ | | | F | G | 0 | | | 7.5 | 4.9 | 0.65 | 1.35 | 0.67 | 33 | 0.85 | 22 | 0.38 | | | | | | Solder | L | М | F | D | 0 | | | 6 | 3.9 | 0.85 | 1.6 | 0.67 | 36 | 0.65 | 26 | 0.15 | 4-6 | | | 7 | 7 | Crimp ³ | N | Р | F | G | 0 | 0 | 0.7 | 7.5 | 4.9 | 0.65 | 1.35 | 0.67 | 33 | - | 22-26 | 0.38-0.15 | 60 | | | | | Print straight ⁴ | Q | | F | 0 | 0 | | | 6
 3.9 | 0.85 | 1.6 | 0.67 | 36 | 0.5 | - | - | | 6 | | | | Angled ⁴ | u | | г | U | U | Α | | 0 | 3.5 | 0.65 | 1.6 | 0.07 | 36 | 0.6 | - | - | _ | | | | | Solder | L | М | F | G | 0 | | | 7.5 | 4.9 | 0.4 | 1.2 | 0.67 | 10 | 0.85 | 22 | 0.38 | | | | | | | | | F | D | 0 | 0 | | 6 | 3.9 | 0.6 | 1.6 | 0.67 | 32 | 0.65 | 26 | 0.15 | 600 | 6 | | 8 | В | Crimp ³ | N | Р | F | G | 0 | | 0.7 | 7.5 | 4.9 | 0.4 | 1.2 | 0.67 | 10 | - | 22–26 | 0.38-0.15 | | 6 | | | | Print straight ⁴
Angled ⁴ | Q | | F | 0 | 0 | Α | | 6 | 3.9 | 0.6 | 1.6 | 0.67 | 32 | 0.5
0.6 | _ | _ | • | 9 | | | | _ | | | С | D | 0 | - | | 6 | 3.9 | 0.45 | 1.2 | | 16 | 0.65 | 26 | 0.15 | | | | | | Solder | L | М | С | С | 0 | 0 | | | 0.0 | 0.10 | 2.2 | | 10 | 0.45 | 28 | 0.08 | | 6 | | 9 | 9 | Print straight ⁴ | _ | | _ | | _ | | 0.5 | 4 | 2.6 | 0.65 | 1.35 | 0.67 | 33 | 0.5 | - | - | ((6.3)) | (() | | | | Angled ⁴ | Q | | С | 0 | 0 | Α | | | | | | | | 0.5 | - | - | | | | | | Solder | L | М | С | D | 0 | | | 6 | 3.3 | 0.3 | 0.75 | 0.67 | 7.5 | 0.65 | 26 | 0.15 | | | | (| 0 | | - | | С | С | 0 | 0 | 0.5 | | | | | | | 0.45 | 28 | 0.08 | 68 | 6 | | | | Print straight ⁴ | Q | | С | 0 | 0 | | | 4 | 2.2 | 0.5 | 1.35 | 0.67 | 25 | 0.5 | - | - | | (| | | | Angled ⁴ | | | ٢ | n | 9 | A | | 6 | 3.3 | 0.4 | | | 10 | 0.5
0.65 | -
26 | 0.15 | | _ | | | | Solder | L | М | C | D | 9 | 0 | | В | 3.3 | 0.4 | | | 10 | 0.65 | 28 | 0.15 | | 2 | | 2 | 5 | Print straight ⁴ | | | | | | 3 | 0.5 | 4 | 2.2 | 0.5 | 1.2 | 0.67 | 25 | 0.43 | - | - | | | | | | Angled ⁴ | Q | | С | 0 | 9 | Α | | | - | | | | | 0.5 | - | - | | 1 | | | | _ | , | ,, | С | D | 0 | | | 6 | 3 | 0.3 | 0.75 | 0.67 | 7.5 | 0.65 | 26 | 0.15 | | | | 4 | , | Solder | L | М | С | С | 0 | 0 | 0.5 | | | | | | | 0.45 | 28 | 0.08 | (P) | 6 | | • | * | Print straight ⁴
Angled ⁴ | Q | | С | 0 | 0 | | 0.5 | 4 | 2 | 0.5 | 1.2 | 0.67 | 25 | 0.5
0.5 | - | - | | 6 | | | _ | | Siz | e (1 | 1 | _ | | | 1 | | | | | | ¹ Derating
² SAE AS 2
³ Tools fo
dimens
⁴ PCB lay | nstalled in
plug. Rev
g factor, s
13441:20
r crimping
ions for cr
outs (see
ailable for | ee page
04 meth
g and ad
imping 1
page 41
recepta | 122
nod 3001.
justment
tool, see p
L); print to | 1 page 108 | requ | | | | | 512 | C (I | J | | | | \downarrow | \mathbf{J} | lacksquare | 4 | | | | | | | າ∩ጸ-∩1 | | | | | $\mathbf{\Psi}$ | | | | _ | _ | _ | <u> </u> | <u> </u> | 10 | | | 40 | ⁶ IEC 606 | 64-1:200 | 7 (VDE 0 | | 008-01): | | | 1 | 2 | $\mathbf{\Psi}$ | 4 | 5 | | 6 | 7 | 8 9 | 9 10 | 11 12 | 13 14 | 15 16 | 17 18 | 19 | ⁶ IEC 606
Overvolt | | 7 (VDE C
gory III |)110-1:20 | | | 38 ### SPECIAL-CONTACT INSERT ### MEDIA FEED THROUGH | Media feed
through | | | rough Contact type | | Part number key
insert | | Contact inner diameter | | Working
pressure max. | Termination
diameter | Tube diameter
max. | | | | | | | | | | |-----------------------|------------|-------------------|--------------------|-------|---------------------------|-----|------------------------|----|--------------------------|-------------------------|-----------------------|----|----|-----|----|----|-----|----|----|--| | | | | | Socke | et | Pin | | | | | | | | mm | | | bar | mm | mm | | | _ | 1 | Not shut | off | В | | S | | 1 | 1 | | 0 | | | 2.5 | | | 2 | 4 | 6 | | | F | Α | Shut of | f | В | | S | | | On rec | uest | | | | 1.9 | | | 2 | 4 | 6 | | | 1 2 | ↓ 3 | — Size (1) | 6 | 7 | 8 | | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | | | | | | 1 2 | J | 4 3 | . 0 | ' | U | J | 10 | 11 | 12 | 13 | 14 | 13 | 10 | Τί | 10 | 13 | | | | | | | 1 | М | | - | 0 | | | | | | | _ | | | | | | | | | ### **CONTACT INSERTS** STYLE G2 | Pol | zahl | Contact t | Jpe | | Part number Contact
key insert diameter | | Single con-
tact nominal
current ¹ | Nominal
current insert | Clearance
and
creepage
distance | Test
voltage ² | Test
voltage ^{3, 5} | Operating
voltage ^{3, 4} | Termi-
nation
diameter | | nation
section | | v on
tion area | | | |-----|------|-------------|--------|-----|--|---|---|---------------------------|--|------------------------------|---------------------------------|--------------------------------------|------------------------------|--------------|-------------------|-----|-------------------|-----------|-----------------| | | | Termination | Socket | Pin | | | | mm | A | A | contact to
contact
mm | SAE
kv DC | IEC
kV RMS | IEC
V RMS | mm | AWG | mm² | Pin piece | Socket
piece | | 0 | 2 | Solder | Α | | Р | н | 0 | 1.3 | 12 | 12 | 1.3 | 1.9 | 0.67 | 48 | 1.1 | 20 | 0.5 | 8 | | | 0 | 3 | Solder | А | | Р | Н | 9 | 1.3 | 12 | 12 | 1.2 | 1.9 | 0.67 | 48 | 1.1 | 20 | 0.5 | | | | 0 | 4 | Solder | Α | | J | G | 0 | 0.9 | 7.5 | 7.5 | 1.2 | 1.9 | 0.67 | 48 | 0.85 | 22 | 0.38 | 6 | | | 0 | 5 | Solder | Α | | J | G | 0 | 0.9 | 7.5 | 5.6 | 0.8 | 1.6 | 0.67 | 35 | 0.85 | 22 | 0.38 | | | | 0 | 6 | Solder | A | | F | D | 0 | 0.7 | 6 | 4.5 | 0.85 | 1.6 | 0.67 | 36 | 0.65 | 26 | 0.15 | 69 | | | 0 | 7 | Solder | Α | | F | D | 0 | 0.7 | 6 | 3.9 | 0.85 | 1.6 | 0.67 | 36 | 0.65 | 26 | 0.15 | | | | 0 | 8 | Solder | Α | В | F | D | 0 | 0.7 | 6 | 3.9 | 0.6 | 1.6 | 0.67 | 32 | 0.65 | 26 | 0.15 | | | | 0 | 9 | Solder | Α | | С | С | 0 | 0.5 | 4 | 2.6 | 0.65 | 1.35 | 0.67 | 33 | 0.45 | 28 | 0.08 | | | | 1 | 0 | Solder | A | | С | С | 0 | 0.5 | 4 | 2.2 | 0.5 | 1.35 | 0.67 | 25 | 0.45 | 28 | 0.08 | | | | 1 | 2 | Solder | Α | | С | С | 9 | 0.5 | 4 | 2.2 | 0.5 | 1.2 | 0.67 | 25 | 0.45 | 28 | 0.08 | | | | 1 | 4 | Solder | Α | В | С | С | 0 | 0.5 | 4 | 2 | 0.5 | 1.2 | 0.67 | 25 | 0.45 | 28 | 0.08 | | | The sockets are installed in the receptacle style 2. 40 $^{^{1}}$ Derating factor, see page $\underline{122}$ 2 SAE AS 13441:2004 method 3001.1 ³ IEC 60664-1:2007 (VDE 0110-1:2008-01): Overvoltage category III 4IEC 60664-1:2007 (VDE 0110-1:2008-01): Pollution degree 2 ⁵Surge voltage ### **PCB LAYOUTS** #### For PCB contacts (Size 1) $\textbf{All specifications are only valid for socket inserts, pin inserts on request.} \\ \textbf{Further PCB layouts upon request}$ ## RIGHT-ANGLED PCB CONTACTS IN THE RECEPTACLE A #### Technical Data • PCB layouts, see page <u>41</u> | Contact
diameter | Termination
diameter | |---------------------|-------------------------| | mm | mm | | 0.5 | 0.5 | | 0.7 | 0.6 | | 0.9 | 0.6 | | 1.3 | 0.8 | ### FOR YOUR NOTES ### CABLE COLLET SYSTEM For plugs, in-line receptacles as well as receptacles of style 6 | | Cable diameter | |---------------|----------------| | | \ | | | Cable collet | | Anti-rotation | 6 | | feature \ | | | / | 6 | | | | | 2 | | | 5 | | | 44 | | | | | Cable diameter Material Part number > 2.7-3.9 KM1.020.121.934.007 KM1.020.122.934.007 > 4.0 – 5.2 PSU > 5.3-6.5 KM1.020.123.934.007 > 2.7-3.9 KM1.020.121.933.008 > 4.0 – 5.2 PEI KM1.020.122.933.008 APPLICATION: for all plugs and in-line receptacles and for receptacle style 6 USE: cable collet for strain relief ### **COLOR CODINGS** Color coding possibility of the back nut (for plugs, right-angled plugs, in-line receptacles) and the front nut (for receptacles style 6). Back nuts for cable bend relief have to be ordered in the same color as the connector housing. The color coding is based on the cable bend relief. | | Color | Similar RA | L systems | Material | | |---|--------|------------|-----------|------------------|----------------| | | | Design | Classic | | | | 2 | Red | 030 40 40 | 3002 | | | | 3 | White | 000 90 00 | 9003 | | | | 4 | Yellow | 095 90 59 | 1016 | Plastic
(PSU) | | | 5 | Green | 170 60 50 | 6032 | | | | 6 | Blue | 250 40 40 | 5019 | | 0 | | 7 | Gray | 000 55 00 | 7045 | Plastic | 0 | | 8 | Black | 000 25 00 | 9004 | (PSU/PEI) | 0 | | | | | | | | | | Siz | re (1) | | | | | 1 | 2 3 4 | | 9 10 11 | 12 13 14 | 15 16 17 18 19 | ### **DEFINITION OF THE BACK NUTS** Applicable to all straight plugs, right-angled plugs, in-line receptacles as well as receptacles of style $\boldsymbol{6}$ | Part number | Material | Color | Similar RAL systems | | | | |---------------------|----------|--------|---------------------|---------|--|--| | | | | Design | Classic | | | | KM1.020.111.934.002 | | Red | 030 40 40 | 3002 | | | | KM1.020.111.934.003 | | White | 000 90 00 | 9003 | | | | KM1.020.111.934.004 | | Yellow | 095 90 59 | 1016 | | | | KM1.020.111.934.005 | PSU | Green | 170 60 50 | 6032 | | | | KM1.020.111.934.006 | | Blue | 250 40 40 | 5019 | | | | KM1.020.111.934.007 | | Gray | 000 55 00 | 7045 | | | | KM1.020.111.934.008 | | Black | 000 25 00 | 9004 | | | | KM1.020.111.933.008 | PEI | Black | 000 25 00 | 9004 | | | | Part number | Material | Color | Similar RAL systems | | | | | |---------------------|------------------|-------|---------------------|---------|--|--|--| | | | | Design | Classic | | | | | KM1.020.113.934.007 | DCU2 | Gray | 000 55 00 | 7045 | | | | | KM1.020.113.934.008 | PSU ² | Black | 000 25 00 | 9004 | | | | | KM1.020.113.933.008 | PEI | Black | 000 25 00 | 9004 | | | | ¹ Silicone cable bend reliefs have to be ordered separately (see page <u>50</u>). ² Additional colors on request ### **DEFINITION OF THE BACK NUTS** Applicable to all straight plugs, right-angled plugs, in-line receptacles | Part number | Material | Color | Similar RAL systems | | | | |---------------------|------------------|-------|---------------------|---------|--|--| | | | | Design | Classic | | | | KM1.026.113.934.107 | DCH2 | Gray | 000 55 00 | 7045 | | | | KM1.026.113.934.108 | PSU ² | Black | 000 25 00 | 9004 | | | | KM1.026.113.933.108 | PEI | Black | 000 25 00 | 9004 | | | | Part number | Material | Color | Similar RAL systems | | | | |---------------------|------------------|-------|---------------------|---------|--|--| | | | | Design | Classic | | | | KM1.020.114.934.007 | PSU ² |
Gray | 000 55 00 | 7045 | | | | KM1.020.114.934.008 | F30- | Black | 000 25 00 | 9004 | | | | KM1.020.114.933.008 | PEI | Black | 000 25 00 | 9004 | | | ¹ Silicone cable bend reliefs have to be ordered separately (see page <u>50</u>). ² Additional colors on request ### PROTECTIVE COVER | F | Part number | Material | Со | Color | | | | | |-------|--------------|---------------------|---------------|----------------------|--|--|--|--| | | | | Cover | Polyamide
lanyard | | | | | | KM1.0 | 97.0_6.93402 | PSU | Red | White | | | | | | KM1.0 | 97.0_6.93403 | PSU | White | White | | | | | | KM1.0 | 97.0_6.93404 | PSU | Yellow | White | | | | | | KM1.0 | 97.0_6.93405 | PSU | Green | White | | | | | | KM1.0 | 97.0_6.93406 | PSU | Blue | White | | | | | | KM1.0 | 97.0_6.93407 | PSU | Gray | White | | | | | | KM1.0 | 97.0_6.93408 | PSU | Black | Black | | | | | | KM1.0 | 97.0_6.93308 | PEI | Black | Black | | | | | | | | | | | | | | | | | Coding | L | anyard materi | al | | | | | | 0 | 0° | o Polyamide lanyard | | | | | | | | | Coding | |---|--------| | 0 | 0° | | Α | 40° | | С | 60° | | E | 80° | | Н | 170° | | J | 205° | | | | | Lanyard material | | | | | | | | | |------------------|---|--|--|--|--|--|--|--| | 0 | Polyamide lanyard with loop | | | | | | | | | 1 | Stainless steel lanyard with loop | | | | | | | | | 2 | Polyamide lanyard with solder lug | | | | | | | | | 3 | Stainless steel lanyard with solder lug | | | | | | | | ### TRANSPORTATION CAP | Part number | Material | Color | Similar RAL systems | | | | |---------------------|----------|--------|---------------------|---------|--|--| | | | | Design | Classic | | | | 922.000.002.000.075 | TPE | Yellow | 095 90 59 | 1016 | | | ### PROTECTIVE COVER ### Applicable to the styles G2 and A5 | F | art number | Material | Color | |------|-----------------|----------|-------------------| | KM1. | 013934.007 | PSU | Gray ¹ | | | | | | | | Ø for cable exi | t | | | 500 | 2.5 | | | | 501 | 2.7 | | | | 502 | 2.8 | | | | 504 | 1.7 | | | ¹ Additional colors on request ### SILICONE CABLE BEND RELIEF ### TEMPERATURE RANGE Silicone: $-50~^{\circ}\text{C}$ up to $+200~^{\circ}\text{C}$, short-term up to $+230~^{\circ}\text{C}$ Autoclavable #### **COLORS** | Part number | Cable jacket (Ø outside) | | | | | |----------------|--------------------------|------|--|--|--| | | min. | max. | | | | | 701.023965.025 | 2.5 | 3 | | | | | 701.023965.030 | 3 | 3.5 | | | | | 701.023965.035 | 3.5 | 4 | | | | | 701.023965.040 | 4 | 5 | | | | | 701.023965.050 | 5 | 6 | | | | | 701.023965.060 | 6 | 6.5 | | | | | ^ | | | | | | | Color code | Color | RAL-Nr. ¹
(similar)
Classic | |------------|--------|--| | 202 | Red | 3020 | | 203 | White | 9010 | | 204 | Yellow | 1016 | | 205 | Green | 6032 | | 206 | Blue | 5002 | | 207 | Gray | 7005 | | 208 | Black | 9005 | | | | | The silicone cable bend reliefs must always be ordered separately. ¹ Because of differing basic materials, the colors may differ slightly from RAL numbers. ### NUTS | Part number | Material | Color | Similar RAL
system Design | | | | | |---------------------|---------------------|--------|------------------------------|--|--|--|--| | KM1.311.002.934.002 | | Red | 030 40 40 | | | | | | KM1.311.002.934.003 | | White | 000 90 00 | | | | | | KM1.311.002.934.004 | PSU | Yellow | 095 90 59 | | | | | | KM1.311.002.934.005 | | Green | 170 60 50 | | | | | | KM1.311.002.934.006 | | Blue | 250 40 40 | | | | | | KM1.311.002.934.007 | | Gray | 000 55 00 | | | | | | KM1.311.002.934.008 | KM1.311.002.934.008 | | | | | | | | KM1.311.002.933.008 | PEI | Black | 000 25 00 | | | | | | Part number | Material | |---------------------|---------------------| | 021.310.115.304.000 | Nickel-plated brass | ODU MEDI-SNAP® ## ODU MEDI-SNAP® BREAK-AWAY PLUGS SIZE 1 | Summary | <u>54</u> | |-----------------|-----------| | Styles | <u>55</u> | | Codings | <u>56</u> | | Contact inserts | <u>57</u> | | Accessories | <u>58</u> | ### SUMMARY ODU MEDI-SNAP® BREAK-AWAY PLUGS ### **BREAK-AWAY CONNECTOR** #### Break-Away styles #### TECHNICAL DATA - Contact inserts (starting on page <u>57</u>) - Explanation of the degrees of protection (starting on page 114) - IP50 as straight version (see page <u>59</u>) - IP67 with overmolding in combination receptacle style 4/E/A (see page 59) - IP67 as right-angled version in an assembled and potted condition and in combination with receptacle style 4/E/A (see page 58) - The complete housing with molded insulators made of plastic¹ - Break-Away connectors available in PSU - May not be inserted in metal housing. - Suited for all ODU MEDI-SNAP® receptacles and in-line receptacles made of plastic - Available with solder contacts ¹In the case of this style, the connector housing as well as the insulator are made of the housing material PSU. ### CODINGS ### HOUSING MATERIAL | | Angle | Receptacle
front view | | | Housing material | Biocompatible
material ¹ | |-------|-------|--------------------------|-------------|---|---|--| | 0 | O° | | 7 | Standar | d Plastic, Gray
(PSU) | • | | A | 40° | | 8 | Standar | d Plastic, Black (PSU) | • | | С | 60° | | | Chandan | . Plastic, White | not | | E | 80° | | 3 | Standar | d (PSU) | available | | н | 170° | | | Further ho
request | ousing materials on | | | J | 205° | | | | | | | | | | | DIN EN ISO
mines whet
DIN EN ISO
The test for
irritating an
DIN EN ISO
DIN EN ISO | bility acc. to DIN EN ISO 109
10993-5:2009-10: Tests fo
ther toxic components from
10993-10:2014-10: Tests fo
skin irritations and skin se
id sensitizing characterist
10993-11:2018-09: Tests f
10993-18:2009-08: Chemi
erials within a risk manager | r in vitro cytotoxicity. To
the material cause cel
for irritation and skin se
nsitization is designed
as of medical products.
for systemic toxicity.
cal characterization of a | | 1 2 | 3 4 5 | 6 7 8 9 | 10 11 12 13 | 14 15 16 | 17 18 19 | | | A 5 | 1 M | _ | | _ 0 | 0 0 0 | | ### **CONTACT INSERTS** STYLES A5 | Pol | zahl | Contact tų | Jpe | | rt num
ey inse | | Contact
diameter | Single con-
tact nominal
current ¹ | Nominal
current insert | Clearance
and
creepage
distance
contact to | Test
voltage ² | Test
voltage ^{3, 5} | Operating
voltage ^{3,4} | Termi-
nation
diameter | | nation
section | View on
termination area | |-----|------|-------------|-----|---|-------------------|---|---------------------|---|---------------------------|--|------------------------------|---------------------------------|-------------------------------------|------------------------------|-----|-------------------|-----------------------------| | | | Termination | Pin | | | | mm | A | A | contact | SAE
kV DC | IEC
kV RMS | IEC
V RMS | mm | AWG | mm² | Pin piece | | 0 | 2 | Solder | В | Р | Н | 0 | 1.3 | 12 | 12 | 1.3 | 1.9 | 0.67 | 48 | 1.1 | 20 | 0.5 | 8 | | 0 | 3 | Solder | В | Р | Н | 9 | 1.3 | 12 | 12 | 1.2 | 1.9 | 0.67 | 48 | 1.1 | 20 | 0.5 | | | 0 | 4 | Solder | В | J | G | 0 | 0.9 | 7.5 | 7.5 | 1.2 | 1.9 | 0.67 | 48 | 0.85 | 22 | 0.38 | | | 0 | 5 | Solder | В | J | G | 0 | 0.9 | 7.5 | 5.6 | 0.8 | 1.6 | 0.67 | 35 | 0.85 | 22 | 0.38 | | | 0 | 6 | Solder | В | F | D | 0 | 0.7 | 6 | 4.5 | 0.85 | 1.6 | 0.67 | 36 | 0.65 | 26 | 0.15 | | | 0 | 7 | Solder | В | F | D | 0 | 0.7 | 6 | 3.9 | 0.85 | 1.6 | 0.67 | 36 | 0.65 | 26 | 0.15 | | | 0 | 8 | Solder | В | F | D | 0 | 0.7 | 6 | 3.9 | 0.6 | 1.6 | 0.67 | 32 | 0.65 | 26 | 0.15 | | | 0 | 9 | Solder | В | С | С | 0 | 0.5 | 4 | 2.6 | 0.65 | 1.35 | 0.67 | 33 | 0.45 | 28 | 0.08 | | | 1 | 0 | Solder | В | С | С | 0 | 0.5 | 4 | 2.2 | 0.5 | 1.35 | 0.67 | 25 | 0.45 | 28 | 0.08 | | | 1 | 2 | Solder | В | С | С | 9 | 0.5 | 4 | 2.2 | 0.5 | 1.2 | 0.67 | 25 | 0.45 | 28 | 0.08 | | | 1 | 4 | Solder | В | С | С | 0 | 0.5 | 4 | 2 | 0.5 | 1.2 | 0.67 | 25 | 0.45 | 28 | 0.08 | | The pins are installed in the plug style 5. $^{^{1}}$ Derating factor, see page $\underline{122}$ ² SAE AS 13441:2004 method 3001.1 ³ IEC 60664-1:2007 (VDE 0110-1:2008-01): Overvoltage category III 4IEC 60664-1:2007 (VDE 0110-1:2008-01): Pollution degree 2 ⁵ Surge voltage ### ACCESSORIES FOR BREAK-AWAY PLUG Assembly instruction available on the product data sheet. *IP67 in assembled and potted condition / potting for strain relief necessary. | Part number | Material | Color | Similar RAL systems | | | | | |---------------------|----------|-------|---------------------|---------|--|--|--| | | | | Design | Classic | | | | | 026.KM1.013.701.003 | PSU | White | 000 90 00 | 9003 | | | | | 026.KM1.013.701.007 | PSU | Gray | 000 55 00 | 7045 | | | | | 026.KM1.013.701.008 | PSU | Black | 000 25 00 | 9004 | | | | ### SILICONE CABLE BEND RELIEFS | Part number | Dim. L | Cable jacket | (∅ outside) | | |----------------|--------|--------------|-------------|--| | | mm | min. | max. | | | 702.023965.025 | | 2.5 | 3 | | | 702.023965.030 | | 3 | 3.5 | | | 702.023965.035 | | 3.5 | 4 | | | 702.023965.040 | 20 | 4 | 5 | | | 702.023965.050 | 36 | 5 | 6 | | | 702.023965.060 | | 6 | 7 | | | 702.023965.070 | | 7 | 8 | | | 702.023965.080 | | 8 | 9 | | #### TEMPERATURE RANGE Silicone: -50 °C up to +200 °C, short-term up to +230 °C Autoclavable | Color code
 Color | RAL no. ¹
(similar) | | | | | |------------|--------|-----------------------------------|--|--|--|--| | 202 | Red | 3020 | | | | | | 203 | White | 9010 | | | | | | 204 | Yellow | 1016 | | | | | | 205 | Green | 6032 | | | | | | 206 | Blue | 5002 | | | | | | 207 | Gray | 7005 | | | | | | 208 | Black | 9005 | | | | | | | | | | | | | ¹Because of different raw materials, the colors may slightly differ from RAL numbers. ### ACCESSORIES FOR BREAK-AWAY PLUG Assembly instruction available on the product data sheet. Straight version includes cable collet system for strain relief. | Part number | Cable diameter | | | | | | | | |------------------|----------------|--|--|--|--|--|--|--| | | mm | | | | | | | | | 026.KM1.129.9025 | > 1.5 – 2.5 | | | | | | | | | 026.KM1.129.9037 | > 2.5 – 3.7 | | | | | | | | | 026.KM1.129.9049 | > 3.7 – 4.9 | | | | | | | | | 026.KM1.129.9060 | > 4.9 - 6.0 | | | | | | | | | 1 | | | | | | | | | | Color code | Color | Similar RAL systems | | | | | | | | |------------|-------|---------------------|--|--|--|--|--|--|--| | | | Design | | | | | | | | | 07 | Gray | 000 55 00 | | | | | | | | | 08 | Black | 000 25 00 | | | | | | | | | | | | | | | | | | | All Break-Away Plugs can be ordered as a standard system solution with different overmolding materials and cable materials. ODU MEDI-SNAP® # ODU MEDI-SNAP® WITH PLASTIC HOUSING SIZE 2 | Summary | <u>62</u> | |---------------------------------|-----------| | Styles | 64 | | Codings | 68 | | Contact inserts and PCB layouts | 69 | | Cable collet system | 72 | | Accessories | <u>73</u> | ### SUMMARY ODU MEDI-SNAP® PLASTIC HOUSING SIZE 2 The ODU MEDI-SNAP® with plastic housing in size 2 is coded by pin and groove. These circular connectors can have a variety of configurations: numerous styles of connectors and receptacles as well as various termination types, contact inserts and color codings. - Coding over pin and groove - 8 color codings - 3 mechanical codings - 3-26 contacts - 2 termination types - Contacts for solder and PCB termination - A selection of numerous connectors and receptacles - IP50 and IP64 available in mated condition - Up to 5,000 mating cycles $For assembly instructions, please \ refer to \ our \ website: \\ \underline{www.odu-connectors.com/downloads/assembly-instructions}$ ### IEC 60601-1:2012 #### MEANS OF OPERATOR PROTECTION (MOOP) / MEANS OF PATIENT PROTECTION (MOPP) Table is valid for working voltage of medical device max. 250 V AC (degree of pollution 2). For working voltage of connectors see insert configuration. | MOOP/MOPP | Clearance distance
to the test finger
mm | Creepage distances
to the test finger | Test voltage
VAC | | | | |-----------|--|--|---------------------|--|--|--| | 1 MOOP | ≥ 2 | ≥ 2.5 | 1,500 | | | | | 2 M00P | ≥ 4 | ≥ 5 | 3,000 | | | | | 1 MOPP | ≥ 2.5 | ≥ 4 | 1,500 | | | | | 2 MOPP | ≥ 5 | ≥ 8 | 4,000 | | | | The information refers to all plugs in mated condition on page $\underline{\bf 56}.$ ¹Acc. IEC 60601-1:2012 (VDE 0750-1:2013-12) ### STRAIGHT PLUG #### Push-Pull styles ¹Back nuts for cable bend reliefs have to be ordered in the same color as the connector housing. The color coding is based on the cable bend relief. ² Cable bend reliefs have to be ordered separately (see page <u>76</u>). ### **BREAK-AWAY CONNECTOR** #### Break-Away styles #### **TECHNICAL DATA** - Contact configuration from page 83 - Explanation of the degrees of protection (see page 114) - IP50 as straight version (see page 84) - IP64 with overmolding in combination receptacle style 4 - The complete housing with molded insulators made of plastic¹ - Break-Away Plugs available in PSU - Available with solder contacts - Available with 5, 16 or 26 contacts configuration, other configurations upon request - Coding available in $C = 60^{\circ}$, other codings on request #### **NEW!** Chapter **Break-Away Plugs** from page 78 ¹In the case of this style, the connector housing as well as the insulator are made of the housing material PSU. ### **RECEPTACLE** G 4 #### **TECHNICAL DATA** - Contact inserts and PCB layouts (see page <u>69</u>) - Explanation of the degrees of protection (see page <u>114</u>) - IP50 in reference to the tightness of the end device - Anti-rotation feature - Front flange in color of housing - Color coding on request #### **TECHNICAL DATA** - Contact inserts and PCB layouts (see page <u>69</u>) - Explanation of the degrees of protection (see page 114) - IP50 in reference to the tightness of the end device - IP64 in combination with connector style 4 in mated condition - IP64 in combination with Break-Away Plug style 5 as overmolded version (see page 84) - With color coding $^{^{\}scriptsize 1}$ Depending on the insert ### **RECEPTACLE** G 5 #### TECHNICAL DATA - Contact inserts and PCB layouts (see page <u>69</u>) - Explanation of the degrees of protection (see page $\underline{114}$) - IP50 in reference to the tightness of the end device - Anti-rotation feature - With color coding - Right-angled PCB contact possible (see page <u>71</u>) ¹ Depending on the insert ### **CODINGS** ### HOUSING MATERIAL | | Angle | Receptacle
front view | |---|-------|--------------------------| | С | 60° | | | E | 80° | | | F | 90° | | | | | | 8 | | Housing
material | Biocompatible
material ¹ | |------------|--------------------------|--| | Standard | Plastic, Gray
(PSU) | • | | On request | Plastic, Black
(PSU) | • | | On request | Plastic, Orange
(PSU) | not
available | Further codings on request Further housing materials on request ¹Biocompatibility acc. to DIN EN ISO 10993: DIN EN ISO 10993-5:2009-10: Tests for in vitro cytotoxicity. Testing determines whether toxic components from the material cause cell damage. DIN EN ISO 10993-10:2014-10: Tests for irritation and skin sensitization. The test for skin irritations and skin sensitization is designed to determine irritating and sensitizing characteristics of medical products. DIN EN ISO 10993-11:2018-09: Tests for systemic toxicity. DIN EN ISO 10993-18:2009-08: Chemical characterization of medical device materials within a risk management process. 18 19 10 11 12 13 14 15 16 17 ### **CONTACT INSERTS** | Num
ber o
con
tact | of
- | Contact tų | jpe | I | Part number
key insert | | | | | | Contact
diameter | | | Clear-
ance and
creepage
distance | Test
voltage ² | Test volt-
age ^{4, 6} | Operat-
ing volt-
age ^{4, 5} | Termi-
nation
diameter | Termination
cross-section | | | View on
termination area | | |---|---------|--|--------|-----|---------------------------|---|---|---|-----|-----|---------------------|--------------------------------|--------------|--|------------------------------|-----------------------------------|---|------------------------------|------------------------------|-----------------|--|-----------------------------|--| | | | Termination | Socket | Pin | | | | | mm | A | | contact
to
contact
mm | SAE
kV DC | IEC
kv RMS | IEC
V RMS | mm | AWG | mm² | Pin piece | Socket
piece | | | | | | | Solder | | М | Р | N | 0 | | | 15 | 15 | 1.6 | | | | 1.4 | 18 | 1 | | | | | | | 0 | 4 | | _ | IVI | Р | Н | 0 | 0 | 1.3 | | | | 3 | 0.67 | 48 | 1.1 | 20 | 0.5 | | (O) | | | | | | | Print straight ³
Angled ³ | Q | | Р | 0 | 0 | A | | 12 | 12 | 2 | - | | | 0.7 | - | - | | | | | | | | | Solder | 1 | М | F | G | 0 | | | 7.5 | 3.75 | 0.8 | | | 37 | 0.85 | 22 | 0.38 | | | | | | | 1 | 2 | | _ | | F | D | 0 | 0 | 0.7 | | | | 1.6 | 0.67 | | 0.65 | 26 | 0.15 | | (C3) | | | | | | | Print straight ³ | Q | | F | 0 | 0 | A | | 6 | 3 | 1 | | | 48 | 0.7
0.6 | - | - | | | | | | | | | Angled ³ | | | F | G | 0 | А | | 7.5 | 3.75 | 0.5 | | | 25 | 0.85 | -
22 | 0.38 | | | | | | | | _ | Solder | L | М | F | D | 0 | 0 | | 1.0 | 0 0 | 0.0 | | | 20 | 0.65 | 26 | 0.15 | (28) | (3) | | | | | 1 | 6 | Print straight ³ | Q | | F | 0 | 0 | | 0.7 | 6 | 3 | 0.7 | 1.6 | 0.67 | 34 | 0.7 | - | - | | | | | | | | | Angled ³ | u | | r | 0 | | Α | | | | | | | | 0.6 | - | - | 90 | 90 | | | | | | | Solder | L | М | F | G | 0 | | | 7.5 | 3.4 | 0.5 | | | .67 | 0.85 | 22 | 0.38 | | | | | | | 1 | 9 | Print straight ³ | | | F | D | 0 | 0 | 0.7 | 6 | 2.7 | 0.7 | 1.35 | 0.67 | | 0.65
0.7 | 26
- | 0.15 | | | | | | | | | Angled ³ | Q | | F | 0 | 0 | Α | | ь | 2.7 | 0.7 | | | 34 | 0.6 | _ | _ | | | | | | | | _ | Solder | L | М | С | С | 0 | 0 | 0.5 | | | 0.5 | 4.05 | 0.07 | 95 | 0.45 | 28 | 0.08 | | (RS) | | | | | 2 | 6 | Print straight ³
Angled ³ | Q | | С | 0 | 0 | A | 0.5 | 4 | 1.6 | 0.5 | 1.35 | 0.67 | 25 | 0.5
0.5 | - | - | | | | | | | The socket is installed in the receptacle; the pin is installed in the plug. Reversed gender variants on request. | Size [2] | | | | | | | | |] | | | | | | ¹ Dera | iting facto | r see na | age 122 | | | | | | 13 14 15 16 17 18 19 ## SPECIAL-CONTACT INSERT Р 10 11 12 $^{\scriptscriptstyle 1}$ Derating factor, see page $\underline{122}$ ² SAE AS 13441:2004 method 3001.1 ³PCB layouts, see page <u>70;</u> print termination only available for receptacle style 5 ⁴IEC 60664-1:2007 (VDE 0110-1:2008-01): Overvoltage category III 5 IEC 60664-1:2007 (VDE 0110-1:2008-01): Pollution degree 2 ⁶ Surge voltage | | Insulator material ¹³ | Nu
be
co | im-
or of
on-
cts | | ontac
type | t | nı | Part
umbe
y ins | er | Contac
diamete | er ta | _ | nominal current | | | Clearance and creepage
distance contact to
contact | | | | Contact-to-contact voltage | | | | | Termi-
nation
diameter | Termination
cross-section | | View
on
termination area | | |--------------------------|----------------------------------|----------------|----------------------------|-------------|-----------------|-----------------|-------|-----------------------|----|--|----------|--|-----------------|----|----|--|----|--------------|-----------|----------------------------|---------|---|--|---|--|------------------------------|-----|-----------------------------|-----------------| | | Insulator | tai | cts | Termination | Socket | Pin | | | | mm | | A | | A | | mated
mm | u | nmated
mm | Operating | voltage 28.9
IEC | V KIMIS | Test voltage ^{8, 1}
mated IEC
kV | | Test voltage ^{8, 1}
unmated IEC
KV | mm | AWG | mm² | Pin piece | Socket
piece | | | Р | 0 | 311 | Solder | L | М | T | S | 0 | 1 × 2
(first mat
last breal
2 × 2 | | 22 | | 22 | | 4.7 | | 2 | | 230 | | 5 | | 3 | 2.4 | 12 | 2.5 | | | | HIGH-VOLTAGE
SOLUTION | т | 0 | 5 | Solder | L ¹⁴ | | Р | Q | 9 | 1 × 1.3
(first mat
last break
2 × 1.3
(lagging | te
k) | 16 | | 12 | | 9.9 | | 3.2 | | 60012 | | 7.4 ¹² | | 5 ¹² | 1.9 | 14 | 1.5 | | | | 皇 ⁸ | | | | | | M ¹⁵ | Р | u | L | 2 × 1.3 | | | | | | 13.6 | | 3.2 | | 100012 | | 9.912 | | 512 | | | | - | 340 | | | I | | | 1 | <u> </u> | Siz | ie (i | 2) | | | | 7 In the case of the pin piece, voltage may only be applied in mated condition. 8 IEC 60664-1:2007 (VDE 0110-1: pin is installed in the plug; the company of the pin is installed in the plug; the pin is installed in the receptacle. 2008-01): Overvoltage category III voltage may only be applied to fully assembled and potted connectors in the pin is installed in the plug; pi | | | | | | | | | | cle.
o fully | | | | | | | | | | 1 | | 2 | 3 | | 4 | 5 | ; | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 16 17 18 | | 18 19 | | | ¹³ T: PBT
¹⁴ 4 x socket / 1 x pin | | | | | | | | | | 2 | | М | | | 7 | - | | | | | | | | | | | | | | | ¹⁵ 1 x soc | | | | | ### **PCB LAYOUTS** ### For PCB contacts (Size 2) All specifications are only valid for socket inserts, pin inserts on request. Further PCB layouts upon request 70 # PLASTIC HOUSIN ## RIGHT-ANGLED PCB CONTACTS IN THE RECEPTACLE A #### TECHNICAL DATA • PCB layouts, see page <u>70</u> | Contact
diameter | Termination
diameter | |---------------------|-------------------------| | mm | mm | | 0.5 | 0.5 | | 0.7 | 0.6 | | 1.3 | 0.8 | ### CABLE COLLET SYSTEM ### For plug parts 5 4 7 4 | Cable diameter | Material | Part number | |----------------|----------|---------------------| | mm | | | | > 3.2 – 5.4 | PSU | KM2.020.121.934.007 | | > 5.4 - 7.4 | | KM2.020.122.934.007 | | > 7.4 - 9.2 | | KM2 020 123 934 007 | **APPLICATION:** for all plug parts **USE**: cable collet for strain relief # PLASTIC HOUSI ## **COLOR CODINGS** **Color coding of the front nut** only for receptacles G4 and G5 **Color coding of the back nut** only for straight plug S1 The color coding for plug style 4 is based on the cable bend relief. | | Color | Similar RA | L systems | Material | | |---|--------|------------|-----------|----------|----------------| | | | Design | Classic | | | | 2 | Red | 030 40 40 | 3002 | | | | 3 | White | 000 90 00 | 9003 | | | | 4 | Yellow | 095 90 59 | 1016 | | | | 5 | Green | 170 60 50 | 6032 | Plastic | | | 6 | Blue | 250 40 40 | 5019 | (PSU) | | | 7 | Gray | 000 55 00 | 7045 | | 0 | | 8 | Black | 000 25 00 | 9004 | | 0 | | 9 | Orange | 0506080 | 2003 | | O 🔳 | | | | | | | | | | | | | | | | 1 | 2 3 4 | 5 6 7 8 | 3 9 10 11 | 12 13 14 | 15 16 17 18 19 | ## **DEFINITION OF THE BACK NUTS** #### Applicable to all straight plug parts | Part number | Material | Color | Similar RAL systems | | | | |---------------------|----------|--------|---------------------|---------|--|--| | | | | Design | Classic | | | | KM2.020.111.934.002 | | Red | 030 40 40 | 3002 | | | | KM2.020.111.934.003 | | White | 000 90 00 | 9003 | | | | KM2.020.111.934.004 | | Yellow | 095 90 59 | 1016 | | | | KM2.020.111.934.005 | DCH | Green | 170 60 50 | 6032 | | | | KM2.020.111.934.006 | PSU | Blue | 250 40 40 | 5019 | | | | KM2.020.111.934.007 | | Gray | 000 55 00 | 7045 | | | | KM2.020.111.934.008 | | Black | 000 25 00 | 9004 | | | | KM2.020.111.934.009 | | Orange | 050 60 80 | 2003 | | | | Part number | Material | Material Color | | L systems | |---------------------|----------|----------------|-----------|-----------| | | | | Design | Classic | | KM2.026.112.934.007 | PSU | Gray | 000 55 00 | 7045 | ¹ Cable bend reliefs have to be ordered separately (see page <u>76</u>). 74 ## **DEFINITION OF THE BACK NUTS** Applicable to all straight plug parts | Part number | Material | Color | Similar RA | L systems | |----------------------------------|----------|-------|------------|-----------| | | | | Design | Classic | | KM2.026.113.934.007 | PSU | Gray | 000 55 00 | 7045 | | KM2.026.113.934.107 ¹ | PSU | Gray | 000 55 00 | 7045 | ## TRANSPORTATION CAP Applicable to all straight plugs as well as break-away plugs | Part number | Material | Color | Similar RAL systems | | | | |---------------------|----------|--------|---------------------|---------|--|--| | | | | Design | Classic | | | | 922.000.002.000.079 | TPE | Yellow | 095 90 59 | 1016 | | | ¹ IP64 with connector style 4 ## SILICONE CABLE BEND RELIEF #### TEMPERATURE RANGE Silicone: $-50~^{\circ}\text{C}$ up to $+200~^{\circ}\text{C}$, short-term up to $+230~^{\circ}\text{C}$ Autoclavable #### COLORS | Part number | Cable jacket (Ø outside) | | | | | |----------------|--------------------------|------|--|--|--| | | min. | max. | | | | | KM2.023965.032 | 3.2 | 4.7 | | | | | KM2.023965.047 | 4.7 | 6.2 | | | | | KM2.023965.062 | 6.2 | 7.7 | | | | | KM2.023965.077 | 7.7 | 9.2 | | | | | \uparrow | | | | | | | Color code | Color | RAL no. ¹
(similar)
Classic | |------------|-------|--| | 207 | Gray | 7000 | | 208 | Black | 9005 | | | | | The silicone cable bend reliefs must always be ordered separately. 76 ¹ Because of differing basic materials, the colors may differ slightly from RAL numbers. # NUTS | Part number | Material | Color | Similar RAL
system Design | |---------------------|----------|--------|------------------------------| | KM2.311.002.934.002 | | Red | 030 40 40 | | KM2.311.002.934.003 | | White | 000 90 00 | | KM2.311.002.934.004 | | Yellow | 095 90 59 | | KM2.311.002.934.005 | DCII | Green | 170 60 50 | | KM2.311.002.934.006 | PSU | Blue | 250 40 40 | | KM2.311.002.934.007 | | Gray | 000 55 00 | | KM2.311.002.934.008 | | Black | 000 25 00 | | KM2.311.002.934.009 | | Orange | 050 60 80 | | Part number | Material | Color | Similar RA | L systems | |---------------------|----------|-------|------------|-----------| | | | | Design | Classic | | KM2.311.001.933.007 | PEI | Gray | 000 55 00 | 7045 | 77 ODU MEDI-SNAP® # ODU MEDI-SNAP® BREAK-AWAY PLUGS SIZE 2 | Summary | 80 | |-----------------|-----------| | Styles | <u>81</u> | | Codings | 82 | | Contact inserts | 83 | | Accessories | 84 | ## SUMMARY ODU MEDI-SNAP® BREAK-AWAY PLUGS ### **BREAK-AWAY CONNECTOR** #### Break-Away styles ¹In the case of this style, the connector housing as well as the insulator are made of the housing material PSU. # CODINGS # HOUSING MATERIAL | | Angle | Receptacle
front view | | | | | | Housing
material | Biocompatible
material¹ | | |-------|---------------|--------------------------|----------|----|----|---|---
--|---|------------------------| | С | 60° | | | 7 | | Standar | d | Plastic, Gray
(PSU) | • | | | | Further codin | gs on request | | 8 | | On reque | st | Plastic, Black
(PSU) | • | | | | | | | | | Further horrequest | ousin | g materials on | | | | | | | | | | DIN EN ISO
mines whet
DIN EN ISO
The test for
irritating ar
DIN EN ISO
DIN EN ISO | 10993
ther to
10993
skin i
d sen
10993 | xic components from
3-10:2014-10: Tests f
rritations and skin se
sitizing characteristic
3-11:2018-09: Tests f | ir in vitro cytotoxicity. Te
in the material cause cell
for irritation and skin se
insitization is designed to
cs of medical products.
for systemic toxicity.
cal characterization of r | dam
nsitiz
to de | | 1 2 | 3 4 5 | 6 7 8 9 | 10 11 12 | 13 | 14 | 15 16 | 17 | 18 19 | | | | A 5 | 2 M | - 0 | | | | - 0 | 0 | 0 0 | | | ## **CONTACT INSERTS** STYLE A5 | | nber
of
tacts | Conta
type | | Part | number
insert | r key | Contact
diameter | Single con-
tact nominal
current ¹ | Nominal
current insert | Clearance and
creepage dis-
tance contact
to contact | Test
voltage ² | Test
voltage ^{4, 6} | | | Operating
voltage ^{4,5} | Operating Termination
voltage ^{4,5} diameter | | nation
section | View on
termination area | |---|---------------------|---------------|-----|------|------------------|-------|--|---|---------------------------|---|------------------------------|---------------------------------|--------------|------|-------------------------------------|--|-----------|-------------------|-----------------------------| | | | Termination | Pin | | | | mm | A | A | mm | SAE
kv DC | IEC
kv RMS | IEC
V RMS | mm | AWG | mm² | Pin piece | | | | 0 | 5 ³ | Solder | М | М | М | 9 | 1 × 1.3
(first mate
last break)
2 × 1.3 | 16 | 12 | 1.8 | 1.1 | 1.25 | 180 | 1.85 | 14 | 1.5 | | | | | | | | | | | | 2×0.9 | 10 | 7.5 | | | | | 1.10 | 20 | 0.5 | | | | | 1 | 6 | Solder | М | F | G | 0 | 0.7 | 7.5 | 3.8 | 0.5 | 1.35 | 0.67 | 25 | 0.85 | 22 | 0.38 | | | | | 2 | 6 | Solder | М | С | D | 0 | 0.5 | 6 | 2.4 | 0.4 | 0.825 | 0.67 | 10 | 0.65 | 26 | 0.15 | | | | The pins are installed in the plug style 5. - Size (2) 8 9 10 11 12 13 14 15 16 17 0 CAUTION: Style A5 (5-pos.) mateable with the following receptacles: G12MC7-P05LMM9-0001 G42MC7-P05LMM9-0071 G52MC7-P05LMM9-0002 Other variants upon request. 83 $^{^1}$ Derating factor, see page $\underline{122}$ 2 SAE AS 13441:2004 method 3001.1 $^{^{\}rm 3}$ Contact in leading position by 1.5 mm $^{\rm 4}$ IEC 60664-1:2007 (VDE 0110-1:2008-01): Overvoltage category III 5 IEC 60664-1:2007 (VDE 0110-1:2008-01): Pollution degree 2 ⁶ Surge voltage ## ACCESSORIES FOR BREAK-AWAY PLUG Assembly instruction available on the product data sheet. Straight version includes cable collet system for strain relief. | Part number | Cable diameter | |------------------|----------------| | | mm | | 026.KM2.129.9045 | > 3.1 – 4.5 | | 026.KM2.129.9060 | > 4.5 – 6.0 | | 026.KM2.129.9075 | > 6.0 – 7.5 | | 026.KM2.129.9090 | > 7.5 – 9.0 | | 1 | | | Color code | Color | Similar RAL systems | |------------|-------|---------------------| | | | Design | | 07 | Gray | 000 55 00 | | 08 | Black | 000 25 00 | | | | | All Break-Away Plugs can be ordered as a standard system solution with different overmolding materials and cable materials. # FOR YOUR NOTES ODU MEDI-SNAP" # ODU MEDI-SNAP® WITH METAL HOUSING | Summary | 88 | |---------------------------------|-----| | Styles | 90 | | Codings | 94 | | Contact inserts and PCB layouts | 95 | | Cable collet system | 100 | | Accessories | 101 | ## SUMMARY ODU MEDI-SNAP® METAL HOUSING The ODU MEDI-SNAP® with metal housing in size 1 is coded by pin and groove. These circular connectors can have a variety of configurations: numerous styles of connectors, receptacles and in-line receptacles as well as various termination types, contact inserts and color codings. - Compatible with plastic finish - Robust housing finish - Coding over pin and groove - 7 color codings - 3 mechanical codings - 2-14 contacts - 3 termination types - Contacts for solder, crimp and PCB termination - A selection of numerous connectors as well as receptacles and in-line receptacles - IP50 and IP64 available in mated condition - Up to 5,000 mating cycles #### NOTE The ODU MEDI-SNAP® Break-Away connector A5 in size 1 is not generally mateable on metal receptacles. For assembly instructions, please refer to our website: www.odu-connectors.com/downloads/assembly-instructions ¹IP68 in reference to the tightness of the end device in unmated condition ## STRAIGHT PLUG #### Push-Pull styles ¹Back nuts for cable bend reliefs have to be ordered in the same color as the connector housing. The color coding is based on the cable bend relief. $^{^{2}}$ Cable bend reliefs have to be ordered separately (see page $\underline{104}$). # **METAL HOUSING** ### **RECEPTACLE** #### **TECHNICAL DATA** - Contact inserts and PCB layouts (see page <u>95</u>) - ullet Explanation of the degrees of protection (see page $\underline{114}$) - Anti-rotation feature - IP50 in reference to the tightness of the end device #### TECHNICAL DATA - Contact inserts and PCB layouts (see page 95) - Explanation of the degrees of protection (see page 114) - IP50 in reference to the tightness of the end device - Anti-rotation feature - With color coding - Right-angled PCB contact possible (see page 98) ¹ Depending on the insert ## **RECEPTACLE** G K #### **TECHNICAL DATA** - Contact inserts and PCB layouts (see page $\underline{95}$) - ullet Explanation of the degrees of protection (see page $\underline{114}$) - IP64 in combination with connector style 4 in mated condition (page $\underline{78}$) - IP68 in reference to the tightness of the end device in unmated condition - Anti-rotation feature #### TECHNICAL DATA - Contact inserts and PCB layouts (see page 95) - Explanation of the degrees of protection (see page 114) - IP50 in reference to the tightness of the end device - Anti-rotation feature - With color coding - Right-angled PCB contact possible (see page 98) $^{^{\}mbox{\tiny 1}}$ Depending on the insert 92 ## IN-LINE RECEPTACLE ¹ Cable bend reliefs have to be ordered separately (see page 104). # CODINGS | | Angle | Receptacle
front view | |---|-------|--------------------------| | 0 | 0° | | | Α | 40° | | | С | 60° | | # **CONTACT INSERTS** | | cts | Contact t | | | | rt num
ey ins | | Contact
style ¹ | Contact
diameter | Single con-
tact nominal
current ² | Nominal
current
insert | Clearance and
creepage dis-
tance contact
to contact | Test
voltage ² | Test
volt-
age ^{6,8} | Operat-
ing volt-
age ^{7,8} | Termi-
nation
diameter | | ination
-section | | w on
ition area | |---|----------------|--|--------|-----|--------|------------------|---|-------------------------------|---------------------|---|------------------------------|---|------------------------------|-------------------------------------|--|------------------------------|----------|---------------------|--------------|--------------------| | | | Termination | Socket | Pin | | | | | mm | A | A | mm | SAE
kv DC | IEC
kv RMS | IEC
V RMS | mm | AWG | mm² | Pin
piece | Socket
piece | | | | Solder | L | М | Р | N | 0 | | | 15 | 15 | 1 | 1.6 | 0.67 | 38 | 1.4 | 18 | 1 | | _ | | 0 | 2 | Print straight ⁴ | Q | | P
P | Н | 0 | 0 | 1.3 | 12 | 12 | 1.3 | 1.9 | 0.67 | 48 | 1.1
0.7 | 20
- | 0.5 | (8) | 8 | | | | Angled ⁴ | | | | | | Α | | 45 | | 0.0 | 4.0 | 0.07 | | 0.8 | - | - | _ | _ | | | | Solder | L | М | P
P | N
H | 9 | 0 | | 15 | 15 | 0.9 | 1.6 | 0.67 | 37 | 1.4 | 18
20 | 0.5 | | | | 0 | 3 ⁵ | Print straight ⁴
Angled ⁴ | Q | | P | 0 | 9 | A | 1.3 | 12 | 12 | 1.2 | 1.9 | 0.67 | 48 | 0.7 | - | - | | | | | | _ | ١. | ., | J | Н | 0 | | | 10 | 10 | 0.9 | 1.6 | 0.67 | 37 | 1.1 | 20 | 0.5 | | | | | | Solder | L | М | J | G | 0 | | | 7.5 | 7.5 | 1.2 | 1.9 | 0.67 | 48 | 0.85 | 22 | 0.38 | 2-6 | 3-6 | | 0 | 4 | Crimp ³ | N | Р | J | Н | 0 | 0 | 0.9 | 10 | 10 | 0.9 | 1.6 | 0.67 | 37 | - | 20-24 | 0.5-0.25 | | | | | | | | | J | G | 0 | | | 7.5 | 7.5 | 1.2 | 1.9 | 0.67 | 48 | 0.7 | 22–26 | 0.38-0.15 | | | | | | Print straight ⁴
Angled ⁴ | Q | | J | 0 | 0 | Α | | 1.5 | 1.5 | 1.2 | 1.5 | 0.07 | 40 | 0.6 | _ | - | | | | | | _ | ١. | ., | J | Н | 0 | | | 10 | 7.5 | 0.5 | 1.35 | 0.67 | 25 | 1.1 | 20 | 0.5 | | | | | | Solder | L | М | J | G | 0 | | | 7.5 | 5.6 | 0.8 | 1.6 | 0.67 | 35 | 0.85 | 22 | 0.38 | | | | 0 | 5 | Crimp ³ | N | Р | J | Н | 0 | 0 | 0.9 | 10 | 7.5 | 0.5 | 1.35 | 0.67 | 25 | - | 20-24 | 0.5-0.25 | | | | | | | | | J | G | 0 | | | 7.5 | | 0.0 | 4.0 | 0.07 | 25 | - | 22–26 | 0.38-0.15 | | | | | | Print straight ⁴
Angled ⁴ | Q | | J | 0 | 0 | Α | | 7.5 | 5.6 | 0.8 | 1.6 | 0.67 | 35 | 0.7 | _ | _ | | | | | | | | | F | G | 0 | Α | | 7.5 | 5.6 | 0.65 | 1.35 | 0.67 | 33 | 0.85 | 22 | 0.38 | | | | | | Solder | L | М | F | D | 0 | 0 | | 6 | 4.5 | 0.85 | 1.6 | 0.67 | 36 | 0.65 | 26 | 0.15 | | 2 | | 0 | 6 | Crimp ³ | N | Р | F | G | 0 | 0 | 0.7 | 7.5 | 5.6
| 0.65 | 1.35 | 0.67 | 33 | - | 22-26 | 0.38-0.15 | | | | | | Print straight ⁴
Angled ⁴ | Q | | F | 0 | 0 | A | | 6 | 4.5 | 0.85 | 1.6 | 0.67 | 36 | 0.5
0.6 | - | - | | Q | | | | Solder | L | М | F | G | 0 | | | 7.5 | 4.9 | 0.65 | 1.35 | 0.67 | 33 | 0.85 | 22 | 0.38 | | | | | | Joidei | | | F | D | 0 | 0 | | 6 | 3.9 | 0.85 | 1.6 | 0.67 | 36 | 0.65 | 26 | 0.15 | | | | 0 | 7 | Crimp ³ | N | Р | F | G | 0 | | 0.7 | 7.5 | 4.9 | 0.65 | 1.35 | 0.67 | 33 | - | 22–26 | 0.38-0.15 | (E3)) | | | | | Print straight ⁴
Angled ⁴ | Q | | F | 0 | 0 | Α | | 6 | 3.9 | 0.85 | 1.6 | 0.67 | 36 | 0.5
0.6 | - | _ | | | | | | | | | F | G | 0 | Α | | 7.5 | 4.9 | 0.4 | 1.2 | 0.67 | 10 | 0.85 | 22 | 0.38 | | | | | | Solder | L | М | F | D | 0 | | | 6 | 3.9 | 0.6 | 1.6 | 0.67 | 32 | 0.65 | 26 | 0.15 | | | | 0 | 8 | Crimp ³ | N | Р | F | G | 0 | 0 | 0.7 | 7.5 | 4.9 | 0.4 | 1.2 | 0.67 | 10 | - | 22-26 | 0.38-0.15 | ((3)) | | | | | Print straight ⁴ | Q | | F | 0 | 0 | | | 6 | 3.9 | 0.6 | 1.6 | 0.67 | 32 | 0.5 | - | - | | | | | | Angled ⁴ | | | С | D | 0 | Α | | 6 | 3.9 | 0.45 | 1.2 | | 16 | 0.6
0.65 | -
26 | 0.15 | | | | | | Solder | L | М | С | С | 0 | 0 | | О | 3.9 | 0.45 | 1.2 | | 16 | 0.65 | 28 | 0.15 | | (C) | | 0 | 9 | Print straight ⁴ | Q | | С | 0 | 0 | | 0.5 | 4 | 2.6 | 0.65 | 1.35 | 0.67 | 33 | 0.5 | - | - | | | | | | Angled ⁴ | U | | L | | | Α | | | | | | | | 0.5 | - | - | | | | | | Solder | L | М | С | D | 0 | | | 6 | 3.3 | 0.3 | 0.75 | 0.67 | 7,5 | 0.65 | 26 | 0.15 | 2 | 2-0 | | 1 | 0 | Print straight ⁴ | | | С | С | 0 | 0 | 0.5 | 4 | 2.2 | 0.5 | 1.35 | 0.67 | 25 | 0.45
0.5 | 28 | 0.08 | | | | | | Angled ⁴ | Q | | С | 0 | 0 | Α | | 7 | £.£ | 0.5 | 1.55 | 0.01 | 2.5 | 0.5 | _ | _ | | | | | | Solder | L | М | С | D | 9 | | | 6 | 3.3 | 0.4 | | | 10 | 0.65 | 26 | 0.15 | | | | 1 | 2 ⁵ | | Ū | IVI | С | С | 9 | 0 | 0.5 | | | | 1.2 | 0.67 | | 0.45 | 28 | 0.08 | (20) | 600 | | | | Print straight ⁴ | Q | | С | 0 | 9 | | | 4 | 2.2 | 0.5 | <u></u> | | 25 | 0.5 | - | - | | | | | | Angled ⁴ | | | С | D | 0 | Α | | 6 | 3 | 0.3 | 0.75 | 0.67 | 7,5 | 0.5
0.65 | -
26 | 0.15 | | | | | | Solder | L | М | С | С | 0 | 0 | | J | , | 0.5 | 0.13 | 0.01 | 1,3 | 0.65 | 28 | 0.13 | | 0 | | 1 | 4 | Print straight ⁴ | Q | | С | 0 | 0 | | 0.5 | 4 | 2 | 0.5 | 1.2 | 0.67 | 25 | 0.5 | - | - | | | | | | Angled ⁴ | U | | L | U | U | A | | | | | | | | 0.5 | - | - | | | Pollution degree 2 8 Surge voltage ## MEDIA FEED THROUGH # **METAL HOUSING** ## **PCB LAYOUTS** #### For PCB contacts (Size 1) All specifications are only valid for socket inserts, pin inserts on request. Further PCB layouts upon request # RIGHT-ANGLED PCB CONTACTS IN THE RECEPTACLE Α #### Technical Data • PCB layouts, see page <u>97</u> | Contact
diameter | Termination
diameter | |---------------------|-------------------------| | mm | mm | | 0.5 | 0.5 | | 0.7 | 0.6 | | 0.9 | 0.6 | | 1.3 | 0.8 | # FOR YOUR NOTES ## CABLE COLLET SYSTEM #### For plugs and in-line receptacles APPLICATION: for all plugs and in-line receptacles USE: cable collet for strain relief | Cable diameter | Material | Part number | | | |----------------|----------|---------------------|--|--| | mm | | | | | | > 2.7 – 3.9 | | KM1.020.121.934.007 | | | | > 4.0 - 5.2 | PSU | KM1.020.122.934.007 | | | | > 5.3 – 6.5 | | KM1.020.123.934.007 | | | | > 2.7 – 3.9 | | KM1.020.121.933.008 | | | | > 4.0 - 5.2 | PEI | KM1.020.122.933.008 | | | | > 5.3 – 6.5 | | KM1.020.123.933.008 | | | # METAL HOUSING ## **COLOR CODINGS** Color coding of the front nut only for receptacles G5 and GK Color coding of the back nut only for straight plug S1 and in-line receptacle K5 The color coding here is based on the cable bend relief in combination with back nut made of brass. $\operatorname{\textbf{Code}}\nolimits$ C (brass chromate) always for straight plug S2 and receptacles G1 and GA | | Color | Similar RAL systems | | Material | | |---|---------------------------------------|---------------------|---------|----------------------|---| | | | Design | Classic | | | | 2 | Red | 030 40 40 | 3002 | | O | | 3 | White | 000 90 00 | 9003 | | 0 | | 4 | Yellow | 095 90 59 | 1016 | Plastic | 0 | | 5 | Green | 170 60 50 | 6032 | (PSU) | 0 | | 6 | Blue | 250 40 40 | 5019 | | 0 | | 7 | Gray | 000 55 00 | 7045 | | 0 | | 8 | Black | 000 25 00 | 9004 | Plastic
(PSU/PEI) | 0 | | С | Chrome matt | - | - | Brass | 0 | | | · · · · · · · · · · · · · · · · · · · | | | | | ## **DEFINITION OF THE BACK NUTS** Applicable to all straight plugs as well as in-line receptacles | Part number | Material | Color | Similar RA | L systems | |---------------------|----------|-------------|------------|-----------| | | | | Design | Classic | | KM1.020.111.934.002 | | Red | 030 40 40 | 3002 | | KM1.020.111.934.003 | | White | 000 90 00 | 9003 | | KM1.020.111.934.004 | | Yellow | 095 90 59 | 1016 | | KM1.020.111.934.005 | PSU | Green | 170 60 50 | 6032 | | KM1.020.111.934.006 | | Blue | 250 40 40 | 5019 | | KM1.020.111.934.007 | | Gray | 000 55 00 | 7045 | | KM1.020.111.933.008 | PEI | Black | 000 25 00 | 9004 | | KM1.020.111.315.000 | Brass | Chrome matt | - | - | | Part number | Material | Color | Similar RAL systems | | |---------------------|------------------|-------------|---------------------|---------| | | | | Design | Classic | | KM1.020.113.934.007 | PSU ² | Gray | 000 55 00 | 7045 | | KM1.020.113.933.008 | PEI | Black | 000 25 00 | 9004 | | KM1.020.113.315.000 | Brass | Chrome matt | - | - | ¹ Silicone cable bend reliefs have to be ordered separately (see page <u>104</u>). ² Additional colors on request ## **DEFINITION OF THE BACK NUTS** | Part number | Material | Color | Similar RA | L systems | |---------------------|------------------|-------------|------------|-----------| | | | | Design | Classic | | KM1.026.113.934.107 | PSU ² | Gray | 000 55 00 | 7045 | | KM1.026.113.933.108 | PEI | Black | 000 25 00 | 9004 | | KM1.026.113.315.000 | Brass | Chrome matt | - | - | | Part number | Material | Color | Similar RA | L systems | |---------------------|------------------|-------|------------|-----------| | | | | Design | Classic | | KM1.020.114.934.007 | PSU ² | Gray | 000 55 00 | 7045 | | KM1.020.114.934.008 | F30- | Black | 000 25 00 | 9004 | | KM1.020.114.933.008 | PEI | Black | 000 25 00 | 9004 | ¹ Silicone cable bend reliefs have to be ordered separately (see page <u>104</u>). ² Additional colors on request ## TRANSPORTATION CAP #### Applicable to all straight plugs | Part number | Material | Color | Similar RAL systems | | |---------------------|----------|--------|---------------------|---------| | | | | Design | Classic | | 922.000.002.000.075 | TPE | Yellow | 095 90 59 | 1016 | ### SILICONE CABLE BEND RELIEF | Part number | Cable jacket (Ø outside) | | | |----------------|--------------------------|------|--| | | min. | max. | | | 701.023965.025 | 2.5 | 3 | | | 701.023965.030 | 3 | 3.5 | | | 701.023965.035 | 3.5 | 4 | | | 701.023965.040 | 4 | 5 | | | 701.023965.050 | 5 | 6 | | | 701.023965.060 | 6 | 6.5 | | | ^ | | | | | Color code | Color | RAL-Nr. ¹
(similar)
Classic | | | |------------|--------|--|--|--| | 202 | Red | 3020 | | | | 203 | White | 9010 | | | | 204 | Yellow | 1016 | | | | 205 | Green | 6032 | | | | 206 | Blue | 5002 | | | | 207 | Gray | 7005 | | | | 208 | Black | 9005 | | | | | | | | | #### **TEMPERATURE RANGE** Silicone: $-50\,^{\circ}\text{C}$ up to $+200\,^{\circ}\text{C}$ short-term up to $+230\,^{\circ}\text{C}$ Autoclavable The silicone cable bend reliefs must always be ordered separately. $^{^{}m 1}$ Because of differing basic materials, the colors may differ slightly from RAL numbers. # NUTS | Part number | Material | Color | Similar RAL
system Design | |---------------------|----------|---------|------------------------------| | KM1.311.002.934.002 | | Red | 030 40 40 | | KM1.311.002.934.003 | | White | 000 90 00 | | KM1.311.002.934.004 | PSU | Yellow | 095 90 59 | | KM1.311.002.934.005 | P30 | Green | 170 60 50 | | KM1.311.002.934.006 | | Blue | 250 40 40 | | KM1.311.002.934.007 | | Gray | 000 55 00 | | KM1.311.002.933.008 | PEI | Black | 000 25 00 | | KM1.311.003.315.000 | Brass | Cr matt | | | Part number | Material | |---------------------|---------------------| | 021.310.115.304.000 | Nickel-plated brass | ODU MEDI-SNAP° # TOOLS The following pages contain tools and wrenches to ensure that your ODU connectors function flawlessly. ## CRIMPING TOOLS / ASSEMBLY TOOLS ## PART NUMBER CRIMPING TOOL 080.000.051.000.000 Part number positioner, see table #### PROCESSING TOOL FOR CRIMP CONTACTS Digital adjustment, multiposition | Size | Number
of con-
tacts | Contact
diameter | | ination
section | Adjust-
ment
dim. | Positioner | Positioning setting | | Removal tool | |-----------------------|----------------------------|---------------------|-------------|--------------------|-------------------------|---------------------|---------------------|---------------------|---------------------| | | | mm | AWG | mm² | mm | | Pin | Socket | | | 6 to 8
1
4 to 5 | Can O | C40 0.7 | 24 – 26 | 0.25 - 0.15 | 0.67 | 080.000.051.109.000 | 9 | 3 | 087.7CC.070.001.000 | | | to 8 0.7 | 22 – 26 | 0.38 - 0.15 | 0.67 | 080.000.051.109.000 | 9 | 3 | 087.7CC.070.001.000 | | | | 4 to 5 | 0.9 | 22 – 26 | 0.38 - 0.15 | 0.67 | 080.000.051.109.000 | 8 | 2 | 087.7CC.090.001.000 | | | | 4 (0 5 | 0.9 | 20 – 24 | 0.50 - 0.25 | 0.67 | 080.000.051.109.000 | 8 | 2 | ## CRIMPING TOOLS / ASSEMBLY TOOLS ## PART NUMBER CRIMPING TOOL 080.000.037.000.000 Part number positioner, see table #### PROCESSING TOOL FOR CRIMP CONTACTS Mil approved, single position | | Size | Number
of con-
tacts | Contact
diameter | | | Positioner | | Selector
setting | | Removal tool | |--|------|----------------------------|---------------------|---------|-------------|---------------------|---------------------|---------------------|--------|---------------------| | | | | mm |
AWG | mm² | Pin | Socket | Pin | Socket | | | | | 6 to 8 | 0.7 | 22 – 26 | 0.38 - 0.15 | 081.KM1.001.948.037 | 081.KM1.001.948.037 | 4 | 4 | 087.7CC.070.001.000 | | | 1 | 0 10 0 | 0.7 | | 4 | 087.7CC.070.001.000 | | | | | | | T | 1 to E | 0.9 | 20 – 24 | 0.50 - 0.25 | 081.704.001.849.037 | 081.KM1.001.949.037 | 7/6/51 | 7/6/51 | 087.7CC.090.001.000 | | | | 4 to 5 | 0.9 | 22 – 26 | 0.38 - 0.15 | 081.704.001.849.037 | 081.KM1.001.949.037 | 4 | 4 | 087.7CC.090.001.000 | $^{^{1}\,\}mbox{For AWG}$ 20 position 7/for AWG 22 position 6/for AWG 24 position 5 ## SPANNER WRENCH SIZE 1 ## SPANNER WRENCH SIZE 2 | Part number | Dimensions in mm | | | | | | |---------------------|------------------|---|------|-----|----|--| | | AF | t | В | L | b | | | 598.700.001.008.000 | 17 | 3 | 35.5 | 145 | 15 | | Tightening torque of the hex nut receptacle (styles 1/4/5/6/A): 1 \mbox{Nm} #### PART NUMBER KM2.098.002.923.008 For slotted mounting nuts receptacle styles 1, 4, 5 Tightening torque of the hex nut receptacle (styles 1/4/5): 1 Nm ## BOX SPANNER FOR RECEPTACLE FRONT NUTS | Part number | Size | Material
front nut | |---------------------|------|-----------------------| | KM1.098.001.923.008 | 1 | Plastic | | KM1.098.002.902.000 | 1 | Metal | | KM2.098.001.923.008 | 2 | Plastic | ## REMOVAL TOOLS FOR CRIMP-CLIP-CONTACTS | Part number | Contact Ø | |---------------------|-----------| | | mm | | 087.7CC.070.001.000 | 0.7 | | 087.7CC.090.001.000 | 0.9 | ## NOTE ON ADHESIVE ! Recommended adhesive for the back nut Scotch-Weld™, DP 190 (Gray) ODU PART NUMBER: 890.204.000.030.025 Recommended cleaning agent: Isopropyl alcohol Caution! Cracks may later appear with the use of unauthorized adhesives and cleaning agents. (sieh Chnical Data: ODU MEDI-SNAP ODU connectors ensure perfect and reliable transmission of power, signal, data and other media in a wide variety of applications. Further information can be found on the following pages. ## INTERNATIONAL PROTECTION CLASSES i Acc. IEC 60529:2013 (VDE 0470-1:2014) | | Code letters | | First code number | | S | econd code nu | ımber | |----------------|--|--|--|---------------------------------------|---|---------------|---| | | (International Protection) (Degrees of protection against access to hazardous parts respectively against solid | | | (Degrees of protection against water) | | | | | | IP | | foreign objects) | | | 5 | | | Code
number | | | ss to hazardous parts / ss of solid foreign objects | Code
number | Pro | | st harmful effects
gress of water | | 0 | No protection | | No protection against contact /
No protection against solid
foreign objects | 0 | No protection against water | | No protection against water | | 1 | Protection
against large
foreign objects | | Protection against contact with
the back of the hand / Protection
against solid foreign objects
Ø ≥ 50 mm | 1 | Protection
against
dripping water | | Protection against vertically
falling waterdrops | | 2 | Protection
against
medium-sized
foreign objects | | Protection against contact with the fingers / Protection against solid foreign objects $\emptyset \ge 12.5$ mm | 2 | Protection
against
angular
dripping water
(from angles) | | Protection against waterdrops
falling at an angle (any angle up
to 15° of the vertical) | | 3 | Protection
against small
foreign objects | | Protection against contact with tools / Protection against solid foreign objects Ø ≥ 2.5 mm | 3 | Protection
against spray
water | | Protection against spray
water (any angle up to 60° of the
vertical) | | 4 | Protection
against
granular
foreign objects | | Protection against contact with a wire / Protection against solid foreign objects Ø ≥ 1.0 mm | 4 | Protection
against
splashing
water | | Protection against splashing
water from any direction | | 5 | Dustproof | | Protection against contact with
a wire/Protection against
uncontrolled ingress of dust | 5 | Protection
against water
jet | | Protection against water jet from any direction | | 6 | Dustproof | | Protection against contact with
a wire / Complete protection
against ingress of dust | 6 | Protection
against power-
ful water jet | | Protection against powerful water jet from all directions | | | | | | 7 | Protection
against the
effects of
temporary
immersion in
water | | Protection against ingress of
water negatively impacting the
proper function by temporary
submersion into water | | | | | | 8 | Protection
against the
effects of
continuous
immersion in
water | | Protection against ingress of
quantities of water negatively
impacting the proper function by
continuous submersion into water | | | | | | 9 | Protection
against high
pressure water
jet featuring
high tempera-
tures | ↑ | Protection against water from all directions characterized by high pressure and high temperatures | # EXPLANATIONS AND DETAILS OF SAFETY REQUIREMENTS, INSPECTIONS, AND VOLTAGE DATA #### **GENERAL** All the technical information listed in this catalog and the data sheets has been determined by drawing on various standards. Unless otherwise stated, standard IEC 61984:2008 (VDE 0627:2009-11) "Connectors – Safety requirements and tests" has been used to dimension and determine the values provided. This international standard applies to connectors (with rated voltages of 50 V to 1,000 V alternating and direct, and rated currents of up to 125 A per contact) which either have no type specification or which have a type specification whose safety requirements refer to this standard. The standard can be used as a guide for connectors with rated voltages up to 50 V. In cases such as this, IEC 60664-1:2007 must be consulted when dimensioning the clearance and creepage distances. This standard can also serve as a guide for connectors with rated currents higher than 125 A per pole. All the connectors shown here are connectors without breaking capacity (COC) according to IEC 61984:2008 (VDE 0627:2009-11). All of the voltage data listed in this catalog applies when ODU MEDI-SNAP® connectors and inserts are being used properly. Customer-specific attachments, which could reduce the clearance and creepage distances, have not been taken into account here. The clearance and creepage distances are determined on the bases specified in IEC 60664-1:2007 (VDE 0110-1:2008-01). The most important influence variables and the electrical parameters harmonized with these will be explained in more detail in the following. We would be happy to assist you with any further questions. The texts and tables given here are excerpts from the indicated standards. As a rule, product committees lay down application-specific safety requirements for various fields of use; these requirements also regulate the insulation coordination and inspection of connectors. In such cases, the "product standards" which apply to your applications take precedence and must be observed instead of the "basic safety standards" stated here. However, since this catalog and the technical data sheets cannot take all product standards into consideration, we have restricted ourselves to the following standard in terms of voltage data: ## IEC 60664-1:2007 (VDE 0110-1:2008-01) "INSULATION COORDINATION FOR EQUIPMENT WITHIN LOW-VOLTAGE SYSTEMS" This is what is known as a basic safety standard, which regulates the minimum requirements for dimensioning clearance and creepage distances, as well as their inspection. The standard applies to equipment used up to an altitude of 2,000 m above sea level and with a rated alternating voltage of up to 1,000 V and a nominal frequency of up to 30 kHz or a rated direct voltage of up to 1,500 V. The correction factors stated in the standard must be taken into account for applications at altitudes over 2,000 m above sea level. The standard applies in those cases where corresponding product standards do not define any values for clearance and creepage distances, nor lay down any requirements for solid insulation, or where no product standards are even available. ## The following general specifications have been defined for dimensioning: - Isolation between electrical circuits (functional insulation between the contacts) or between an electrical circuit and local ground (contact with grounded connector components) has been dimensioned as basic insulation. If "double insulation" or "reinforced insulation" is required in your application, the voltage data provided will no longer apply; insulating clearances will need to be extended. The standard describes the procedure to follow in this case. - Condition A is always used for the inhomogeneous field when dimensioning the clearance distances used. - The inspections prescribed for solid insulation and for clearance distances (if necessary) are conducted as alternating voltage inspections according to Table F.5. - The clearance and creepage distances are determined on the bases specified in this standard. ## OPERATING VOLTAGE / RATED VOLTAGE / NOMINAL VOLTAGE The max. operating voltage (= rated voltage) is the value of a voltage that is specified by the manufacturer for a component, device, or item of equipment according to various applicable standards, and to which the operating and performance features relate. Some standards use the term "rated voltage" or "working voltage" instead of "operating voltage". # EXPLANATIONS AND DETAILS OF SAFETY REQUIREMENTS, INSPECTIONS, AND VOLTAGE DATA
In these explanations, the term "nominal voltage" is used for the value of the issued voltage indicated by the power supply company (PSC) or by the manufacturer of the voltage source for classification of the overvoltage category. Equipment may have more than one value or one range for rated voltage (see Table F.4 in IEC 60664-1:2007 (VDE 0110-1:2008-01)). #### RATED SURGE VOLTAGE Value of an impulse withstand voltage that is indicated by the manufacturer for equipment or a part thereof, and which indicates the defined endurance of its insulation against transient (brief, duration of a few milliseconds) overvoltages. The impulse withstand voltage is the highest value of the surge voltage of a defined form and polarity which will not result in the dielectric breakdown of the insulation under defined conditions. Depending upon the indicated pollution degree, the rated surge voltage depends upon the clearance distance between the individual contacts or contacts to the housing (see Table F.2 in IEC 60664-1:2007 (VDE 0110-1:2008-01)). You can determine the corresponding rated surge voltages for our connectors in this way if you need to take account of loads with transient overvoltages in your application. According to this standard, the minimum clearance distances for equipment not connected directly to the low voltage mains should be measured according to the possible continuous voltages, the temporary overvoltages, or periodic peak voltages [see Table F.7 in IEC 60664-1:2007 [VDE 0110-1:2008-01]]. If a "periodic peak voltage" is present for a long time over the service life (more than approximately 60 minutes), this is not an overvoltage as regards insulation dimensioning under the terms of the standard, but must be considered a continuous voltage instead. In such cases, the "periodic peak voltage" must be used as the operating voltage. #### **POLLUTION DEGREE** Potentially occurring pollution combined with moisture can influence the insulation capacity on the surface of the connector. In order to define various rating parameters, a pollution degree must be selected for the equipment according to the criteria listed below. In the case of a connector with a degree of protection of minimum IP54 IEC 60529:2013 (VDE 0470-1:2014-09), the insulating parts may be measured enclosed according to the standard for a low pollution degree. This also applies for mated connectors for which enclosure is ensured by the connector housing and which are only disconnected for inspection and maintenance purposes. #### Pollution degree 1 No or only dry, non-conductive pollution is present. The pollution has no influence. For example, computer systems and measuring instruments in clean, dry, or air-conditioned rooms. #### Pollution degree 2 (= standard, if no specific pollution degree is indicated) Only non-conductive pollution is present. However, temporary conductivity due to condensation must be anticipated. For example, devices in laboratories, residential, sales, and other business areas. #### Pollution degree 3 Conductive pollution is present or dry, non-conductive pollution that will become conductive because condensation is expected. For example, devices in industrial, commercial, and agricultural operations, unheated storage areas, and workshops. #### Pollution degree 4 Permanent conductivity is present, caused by conductive dust, rain, or moisture. For example, devices in the open air or outdoor facilities and construction machinery. Operating voltage (VDE: rated voltage): Value of a voltage that is specified by the manufacturer for a component, device, or item of equipment and relates to the operating and performance features. Depending upon the indicated pollution degree, the rated voltage is dependent upon the insulating material group of the connector and the respective creepage distances between the individual contacts. 116 # EXPLANATIONS AND DETAILS OF SAFETY REQUIREMENTS, INSPECTIONS, AND VOLTAGE DATA #### **CLEARANCE DISTANCE** The shortest distance in the air between two conductive parts. #### **CREEPAGE DISTANCE** The shortest distance between two conductive parts over the surface of an insulation material. The creepage distance is influenced by the pollution degree applied. #### **TEST VOLTAGES** The dielectric withstanding voltage of the connector is confirmed according to the standard corresponding to the indicated rated surge voltage by applying the test voltage according to Table E.5 over a defined time range. ## IEC 60664-1:2007 (VDE 0110-1:2008-01): Table F.5 – test voltages for testing clearance distances at different altitudes (the voltage levels are valid only to verify the clearance distances) | Rated surge voltage | Test surge voltage
at sea level | Test surge voltage
at 200 m elevation | Test surge voltage
at 500 m elevation | |---------------------|------------------------------------|--|--| | ûkV | û kV | û kV | û kV | | 0.33 | 0.357 | 0.355 | 0.350 | | 0.5 | 0.541 | 0.537 | 0.531 | | 0.8 | 0.934 | 0.920 | 0.899 | | 1.5 | 1.751 | 1.725 | 1.685 | | 2.5 | 2.920 | 2.874 | 2.808 | | 4 | 4.923 | 4.874 | 4.675 | | 6 | 7.385 | 7.236 | 7.013 | | 8 | 9.847 | 9.648 | 9.350 | | 12 | 14.770 | 14.471 | 14.025 | ## **VOLTAGE DATA ACCORDING TO "IEC"** #### **OPERATING VOLTAGE (RATED VOLTAGE)** The values stated in the catalog for rated voltage have been determined according to IEC 60664-1:2007 (VDE 0110-1:2008-01). The values in the table are achieved under these framework conditions: - Pollution degree 2 - PEEK insulator material (insulating material group III) - Basic insulation If your application requires double or reinforced insulation, the rated voltages will be lower. Applicable product standards and basic safety standards must be observed. According to DIN VDE 0100-410:2018-10, two independent protective measures must be combined to create appropriate safety precautions against electric shock: one basic protective measure and one fault protective measure. For applications which do not run with a safety extra-low voltage (SELV), i.e., for voltages > 50 V AC and > 120 V DC, another protective measure is required according to IEC 60364-4-41:2005 + A1:2017 (DIN VDE 0100-410:2018-10). The standard describes in more detail which protective measures are suitable and permitted. ## **VOLTAGE DATA ACCORDING TO "MIL"** Acc. SAE AS 13441:2004 method 3001.1 The values specified in the catalog correspond to SAE AS 13441:2004 method 3001.1. The table values were determined according to EIA 364-20F:2019. The inserts were tested while mated, and the test current was applied to the pin insert. 75 % of the dielectric withstanding voltage is used for the further calculation. The operating voltage is 1/3 of this value. All tests were conducted at normal indoor climate and apply up to an altitude of 2,000 m. If there are any deviations, the reduction factors are to be factored in according to the applicable standards. Test voltage: Dielectric withstanding voltage × 0.75 Operating voltage: Dielectric withstanding voltage \times 0.75 \times 0.33 #### **CAUTION:** For operating voltages above 50 V AC / 120 V DC (SELV), life is in danger! Subsequently explained procedure according SAE AS 13441:2004 method 3001.1 does not consider protection against electric shock. Suitable precautions (protective measures) such as touch protection, protective insulation, protective separation, protective earth conductor etc. must be taken. In the case that other standards rule a specific use of the connector, the application specific safety criteria shall be considered first. This must be evaluated in the frame of equipment engineering. For any advise on how to choose the proper connector please consult us and indicate the safety standard which your product has to meet. Test voltage: Dielectric withstanding voltage $\times\,0.75$ Operating voltage: Dielectric withstanding voltage \times 0.75 \times 0.33 ## HOUSING MATERIALS / SURFACES | Component | Material designation | Surface | |---|---|---------------------------| | Housing | PSU ¹ /PEI ¹ /Brass | Chrome
(metal version) | | Back nut
Cable collet
Front nut
Mounting nut | PSU¹/PEI¹ | | | Insulator | PEEK/PBT | | | Hex nut | Brass | Ni | | Contacts | Brass | Au | ## INSULATOR MATERIALS (ROHS 2011/65/EU COMPLIANT) | | Norm | Unit | PSU | PEI | PEEK | PBT | |--|--|----------|--------------|-----------------|------------------------------|-----------------------------| | Flammability rating | UL 94 | | V-0/4.5 | V-0/0.41 | V-0/1.5 | V-0/1.5 | | Operation temperature | | С | −50 to +170° | −50 to +170° | −50 to +250° | -50 to +180° | | Dielectric strength | IEC 60243-1:2013
(VDE 0303-21:2014-01) | kV/mm | 17 | 27/1.6 (in oil) | 19 | 27 | | Comparative figure of the creep resistance CTI | IEC 60112: 2009
(VDE 0303-11:2010-05) | | 150 | 150 | 175 | 600 | | Water absorption | ASTM D 570:1998 /
ISO 62:2008-02 | % | 0.3 | 0.25 | 0.1 | 0.3 | | Sterilization (autoclaving) | DIN EN 13060:2019-02 | Quantity | ~20 | >200 | >200 | | | Insulation resistance | IEC 60512-3-1:2002
(DIN EN 60512-3-
1:2003-01) | Ω | | | $> 1 \times 10^{12} \Omega$ | $> 1 \times 10^{12} \Omega$ | All values in the new condition ## NOTE ON ADHESIVE Recommended adhesive for the back nut Scotch-Weld™, DP 190 (Gray) ODU PART NUMBER: 890.204.000.030.025 Recommended cleaning agent: Isopropyl alcohol Caution! Cracks may later appear with the use of unauthorized adhesives and cleaning agents. ¹ Corresponding to the version, either the material PSU or PEI is used for all plastic component parts (except insulator) of a complete plug, in-line receptacle or receptacle. ## **TERMINATION TECHNOLOGIES** In general, insulators with socket
contacts are installed in the live part (to provide protection from accidental touch). The means of mounting the contacts in the insulator is important on account of the termination technologies. Termination technologies for ODU MEDI-SNAP® connectors include: soldering, crimping and PCB. #### TERMINATION TECHNOLOGIES FOR TURNED CONTACTS #### Solder termination The contacts are mounted in the insulator before the single connectors are assembled. An insulator with pre-installed contacts is referred to as a contact insert. #### Crimp termination Here, the individual contact is connected to the individual wires via deformation in the termination area. Then the contacts are individually installed in the insulator. Accordingly, insulators and individual contacts — and not complete contact inserts — are supplied for the crimp termination. The contact processing for the production of connecting cables via crimping creates a secure, durable and corrosion-free contact. Cold compaction (crimping) compresses the conductor and contact material to the press points so as to form a gas-tight connection with tensile strength to fit the conductor material. 8-point deformation is generally used for turned crimp contacts. #### **PCB** termination This is only used in the receptacle if the receptacle is to be mounted directly on a printed circuit board (PCB). Further information is available upon request. ## CONVERSIONS/AWG (AMERICAN WIRE GAUGE) | | Circular wire | | | | | | | | | |------------|---------------|-------|-------------------|--------|-------------------------|--|--|--|--| | AWG | Dian | neter | Cross-
section | Weight | Max.
resist-
ance | | | | | | | Inch | mm | mm² | kg/km | Ω/km | | | | | | 10 (1) | 0.1019 | 2.590 | 5.26 | 46.77 | 3.45 | | | | | | 10 (37/26) | 0.1150 | 2.921 | 4.74 | 42.10 | 4.13 | | | | | | 12 (1) | 0.0808 | 2.050 | 3.31 | 29.41 | 5.45 | | | | | | 12 (19/25) | 0.0930 | 2.362 | 3.08 | 27.36 | 6.14 | | | | | | 12 (37/28) | 0.0910 | 2.311 | 2.97 | 26.45 | 6.36 | | | | | | 14 (1) | 0.0641 | 1.630 | 2.08 | 18.51 | 8.79 | | | | | | 14 (19/27) | 0.0730 | 1.854 | 1.94 | 17.23 | 9.94 | | | | | | 14 (37/30) | 0.0735 | 1.867 | 2.08 | 18.870 | 10.50 | | | | | | 16 (1) | 0.0508 | 1.290 | 1.31 | 11.625 | 13.94 | | | | | | 16 (19/29) | 0.0590 | 1.499 | 1.23 | 10.928 | 15.70 | | | | | | 18 (1) | 0.0403 | 1.020 | 0.823 | 7.316 | 22.18 | | | | | | 18 (19/30) | 0.0052 | 1.321 | 0.963 | 8.564 | 20.40 | | | | | | 20 (1) | 0.0320 | 0.813 | 0.519 | 4.613 | 35.10 | | | | | | 20 (7/28) | 0.0390 | 0.991 | 0.563 | 5.003 | 34.10 | | | | | | 20 (19/32) | 0.0420 | 1.067 | 0,616 | 5.473 | 32.00 | | | | | | 22 (1) | 0.0253 | 0.643 | 0,324 | 2.883 | 57.70 | | | | | | 22 (7/30) | 0.0288 | 0.732 | 0,324 | 2.965 | 54.80 | | | | | | 22 (19/34) | 0.0330 | 0.838 | 0.382 | 3.395 | 51.80 | | | | | | 24 (1) | 0.0201 | 0.511 | 0.205 | 1.820 | 91.20 | | | | | | 24 (7/32) | 0.0250 | 0.635 | 0.227 | 2.016 | 86.00 | | | | | | 24 (19/36) | 0.0270 | 0.686 | 0.241 | 2.145 | 83.30 | | | | | | 26 (1) | 0.0159 | 0.404 | 0.128 | 1.139 | 147.00 | | | | | | 26 (7/34) | 0.0200 | 0.508 | 0.141 | 1.251 | 140.00 | | | | | | 26 (19/38) | 0.0220 | 0.559 | 0.154 | 1,370 | 131.00 | | | | | | 28 (1) | 0.0126 | 0.320 | 0.0804 | 0.715 | 231.00 | | | | | | 28 (7/36) | 0.0160 | 0.406 | 0.0889 | 0.790 | 224.00 | | | | | | 28 (19/40) | 0.0170 | 0.432 | 0.0925 | 0.823 | 207.00 | | | | | | 30 (1) | 0.0100 | 0.254 | 0.0507 | 0.450 | 374.00 | | | | | | 30 (7/38) | 0.0130 | 0.330 | 0.0568 | 0.505 | 354.00 | | | | | | 30 (19/42) | 0.0123 | 0.312 | 0.0720 | 0.622 | 310.00 | | | | | | 32 (1) | 0.0080 | 0.203 | 0.0324 | 0.288 | 561.00 | | | | | | 32 (7/40) | 0.0110 | 0.279 | 0.0341 | 0.303 | 597.10 | | | | | | 32 (19/44) | 0.0100 | 0.254 | 0.0440 | 0.356 | 492.00 | | | | | | 34 (1) | 0.0063 | 0.160 | 0.0201 | 0.179 | 951.00 | | | | | | 34 (7/42) | 0.0070 | 0.180 | 0.0222 | 0.197 | 1,491.00 | | | | | | 36 (1) | 0.0050 | 0.127 | 0.0127 | 0.1126 | 1,519.00 | | | | | | 36 (7/44) | 0.0060 | 0.150 | 0.0142 | 0.1263 | 1,322.00 | | | | | The American Wire Gauge (AWG) is based on the principle that the cross-section of the wire changes by 26 % from one gauge number to the next. The AWG numbers decrease as the wire diameter increases, while the AWG numbers increase as the wire diameter decreases. This only applies to solid wire. However, stranded wire is predominately used in practice. This has the advantage of a longer service life under bending and vibration as well as greater flexibility in comparison with solid wire. Stranded wires are made of multiple, smaller-gauge wires (higher AWG number). The stranded wire then receives the AWG numbers of a solid wire with the next closest cross-section to that of the stranded wire. In this case, the cross-section of the stranded wire refers to the sum of the copper cross-sections of the individual wires. Accordingly, strands with the same AWG number but different numbers of wires differ in cross-section. For instance, an AWG 20 strand of 7 AWG 28 wires has a cross-section of 0.563 mm², while an AWG 20 strand of 19 AWG 32 wires has a cross-section of 0.616 mm². Source: ASTM ## **CURRENT LOAD OF TURNED CONTACTS** Nominal single contact current load for pin / slotted socket (nominal diameter 0.5 mm - 2 mm) #### UPPER LIMIT TEMPERATURE OF STANDARD CONTACTS: +120 °C The wire cross-section shown in the legend was connected as test cable. In the case of multi-position connectors and cables, the heating is greater than it is with individual contacts. For that reason, it is calculated with a reduction factor. For connectors, the reduction factors for multi-core cables pursuant to VDE 0298-4:2013 are applied. The reduction factor is factored in at 5 live wires and up. #### **DERATING CURVE** The corrected current-carrying capacity curve, derived from the base curve determined [0.8 x measured current]. It factors in manufacturing tolerances as well as uncertainties in temperature measurement and measurement arrangement, see derating measurement method. #### RATED CURRENT (NOMINAL CURRENT) The metrologically determined current which is permitted to flow continuously through all contacts at the same time and will increase the contact temperature by 45 Kelvin. The amperage is determined according to the derating measurement method [IEC 60512-5-2:2002 (DIN EN 60512-5-2:2003-01)] and derived from the derating curve. #### DERATING FACTOR | Number of loaded wires | Derating factor | |------------------------|-----------------| | 5 | 0.75 | | 7 | 0.65 | | 10 | 0.55 | | 14 | 0.5 | | 19 | 0.45 | | 24 | 0.4 | ## **AUTOCLAVING OF ODU MEDI-SNAP®** The ODU MEDI-SNAP® connectors are also available for the following sterilization processes: Steam sterilization with pre-vacuum or gravitation process. The connectors are tested with autoclave equipment in accordance with DIN EN 13060:2019-02 at 134 °C and 200 cycles (housing elements made of PEI). With PSU housing 20 autoclave cycles. With PEI housing 200 autoclave cycles. For other sterilization processes like Sterrad / ETO and Gamma, please contact the appropriate indoor service. #### Sterilization curve ### **TECHNICAL TERMS** #### AMBIENT TEMPERATURE Temperature of the air or other medium in which a piece of equipment is intended to be used. [IEC 44/709/CDV:2014 [VDE 0113-1:2019-06]. #### **AUTOCLAVABILITY** See page 123 #### **AWG** American Wire Gauge – see page 121 #### **BASE CURVE** A current-carrying capacity curve metrologically determined according to the method described in IEC 60512-5-2:2002 (DIN EN 60512-3-1:2003-01) depending on the permissible limit temperature of the materials. #### **CHEMICAL RESISTANCE** Many secondary processing procedures use adhesives, cleaning agents or other chemicals on our products. Contact with unsuitable chemicals may have an adverse effect on the mechanical and electrical properties of the insulation and housing materials which specified properties may not be able to withstand. Please observe our processing suggestions and technical instructions in this catalog. #### **CLEARANCE DISTANCE** The shortest distance in the air between two conductive parts. #### **CONNECTORS** Also known as connectors without breaking capacity (COC): (IEC 61984:2008 (VDE 0627:2009-11). An element which enables electrical conductors to be connected and is intended to create and/or separate connections with a suitable counterpart. #### **CONNECTOR WITHOUT BREAKING CAPACITY (COC)** Connector which is not deemed to be engaged or disengaged in normal use when live under load. #### CONTACT RESISTANCE Total resistance value measured from terminal to terminal. In this case, the resistance is significantly lower than the contact resistance. The specifications are average values. #### **CORES** Electrical conductor, solid wire or multi-wire strand, with insulation as well as any conductive layers. Cables or leads may have one or more cores. #### **CREEPAGE DISTANCES** The shortest distance between two conductive parts along the surface of a solid insulation material. This factors in all elevations and recesses in the insulator, as long as defined minimum dimensions are on hand. #### **CRIMP BARREL** A terminal sleeve which can accommodate one or more conductors and be crimped by a crimping tool. #### **CRIMP CONNECTION (CRIMP TERMINATION)** The permanent, non-detachable and solder-free mounting of a contact to a conductor via deforming or shaping under pressure to make a good electrical and mechanical connection. Executed with crimping tool, press or automatic crimping machine (see page 108). #### **CRIMPING AREA** The specified area of the crimp barrel in which the crimp termination is executed by means of deforming or shaping the barrel under pressure around the conductor. #### **DEGREE OF POLLUTION** The effect of pollution is factored in as degree of pollution when measuring clearance and creepage distances. Four degrees of pollution are defined for the micro-environment: IEC
60664-1:2007 (VDE 0110-1:2008-01). #### **DELIVERY FORM** Connectors can be delivered in assembled form or as individual parts. #### **DERATING FACTOR** According to VDE 0298-4:2013-06, with connectors and cables over 5 contacts, the heating is greater than it is with individual contacts. For that reason, the aforementioned standard is calculated with a reduction factor. #### **DERATING CURVE** See page 122 124 ## **TECHNICAL TERMS** ## DERATING MEASUREMENT METHOD IEC 60512-5-2:2002 (DIN EN 60512-5-2:2003-01) Measurement method to determine the current carrying capacity of connectors in consideration of the maximum permissible limit temperature (see page 122). #### **FIXED CONNECTORS** Intended for mounting on a fixed surface such as a frame, dock, device or wall (with ODU also receptacle or panel-mounted plug). #### FREE CONNECTORS Intended for mounting on free ends of mobile leads and cables (with ODU also connectors, plugs, in-line receptacles). #### **INSULATOR** Part of a connector which separates conductive parts with different potentials from one another; usually identical to the contact carrier. #### **CODING (ORIENTATION)** Arrangement with which differing polarization of otherwise identical connectors prevents interchangeability. This is a good idea if two or more identical connectors are attached to the same device (see also compatible connectors, see pages $\underline{37}$, $\underline{68}$, $\underline{94}$). #### LOWERMOST LIMIT TEMPERATURE The lowest permissible temperature at which a connector may be operated. At ODU MEDI-SNAP®, it amounts to $-50\,^{\circ}\text{C}$. #### MATERIALS (STANDARD DESIGN) See page 119 #### MATING AND UNMATING FORCE The force required to fully insert or withdraw pluggable elements without the influence of a coupling or locking device. #### MATING CYCLES Mechanical actuation of connectors and plug devices via push and pull action: A mating cycle consists of one insertion and withdrawal action. The default value for the ODU MEDI-SNAP® push-pull connectors is 2,000 mating cycles, for the breakaway plugs it is up to 5,000 mating cycles. #### MAX. CONTINUOUS CURRENT The metrologically determined amperage at room temperature (approx. 20 °C) which increases the contact temperature to the limit temperature. The values specified in the catalog apply to either individual contacts or completely assembled inserts/modules, as indicated. #### NOMINAL SINGLE CONTACT CURRENT LOAD The current-carrying capacity which each individual contact can be loaded with on its own (see page 122). #### NOMINAL VOLTAGE The voltage which the manufacturer specifies for a connector and relates to the operating and performance features. #### OPERATING TEMPERATURE FOR ODU MEDI-SNAP® Range between the uppermost and lowermost temperature limits. -50 °C to +120 °C (see page 15). #### **OPERATING VOLTAGE** The nominal voltage of the power source for which the connector is being used. The operating voltage may not be higher than the nominal voltage of the connector. #### PCB (A.K.A. "PRINTED CIRCUIT BOARD") A PCB is a carrier for electronic components. It serves the purposes of mechanical mounting and electrical connection. #### **PCB TERMINATION** Production of a conductive connection between the PCB and an element in through-hole assembly, THT (through-hole technology). #### RATED CURRENT (NOMINAL CURRENT) See page 122 #### RATED VOLTAGE According to IEC 60664-1:2007 (VDE 0110-1:2008-01) standard "Value of a voltage which is specified by the manufacturer for a component, device or operating medium and relates to the operating and performance features." ## **TECHNICAL TERMS** #### **SOLDER CONNECTION (SOLDER TERMINATION)** Termination technology in which a molten additional metal (solder) with a lower melting point than the base materials to be connected is used to attach two metallic materials to one another. #### **TERMINATION CROSS-SECTION** The specified cross-sections correspond to a "fine-wire" conductor structure pursuant to IEC 60228:2004 (VDE 0295:2005-09; Class 5) or a "fine-wire" conductor structure (7/19 wire) according to AWG (ASTM B258-14). #### **TERMINATION TECHNOLOGIES** Methods for connecting the leads to the electro-mechanical element, such as solder-free connections pursuant to IEC 60352 (DIN EN 60352): crimp, screw connection etc. or soldering connection (see page <u>120</u>). #### **TEST VOLTAGE** The voltage which a conductor can withstand under defined conditions without dielectric breakdown or flashover. #### TIGHTNESS IEC 60529:2013 (VDE 0470-1:2014-09) See protection types on page 114 #### **UPPERMOST LIMIT TEMPERATURE** The maximum permissible temperature at which a connector may be operated. It includes contact heating through current-carrying capacity. With ODU MEDI-SNAP® standard TURNTAC® contacts, it amounts to +120 °C. Please consult ODU for high-temperature applications. #### WIRE Wires (solid conductors) are available with an insulator sleeve and/or electrical shielding. Cables or conductors may be made up of one or more wires. #### **GENERAL NOTE** The connectors listed in this catalog are intended for use in high voltage and frequency ranges. Suitable precautionary measures must be taken to ensure that people do not come into contact with live conductors during installation and operation. All entries in this catalog were thoroughly reviewed before printing. ODU reserves the right to make changes based on the current state of knowledge without prior notice without being obliged to provide replacement deliveries or refinements of older designs. #### **ODU GROUP WORLDWIDE** #### ODU GmbH & Co. KG Pregelstraße 11, 84453 Mühldorf a. Inn, Germany Phone: +49 8631 6156-0, Fax: +49 8631 6156-49, E-mail: sales@odu.de #### **SALES LOCATIONS** #### ODU (Shanghai) International Trading Co., Ltd. Phone: +86 21 58347828-0 E-mail: sales@odu.com.cn www.odu.com.cn ODU (HK) Trading Co., Ltd. Phone: +852 5439-9036 E-mail: sales@odu.hk www.odu.hk ODU Denmark ApS Phone: +45 2233 5335 E-mail: sales@odu-denmark.dk www.odu-denmark.dk ODU-France SARL Phone: +33 1 3935-4690 E-mail: sales@odu.fr www.odu.fr ODU Italia S.R.L. Phone: +39 331 8708847 E-mail: sales@odu-italia.it www.odu-italia.it ODU Japan K.K. Phone: +81 3 6441 3210 E-mail: sales@odu.co.jp www.odu.co.jp ODU Korea Inc. Phone: +82 2 6964 7181 E-mail: sales@odu-korea.kr www.odu-korea.kr ODU Romania Manufacturing SRL Phone: +40 269 704638 www.odu-romania.ro E-mail: sales@odu-romania.ro www.odu.se ODU-UK Ltd. ODU Scandinavia AB Phone: +46 176 18262 E-mail: sales@odu.se Phone: +44 330 002 0640 E-mail: sales@odu-uk.co.uk www.odu-uk.co.uk ODU-USA Inc. Phone: +1 805 484-0540 E-mail: sales@odu-usa.com www.odu-usa.com Further information and specialized representatives can be found at: www.odu-connectors.com/contact #### PRODUCTION AND LOGISTICS SITES Germany Otto Dunkel GmbH China ODU (Shanghai) Connectors Manufacturing Co., Ltd. ODU Mexico Manufacturing S. de R.L. de C.V. Mexico Romania ODU Romania Manufacturing SRL ODU North American Logistics Inc. Simply scan the QR code to download the entire publication. All dimensions are in mm. Some figures are for illustrative purposes only. Subject to change without notice. Errors and omissions excepted. We reserve the right to change our products and their technical specifications at any time in the interest of technical improvement. This publication supersedes all prior publications. This publication is also available as a PDF file that can be downloaded from www.odu-connectors.com MEDI-SNAP"/ C / 0720 / EN 000 ### **X-ON Electronics** Largest Supplier of Electrical and Electronic Components Click to view similar products for Standard Circular Connector category: Click to view products by ODU manufacturer: Other Similar products are found below: 5M2530B10P 600259N006 600273N007 6134-336-13149 6134-337-11149 6134-337-2390 6134-341-17149 6280-4SG-516 6280-7SG-3DC 6290 6291A 66200A-10 680-SMG 681-PMG CXS3102A14S2P CXS3102A181S 7251-5SG-300 7271-6SG-300 7282-3PG-300-CH3 75-474618-01S 75-474618-04S 799539-000 MI8-SE 805-005-07NF11-19PC 805-005-07NF15-7PA 8280-4PG-516 8280-7PG-519 8282-5PG-519 836783-1 MP-4102-25P-C 862256-1 864019-2 866857-1 867865-1 PT01SP-14-18P PT08P-14-5S PTSF06SE-14-12S 120-1833-000 QCM019PC2DC012B 1-2069279-1 121583-0217 121667-0020 129591AU 1000B BULK RD10A16-19-P6CS051/1 RD10A20-31-P8CS051/1 RD16A14-12-S6CS051/2 1301240290 1301240347 1301860202