WFH Series

Aluminum Housed Wirewound Power

Ohmite's new flat core winding technology allows for wirewound heatsinkable resistors affording a very low profile, and superior thermal transfer characteristics when compared to conventional aluminum housed wirewound resistors.

Close mounting of heat sensitive components is possible due to only a slight rise of the temperature on the aluminum profile.

No heat sink compound is required because of large mounting surface.

FEATURES

- Solder lug, wire, and "Fast-on" amp terminations
- Multiple resistors in one profile possible
- Custom wire lengths available

SERIES SPECIFICATIONS			
Туре	Power Rating* (watts)	Resistance Range (Ω)	
WFH90	90	0.22Ω – 6.8K	
WFH160	160	0.47Ω-18K	
WFH230	230	0.82Ω-27K	
WFH330	330	1Ω - 39K	

*at 40°C base plate temperature

CHARACTERISTICS

Power rating	90W-330W
Resistance tolerance	±5%, ±10%
Temperature Coefficients	Normal: 50ppm - 150ppm Low ohmic values: 400ppm
Dielectric strength	2500 VAC peak
Working voltage	1200 VAC
Test voltage	6000 VAC
Lead wire	(wire terminal version only): XLPE, 600V, 125C, 18 AWG stranded
Insulation	Silicone Rubber & Mica. The Silicone is UL-recognised (UL 94 HB) to a working tem- perature of 220°C. Temperatures of up to 300°C can be endured for shorter periods. This may however cause an expansion of the silicone rubber with a possibility of reducing the dielectric strength.
Min. Storage & Operating Temp.	-40°C

350 300 WFH330 250 W/Resistor 200 WFH230 150 WFH160 100 WFH90 50 0 40 60 80 100 120 140 Heat Sink Temperature. °C

This graph shows the maximum wattage rating for each possible resistor of standard size corresponding to the heat sink temperature. It is assumed that all resistors are equally loaded.

Thermal Resistances

Power Dissipation

Thermal Resistance (°C/W) between different measuring points

	WFH90	WFH160	WFH230	WFH330
R_{TH_1}	2	1	0.75	0.5
R_{TH_2}	6.8	3.9	2.75	2
R _{TH3}	0.1	0.05	0.03	0.02
R_{TH_4}	0.3	0.17	0.1	0.085

THIS PRODUCT IS DESIGNED FOR USE WITH PROPER HEATSINKING.

Maximum base plate temperature of the resistor must be monitored and kept within specified limits to establish the power rating. Best technique is to attach a thermocouple to the side of the base plate of the resistor. Temperature of plastic housing or heat sink cannot be used to establish rating of the resistor.

(continued)

WFH Series

Aluminum Housed Wirewound Power

DESIGN INFORMATION

The following equations are 1. WFH is mounted on a heat sink: applied in the dimensioning of A. The thermal resistance RTH of the heat sink is known, $T = W_{MAX} \times (R_{TH4} + R_{TH})$ the resistors at stationary load. If more information is required Check that: please consult Ohmite. It is as-T_{MAX} = W_{MAX} x (R_{TH} + R_{TH3} + R_{TH1}) + T_{AMB} <220°C sumed that the air around the B. The Temperature of the Heat Sink is known, resistors is stationary (worst $\dot{T} = W_{MAX} \times R_{TH4} + T_{H}$ case). See ohmite.com for more Check that: examples. T_{MAX} = W_{MAX} x (R_{TH1} + R_{TH3}) + T_H <220°C 2. WFH is mounted without a heat sink: Check that: T_{MAX} = W_{MAX} x (R_{TH1} + R_{TH2}) + T_{AMB} <220°C Where: W_{MAX} = Maximum reguired load in resistor

- T_{MAX} = Maximum hot spot temperature reguested in resistor ($T_{MAX} < 220^{\circ}$ C)
- $T_{AMB} = Ambient temperature$
- R_{TH} = Thermal resistance. Refer to table Thermal resistances
- $T_{\rm H}$ = Heat sink temperature (chassis).
- T = Temperature on top of the Aluminum profile.

DIMENSIONS

ORDERING INFORMATION

Standard part numbers

WH	FH16	50LR4	7 K E -	RoHS Compliant
Cariaa	Wetters			- Tolerance

Series	at 40°C	L = lug terminals	Onms R47= 0.47Ω	J = 5% K = 10%		
	temp.	W= 30cm insulated wire cable 18AWG				

rev 10/19-1

WFH90L4R7KE	WFH160LR47KE	WFH160L1K0JE	WFH230L100JE	WFH330L50RJE
WFH90L10RKE	WFH160L1R0KE	WFH160L5K0JE	WFH230L150JE	WFH330L75RJE
WFH90L25RJE	WFH160L2R0KE	WFH160L10KJE	WFH230L250JE	WFH330L100JE
WFH90L50RJE	WFH160L10RKE	WFH230L1R0KE	WFH230L1K0JE	WFH330L150JE
WFH90L100JE	WFH160L27RJE	WFH230L2R0KE	WFH230L1K5JE	WFH330L250JE
WFH90L470JE	WFH160L50RJE	WFH230L5R0KE	WFH230L2K5JE	WFH330L1K0JE
WFH90L750JE	WFH160L75RJE	WFH230L10RKE	WFH330L1R0KE	WFH330L5K0JE
WFH90L1K0JE	WFH160L100JE	WFH230L27RJE	WFH330L2R0KE	WFH330L10KJE
WFH90L2K7JE	WFH160L150JE	WFH230L50RJE	WFH330L10RKE	
WFH90L5K0JE	WFH160L250JE	WFH230L75RJE	WFH330L27RJE	

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Wirewound Resistors - Chassis Mount category:

Click to view products by Ohmite manufacturer:

Other Similar products are found below :

HD300HLR71J
RER50F18R7RC02
RER50F7R50RC02
RER75F4991MC02
RH0055R000FC02W09
2-1623821-6
FVT200-500

RDSF010015R00JDBNI
RER60F34R8RC02
RER60F51R1MC0230
RER65F1R50PC02
RER70F62R5PC02
VK100NA-200
VK100NA-500

VK100NA-750
40/70MJ2K00BE
VP10FA-3K
VP50KA-20K
VPR10F1
VPR10F-13.5K
VPR10F-4500
VPR10F-4.5K
VPR10F-4K

VPR10F-700
VPR10F-7.5K
VPR20H150
VPR5F-22.5K
L75J1K0E
VRH320
3K3 K
RER65F2940PC02
RER75F1R00RC02

RER70F27R4P
VPR5F-600
VPR5F250
VPR10F-6K
VPR10F25
VPR10F-1.75K
VPR10F-125
VPR10F10

VP50KA-12K
VP50KA-100K
VP25KA-5000
VK100NA250
VK100NA-15
620-5R00-FBW
850J5R0E-B
L100J150E-MT1
L50J500E

MT1

VF10F-125

</td