OmROח

CP1H/CP1L

All-in-one Package PLCs with Condensed Multi-functionality. A Wide Variety of Built-in Functions Expand Application Capabilities and Shorten the Design Time Required for the Growing Number and Increasing Complexity of Ladder Programs

The Ultimate High-performance Package-type PLC
Three types of CPU Unit are available to meet applications requiring advanced functionality: - The CP1H-X with pulse outputs for 4 axes. - The CP1H-Y with $1-\mathrm{MHz}$ pulse I/O.

- The CP1H-XA with built-in analog I/O.

A Standard Package-type PLC
Complete with a standard-feature USB port, CP1L CPU Units are available for applications with as few as $101 / O$ points. Whether you need simple sequence control or pulse I/O and a serial port, the CP1L PLCs give you an economical choice from among 10-, 14-,

[^0]
UPU Units 8
Expansion Units. 10
Functions 12
-Pulse Outputs. 12
14- Serial Communications. .16

- Ethernet Communications... 1- Analog I/O. .19-USB Peripheral Port 20
-LCD Displays and Settings...
Support Software...............
CPU Unit Functions. 22
Connecting Expansion Unitand Expansion I/O Units....... 26
CPU Unit Specifications..... 28 28
Option Unit Specifications... 4
Expansion I/O UnitSpecifications. 44
Expansion UnitSpecifications.. 46
Dimensions 48
nstructions. 51
Ordering Information. 55OMRON Function Block
Library.. 62
SMARTSTEP 2AC Servo Drivers withPulse String Inputs. 64

A Wide Range of CPU Units Allows You to Select the Ideal Model.

Expansion Units Provide for a Wider Range of Applications.

SYSMAC CP1【

- Using Only CP1W Units with the CP1H

\bullet Up to 7 CP1W/CPM1A Expansion Units and Expansion I/O Units can be connected Note: Some Expansion Units and Expansion I/O Units have certain restrictions on use.
(For details, refer to page 24.)
-Using CJ-series Special I/O Units, CJ-series CPU Bus Units, and CP1W Units with the CP1H

\bullet Up to 7 CP1W/CPM1A Expansion Units and Expansion I/O Units can be connected. CP1W/CPM1A Expansion Units and Expansion IO Units and CJ Units can be used simultaneously. CP1W-CN811 I/O Connecting Cable is required.

CP1H Application Examples

SYSMAC CP1凸
-CP1L-M30D $\square-\square / C P 1 L-M 40 D \square-\square / C P 1 L-M 60 D \square-\square$

-CP1L-L14D $\square-\square / C P 1 L-L 20 D \square-\square$

- One CP1W/CPM1A Expansion Unit or Expansion I/O Unit can be connected.

■CP1H/CP1L Communications Interface Options

■CP1L Application Examples

Sequence Control with Clock Functio Shopping Mall Fountain Control

Maximize Efficiency by Selecting the Optimu m CPU Unit for Your Applications.

		CP1H			CP1L					
		Y CPU Units CP1H-Y20DT-D DC power supply, 12 DC inputs, 8 transistor (sinking) outputs Two line-driver inputs Two line-driver outputs	XA CPU Units CP1H-XA40DR-A AC power supply, 24 DC inputs, 16 relay outputs, 4 analog inputs, 2 analog outputs CP1H-XA40DT-D DC power supply, 24 DC inputs, 16 transistor (sinking) outputs, 4 analog inputs, 2 analog outputs CP1H-XA40DT1-D DC power supply, 24 DC inputs, 16 transistor (sourcing) outputs, 4 analog inputs, 2 analog outputs	X CPU Units CP1H-X40DR-A AC power supply, 24 DC inputs, 16 relay outputs CP1H-X40DT-D DC power supply, 24 DC inputs, 16 transistor (sinking) outputs CP1H-X40DT1-D DC power supply, 24 DC inputs, 16 transistor (sourcing) outputs	M Type 60 Points CP1L-M60DR-A AC power supply, 36 DC inputs, 24 relay outputs CP1L-M60DT-A AC power supply, 36 DC inputs, 24 transistor (sinking) outputs CP1L-M60DR-D DC power supply, 36 DC inputs, 24 relay outputs CP1L-M60DT-D DC power supply, 36 DC inputs, 24 transistor (sinking) outputs CP1L-M60DT1-D DC power supply, 36 DC inputs, 24 transistor (sourcing) outputs	M Type 40 Points CP1L-M40DR-A AC power supply, 24 DC inputs, 16 relay outputs CP1L-M40DT-A AC power supply, 24 DC inputs, 16 transistor (sinking) outputs CP1L-M40DR-D DC power supply, 24 DC inputs, 16 relay outputs CP1L-M40DT-D DC power supply, 24 DC inputs, 16 transistor (sinking) outputs CP1L-M40DT1-D DC power supply, 24 DC inputs, 16 transistor (sourcing) outputs	M Type 30 Points CP1L-M30DR-A DC power supply, 18 DC inputs, 12 relay outputs CP1L-M30DT-A AC power supply, 18 DC inputs, 12 transistor (sinking) outputs CP1L-M30DR-D DC power supply, 18 DC inputs, 12 relay outputs CP1L-M30DT-D DC power supply, 18 DC inputs, 12 transistor (sinking) outputs CP1L-M30DT1-D DC power supply, 18 DC inputs, 12 transistor (sourcing) outputs	L Type 20 Points CP1L-L20DR-A AC power supply, 12 DC inputs, 8 relay outputs CP1L-L20DT-A AC power supply, 12 DC inputs, 8 transistor (sinking) outputs CP1L-L20DR-D DC power supply, 12 DC inputs, 8 relay outputs CP1L-L20DT-D DC power supply, 12 DC inputs, 8 transistor (sinking) outputs CP1L-L20DT1-D DC power supply, 12 DC inputs, 8 transistor (sourcing) outputs	L Type 14 Points CP1L-L14DR-A AC power supply, 8 DC inputs, 6 relay outputs CP1L-L14DT-A AC power supply, 8 DC inputs, 6 transistor (sinking) outputs CP1L-L14DR-D ${ }^{\mathrm{D} C}$ power supply, 8 DC inputs, 6 relay outputs CP1L-L14DT-D DC power supply, 8 DC inputs, 6 transistor (sinking) outputs CP1L-L14DT1-D DC power supply, 8 DC inputs, 6 transistor (sourcing) outputs	L Type 10 Points CP1L-L10DR-A AC power supply, 6 DC inputs, 4 relay outputs CP1L-L10DT-A AC power supply, 6 DC inputs, 4 transistor (sinking) outputs CP1L-L10DR-D DC power supply, 6 DC inputs, 4 relay outputs CP1L-L10DT-D DC power supply, 6 DC inputs, 4 transistor (sinking) outputs CP1L-L10DT1-D DC power supply, 6 DC inputs, 4 transistor (sourcing) outputs
ת ת ת	Pulse outputs (only for transistor outputs)	1 MHz for two axes (line driver outputs) 100 kHz for two axes (four axes total)	100 KHz for	four axes			100 kHz for two axes			
888	Counters	1 MHz (single-phase), 500 KHz (differential phases) for two axes (line driver outputs), 100 kHz (singlephasel), 50 kHz (differential phases) for two axes (four axes total)	100 kHz (single-phase), 50	kHz (differential phases)		100 kHz (single-phase) for	or four axes, or 50 kHZ differe	ntial phases) for two axes		
Hit	Serial communications		erial ports can be added as optior -232C or RS-422A/485 Option	ions Boards).		optional serial ports can be ad RS-232C or RS-422A/485 Option	ded Boards).	One optional seri (either an RS-232C or R	port can be added 422A/485 Option Board).	-
믄	Ethernet communications	When using CP1	rnet ports can be added as an W-CIF41 Ver.1.0, one Ethernet p	option. ort can be added.		hernet ports can be added as an 1W-CIF41 Ver.1.0, one Etherne	option. can be added.	One Ethernet port can	be added as an option.	-
파	USB peripheral port	Yes								
Amator	Built-in analog I/0	-	4 analog inputs and 2 analog outputs (resolution: 6,000 or 12,000)	-	-	-	-	-	-	-
(1)	Memory Cassette	Yes								
L00	LCD display settings	An LCD Option Boar	d can be added as an option to	option board slot 1 .		LCD Option Board can be adde an option to option board slot		An LCD Option Bo an option to op	d can be added as on board slot 1.	-
四	Function blocks (ladder diagrams or ST language)	Yes								
¢	Inverter positioning	-	-	-	Yes	Yes	Yes	Yes	Yes	Yes
昭	7-segment display	Yes	Yes	Yes	-	-	-	-	-	-
20	Program capacity		${ }^{20 K}$ steps			10K	steps		5 K steps	
5	Data memory capacity		32 K words			32 K	words		10 K words	
(17)	High-speed processing	0.1 us/	D instruction, 0.3 us/MOV instr	uction			s/LD instruction, 1.84 us/M	istruction		

CP1H Only

Up to Four Axes Are Standard.
Advanced Power for High-precision Positioning Control.

A Full Range of Functions
Origin Search Function (ORG Instruction) Origin searches are possible with a single ORG instruction.
Positioning with Trapezoidal Acceleration and Deceleration (PLS2 Instruction)

Interrupt Feeding (ACC and PLS2 Instructions)

Applicable CPU Units and Functions

100 kHz for 4 axes

100 kHz for 2 axes

High-speed Counters
Differential Phases for Up to Four Axes Are Standard. Easily Handles Multi-axis Control with a Single Unit.

Applicable CPU Units and Functions

1 MHz (single-phase), 500 kHz 1 MHz (single-phase), 500 kHz
(differential phases) for two axes, 100 kHz (single-phase), 50 kHz (differential phases) for two axes (four axes total)

100 kHz (single-phase) 100 kHz (single-phase),
50 kHz (differential phases) for four axes

CP1L CPU Unit

100 kHz (single-phase) for four axes, or 50 kHZ (phases) for two axes

Inverter Positioning High-speed Positioning

■Overview of Inverter Positioning
 PLC, but pulses can be outputructions normally output pulses from the counter according to the cerand setting in the instruction (such as PLS2)
(2)

The amount of pulses input to the error counter is converted to a speed
command and output to the inverter. A command to the inverter is created
in command and output to the inverter. A command to the inverter is create
in the ladder program using this speed command (proportional to the
pulses remaining in the error conter) When RS. pulses remaining in the error counter). When RS -485 communications ar
executed, ladder programming for communicating with the inverter is created. When analog outputs are executed, ladder programming for nalog outputs is created.
(3)

When a run/stop command is executed for the inverter, the motor is
rotated and feedback pulses (for the amount of movement) are output from
rta rotated and feedback pulses for the amount of movement) are output fro
the encoder to the CP1L. The error counter value is decremented by these
feedback pulses. The CP1L continues sending commands to the inverter eedback pulses. The CPIL continues sending commands to tede inverter
until positioning is completed. This enables accurate positioning to the until positioning is completed. This enables accura
position output by the first position command.

Applicable CPU Units and Functions

Inverter positioning function for two axes

Serial Communications

A Standard USB Port and Two Serial Ports Enable Connecti ons and Communications with a Wide Range of Components.
Up to two Option Boards can be mounted for RS-232C or RS-422A/485 communications. A peripheral USB port has been added to connect to a personal computer for a total of three communications ports, making it easy to simultaneously connect to a PT, various components (such as Inverters, Temperature Controllers, and Smart Sensors), Serial PLC Link for linking to other PLCs, and a personal computer.

Applicable CPU Units and Functions

Serial PLC Links

Modbus-RTU Easy Master

Connecting inverter speed control is made simple using the Modbus-RTU Easy Master. When the address, function, and data for a slave levice a preset in fixed mem ary (DM Area), message can be sent received simply by turning ON an AR Area bit (A640:00 for port 1 or A64100 for port 2) in the PLC

Easy Communications Programming Using OMRON Function Blocks
-The OMRON Function Blocks provide function blocks for communicating with Temperature Controllers

OMRON Function Blocks are provided for operations such as for setting SPs and reading PVs for Temperature Controllers by communication

Ethernet Communications
Two ports can be used as an Ethernet port to perform Ethernet communications between the $\mathrm{CP} 1 \mathrm{H} / \mathrm{CP} 1 \mathrm{~L}$ and a host computer.

Connect to a general-purpose LAN simply by mounting a CP1W-CIF41 Ethernet Option Board to an option board slot on any of the CPU Units in the CP1H/CP1L except a CPIL-L10.
Perform monitoring and programming with the CX-Programmer, or communicate between a host computer and the CP1H/CP1L using Ethernet by connecting with the FINS/TCP or FINS/UDP protocols which are supported by all OMRON PLCs.

Applicable CPU Units and Functions

Four Input Words and
Analog Control and Monitoring with Only a Single CPU Unit

Applicable CPU Units and Functions

[^1]

- Complete with CP1W/CPM1A Analog Units.

All CP-series CPU Units Provide a USB Port as a Standard Feature. FA Integrated Tool Package The built-in USB port lets you connect to a personal computer CX- ne

The CP1HCP1L down.
(The CP1H/CP1L USB port is used only for
connecting to a Programming Device.)
Note: Programming Consoles (CQM1H-PROO1 C200H-PROO27, etc.) cannot be used with
CP1H and CPIL CPU Units.

The Structured Text (ST) Language Makes Math Operations Even Easier.

In addition to ladder programming, function blo logic can be written in ST language, which
conforms to IEC $61131-3$. Arithmetic processing is also possible with ST, including processing of absolute values, square roots, logarithms, an trigonometric functions (SIN, COS, and TAN),
Processing that is difficult to write in ladder programming becomes easy using structured text.

High-speed Processing

The normal inputs can be set in the PLC Setup as interrut, quickresponse, or ocounter inpust. There are 8 normal inputs for the CP1H-
XXX for the CPIL with 14 points.)

Note: The CP1HCP1L CPU Units support the same function blocks
and ST language as CSS C J-series CPU Units with unit version 3.0. Are at Least Six Times Faster and MOV Instructions Are 26 Times Faster.
Processing speed has been increased not only for basic instructions but also for special instructions a yately 50 speeds up the entire system.

Compact Display and Setting Device
LCD Displays and Setting Available to Mount on CPU Unit for Easy Maintenance anc Startup Adjustments
Data values in the PLC can be easily monitored or changed by adding the new LCD Option Board. enables visually checking the operation status, such as error occurrence and error details. Registe advance functions that you use often to quickly perform settings and confirm operation. Functionality also be expanded to items not included in the CPU Unit, such as calendars and timers.

Monitoring and Changing Data Values

- I/O Monitoring

All memory area values
can be monitored and changed. Switch between decimal and hexadecima or monitor 2-word high-speed counter values, in decimal.
Visual Checking of Status with Display
of PLC Error Details

- I/O Monitoring

Simply press the up and down keys to quickl display up to 16 registered monitor screens.

- User Monitor Settings and Messages

Up to seven fixed characters and the present value word data can be displayed. Simply press the up a down keys from the initial screen to perform monitoring. Of course, you can also change the settings. Plus, up to 48 characters can be set in advance and then displayed when a specified bit turns ON. This makes onsite setting and confirming faster

Expanded Functionality with Calendar Timer and Other Items Not Included in the CPU Uni

- Variety of Additional Functions

You can use calendar timers, weekly timers, and daily timers. Sixteen of each timer type can be set
 the error log.

Applicable CPU Units and Functions
CP1H
Can be mounted to
option board slot 1 .

Can be mounted to

CP1L
CPU Units with 14 points or 20 I/O points

Can be mounted to option board slot 1 .
and Startup.
Increased Program Reusability.
Integrated OMRON PLCs and Component Support Software

FA Integrated Tool Package $\begin{aligned} & \text { CX-One } \\ & \text { Configuration }\end{aligned}$	1 Network Sofiware	CX-Integrator CX-FLnet CX-Protocol CX-ConfiguratorFDT Network Configurato
N- ne	2 PLC Software	CX-Programmer CX-Simulator
The CX-One is an FA Integrated Tool Package for connecting, setting, and programming OMRON components, including PLCs. CP1H/CP1L programming and settings can be	(3) HMII Sofiware	SwitchBox Utility Cx-Designer Ladder Monitr software included. (See note 1.) NW-Designer (See note 2.)
done with just the CX-Programmer, but the CX-One provides Support Software for setting and programming PTs, Temperature	(4) Motion Controller	CX-Drive CX-Motion-NCF CX-Motion-MCH CX-Position Motion
Controllers, and many other components. Using the CX-One makes programming and	(5) PLC Sofiware	CX-Process Tool NS-series Face Plate Auto-Builder
setup easy, shortening the total lead time required for starting up machines and	(6) Component Software	CX-Thermo

Easy-to-use Programming Software.
Programming with Function Blocks (Ladder Diagrams/ST Language) Is Also Standard.

CX-Programmer

- Easy Operation Simplifies Programming and Debugging.

- The Password Function Enables Protecting Important Programs.

Improved Functional Connectivity with HMI Design Software and Integration of Component Software Configured with an NS-series PT
CX-Designer
The CX-Designer can be started from the CX Integrator's NT Link Window. It can be used to design HMI screens. In addition, the Smar Active Parts (SAP) Library is provided with the C-Designer to enable easily cre
setting screens for devices such as Temperature Controllers.

Memory Cassette

Data, such as programs and initial memory values, can be stored on a Memory Cassette (optional) and copied to other systems
The Memory Cassette can also be used when
installing new versions of application programs.

CP1W-MEOSM

. . Clock Function

All CP1H/CP1L CPU Units have a built-in clock.
Shopping Mall Fountain Control
Controlling a Fountain for a Period of Time

- Analog Inputs Are Made Simple

An analog adjustment and an external analog setting
input connector are provided.

External Analog Setting Input Connector 7 -segmentid isplay.
This connecto is esolution. Each CP1HICP1L CPU Unit has one of these connectors built in. A device, such as a potentiometer, can be onnected to enable direct manual operation and contron from a onnecting cable (1 m) is included with the CPU Unit.

Status Displayed on

 7-segment Display (CP1H only)The 7 -segment display provides two display digit In addition to displaying error codes for errors detected by the PLC, codes can be displayed on th display from the ladder program
formantenance as well, allowing problems that arise during system operation to be grasped without using any Support Software.

■ Battery-free Operation

The values in the DM Area (32 K words) are saved in the CPU Unit's built-in flash memory as initia
values, and can be read at startup
Battery-free operation can be used to enable saving Area, turning OFF the power, and then using then same data again for the next production run. (This is ideal for machinery that is only used seasonally.)

Note:

A battery is required for the clock function and to retain the status of $H R$ Area bits and counter values.
A battery is provided as a standard feature with the CPU Unit. - The ustery is programided as a sladder progrard feature is stored in the built-in flash The user program (ladder program) is stored in
memory, so no battery is required to back it up.

CP1H CPU Unit Nomenclature

CP1L CPU Unit Nomenclature

- CP1L CPU Units (L Type)
with 20 or 14 Points

- CP1L CPU Units (L Type)
with 10 Points

Restrictions on the Number of CP1H Expansion Unit and I/O Unit Connections
Up to seven Expansion Units and Expansion I/O Units can be connected when a CP1H CPU Unit is used, but the following restrictions apply. Observe these restrictions when using the models in the shaded areas in the following tables. A maximum total of 15 input words is allocated for Expansion Units and a maximum total of 15
output words is allocated for Expansion Units and Expansion I/O Units.
Words Allocated to CP1W Expansion Units and Expansion I/O Units

Unittype		$\frac{\text { Model }}{\text { CPIW-40EDR }}$	Input ${ }^{\text {Outp }}$	
Expansion I/O Units	40/0 points		2	2
		CPIW-40EDT		
		CPIW-40EDT		
	32 outputs	CPWW-32ER	-	4
		CPIW-32ET		
		CPIW-32ET1		
	2010 points	CPIW-20EDR1	1	1
		CPIW-20EDT		
		CPIW-20EDT1		
	16 outputs	CPIW-16ER	-	2
		CPIW-16ET		
		CPIW-16ET1		
	8 inputs	CPW-8ED	1	-
	8 outputs	CPIW-8ER	-	1
		CPWW-8ET		
		CPIW-8ET1		
Analog Units	2 2analog inuts, 12 analog output	CPIW-MAD11	2	1
	4 analog inputs	CPIW-AD041	4	2
	4 analog outputs	CPIW-DA041	-	4
	2 analog outputs	CP1W-DA021	-	2
TemperatureSensor Units	2 thermocouple inputs	CPIW-TS001	2	-
	4 thermocouple inputs	CPIW-TS002	4	-
		CPIW-TS101	2	-
	¢platinum resistares themometer inuts	CPIW-TS102	4	-
CompoBus/S I/O Link Unit	8 inputs and 8 outputs	CPIW-SkT21	1	1

Four words ser Unit, so so mo more than three Units Unit is allocated our words per Unit, so no more than three Units can be connected (A words $\times \times$ Units $=12$ wordss. It would then be possible to omount a
combination of other U Uits to use the remaining three input and 15 output words.
Examples of Possible Combinations

Using CP1W-CN811 I/O Connecting Cable

- //O Connecting Cable can be connected to any Unit from the CP1H/CP1L CPU Unit to the third Expansion Unit o Expansion I/O Unit (i.e., the fourth Unit).
- Only one I/O Connecting Cable can be used in each CP1H or CP1L PLC. Expansion Units and Expansion I/O Units still apply.

Using CJ-series Special I/O Units or CPU Bus Units with a CP1H CPU Unit
Up to two CJ-series Special I/O Units or CPU Bus Units can be connected by using a CP1W-EXT01 CJ Unit Adapter. The number of Units that can be used is as described below.

CJ Unit Adapter CP1W-EXTO1
 End Cover

Unit name	Model		Unit name	del	cisme
Analog Input Units	CJIW-AD042	0.52 A	Position Control Units	CJIW-NC113	
	CJIW-ADO81-V1	0.42 A		CJ1W-NC213	
	CJIW-ADO41-V1			CJIW-Nc413	${ }_{0} 0.3$
AnalogOutput Units	CJIW-DA042V	0.40 A		CJIW-NC133	0.25
	CJIW-DA08V	0.14 A		CJIW-NC233	
	CJIW-DA08C			CJIW-Nc433	0.36
	CJIW-DA041	0.12 A	High-speed Counter Unit	cJiw-cto21	0.25 A
	CJ1W-DA021				
$\begin{array}{\|l\|l\|} \hline \text { Analog } \\ 1 / 0 \text { Unit } \end{array}$	CJIW-mad42	0.58 A	ID Sensor Units	cJIw-v680c11	$\begin{aligned} & 0.26 \mathrm{~A} \\ & \left(\begin{array}{l} 2.4 \mathrm{CO} \\ 0.13 \mathrm{~A}) \end{array}\right. \end{aligned}$
Process Input Units	CJIW-PH41U	0.30 A		C.JIW-V680C12	
	CJIW-ADO4U	0.32 A		CJIW-V680cti	$\underbrace{(24 \mathrm{VC}}_{(0.26 \mathrm{~A})}$
	${ }_{\text {CJIW-PSS51 }}$	0.25 A		CJIW-V600c 11	$\begin{gathered} 0.26 \mathrm{~A} \\ \substack{124 \mathrm{VVC} \\ 2102} \end{gathered}$
	CJIW-PTS15	0.18 A		CJIW-v600C12	$\begin{gathered} 0.32 \mathrm{~A} \\ 2(240 \mathrm{C} \end{gathered}$
	CJIW-PTS16				
	CJIW-PDC15		$\begin{aligned} & \text { Serial } \\ & \text { Communications } \\ & \text { Units } \end{aligned}$	CJIW-SCU42	
TemperatureControl Units	CJIW-TC001	0.25 A		CJIW-SCU22	$0.28 \mathrm{~A}^{*}$
	CJIW-Tcoos			CJ1W-SCU32	0.40 A
	CJIW-TCoou			CJIW-SCU41-V1	${ }^{0.38 \mathrm{~A}^{*}}$
	CJIW-TC101			Culw-SCu21-V1	${ }^{0.28 \mathrm{~A}^{*}}$
	CJIW-TC102			Cu1w-SCU31-V1	0.38 A
	CJIW-TC103		ernet Unit	CJIW-ETN21	0.37 A
	CJIW-TCLIO4		EtherNetIP Unit	CJIWEEIP21	0.41 A
			Devicenet Unit	CJIW-DRM21	0.33 A
Master Unit	CJIW-SRM21	0.15 A	Controler Link Unit	cJiw-CLK23	0.35 A
$\begin{aligned} & \text { Componet } \\ & \text { Master Unit } \end{aligned}$	cJIW-CRM21	0.40 A	MECHATROLINK-II Position Control Unit	CJIW-NC271	${ }^{0.36}$
				CJlw-Nc471	
				CJIW-CCF71-MA	
I I/O Units or CPU Bus Units are used with a used is two CJ -series Units and seven			MECHATROLINK-II Motion Control Unit	cJiw-mсн71	0.6 A
an 2 A for 5 V and 1 A for 24 V , and the total			F-net Unit	CJIW-LIN22	${ }^{0.37}$
			Storage/Processing	Culw-spuol-v2	0.56 A

CP1H CPU Unitit the maximum number of Units that can be CP1WCPPMA Expansion Units and Expansion IO Units current consumption must be the no more than the 30 W .
Check the toatal current consumption to be sure these limits are not exceeded referring to page 29 for the
CPIH CPU Unit and CPIW Expansion Unit and Expans CP1H CPU Unit and CPP Expansion Unit and Ex
table for CU-series Unit current consumptions.

CPU Unit Specifications

■ I／O Bits and I／O Allocations

With CP1H and CP1L CPU Units，the beginning input and output words（CIO 0 and CIO 100）are allocated by the CPU Unit one or two words at a time．I／O bits are allocated in word units in order of connection to Expansion Units and Expansion I／O Units connected to a CPU Unit．

CPU Unit	Allocated words	
	Inputs	Outputs
CP1H CPU Unit with $401 / 0$ points	ClO 0 and ClO 1	ClO 100 and ClO 101
CP1L CPU Unit with 10，14，or 20 lO points	ClO 0	CIO 100
CP1L CPU Unit with 30 or 40 IO points	ClO 0 and ClO 1	C10 100 and C1O 101
CP1L CPU Unit with 60 lO points	$\mathrm{ClO} 0, \mathrm{ClO} 1$ ，and ClO 2	ClO 100，ClO 101，and ClO102

Note：For details on the number of words allocated to Expansion Units and Expansion I／O Units，refer to Words Allocated to CPIW Expansion Units and Expansion I／O Units on page 26
－Example：／／O Bit Allocations When Expansion Units Are Connected
PU Unit with 40 IV Points＋Temperature Sensor Unit＋Analog Output Unit＋Expansion I／O Unit with 40 I／O Points

	Unitwith 40 IOP Pa	Temperatue Sesisor	Analo Outut Unit	Expansion 10 Unitw with 4010 OPoints
Inputs		C102 ${ }^{\text {to }}$ 5	None	
Outputs		None		

TypeModel	AC power supply models	DC power supply models
	CP1H－7प्－A CP1L－70］－A	$\begin{aligned} & \text { CP1H-a-D } \\ & \text { CP1L- } \end{aligned}$
Power supply	00 to $240 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$	VD
Operating voltage range	85264 VAC	20.4 to 26.4 VDC
Power consumption	100 VA max．（CP1H－प［ID－A） 50 VA max．（CP1L－M60／－M40／－M30ПI－A）（See next page．） 30 VA max．（CP1L－L20／－L14／－L10DI－A）	50 W max．（CP1H－םपП－D） 20 W max．（CP1L－M60／－M40／－M30ロロ－D）（See next page．） 13 W max．（CP1L－L20／－L14／－L10
Inrush current（See note．）	100 to 120 VAC inputs： 20 A max．（for cold start at room temperature） 8 ms max． 200 to 240 VAC inputs： 40 A max．（for cold start at room temperature）， 8 ms max．	30 A max．（for cold start at room temperature） 20 ms max．
External power supply	300 mA at 24 VDC （CP1H，CP1L－M60／－M40／－M30Пロ－A） 200 mA at 24 VDC（CP1L－L20／－L14／－L10 1 I－A）	None
Insulation resistance	$20 \mathrm{M} \Omega$ min．（at 500 VDC ）between the external $A C$ terminals and GR terminals	No insulation between primary and secondary for DC power supply
Dielectric strength	$2,300 \mathrm{VAC}$ at $50 / 60 \mathrm{~Hz}$ for 1 min between the external AC and GR terminals，leakage current： 5 mA max．	No insulation between primary and secondary for DC power supply
Noise immunity	Conforms to IEC 61000－4－4． 2 kV （power supply line）	
Vibration resistance	Conforms to JIS C0040． 10 to $57 \mathrm{~Hz}, 0.075-\mathrm{mm}$ amplitude， 57 minutes each．Sweep time： 8 minutes $\times 10$ sweeps $=$ total time	150 Hz ，acceleration： $9.8 \mathrm{~m} / \mathrm{s}^{2}$ in X, Y ，and Z directions for 80 80 minutes）
Shock resistance	Conforms to JIS C0041． $147 \mathrm{~m} / \mathrm{s}^{2}$ three times each in X, Y ，and	directions
Ambient operating tempera－ ture	0 to $55^{\circ} \mathrm{C}$	
Ambient humidity	10\％to 90\％（with no condensation）	
Ambient operating environ－ ment	No corrosive gas	
Ambient storage temperature	-20 to $75^{\circ} \mathrm{C}$（Excluding batery．）	
Power holding time	$10 \mathrm{~ms} \mathrm{min}$.	2 ms min．

Note：The above values are for a cold start at room temperature for an AC power supply，and for a cold start for a DC power supply
he above values are for a cold start at room temperature tor an AC power supply，and for a cold start for a DC power supply．
A thermistor wwit low－temperature current suppression characteristics）is used in the inrush current contro circuitry
will the will not be sufficiently cooled it the ambient temperature is high or it a ho start is pertormed when the power supply has been OFF for only y short time．In
breakers for external l ircurits．
A capacitor charge－tyee delay circuit is used in the inrush current control circuitry for the DC power supply．The capacitor will not be charged if a hot start is
A capacitor charge－type delay circuit is used in the inrush current control circuitry for the DC power supply．The capacitor will not be charged if a hot start is
periormed when the power supply has been OFF for only a short time，so in those cases the inrush current values may be higher（as much as two times
higher）than those shown above．

Current Consumption

The power consumption shown on page 28 is the maximum power consumption. To obtain the correct power consumption for the system config uration, calculate the power consumption for the external power supply from the current consumption given below for the CPU Unit, Expansion Units, and Expansion I/O Units. (When using CJ-series Units with the CP1H, add the current consumption for the CJ-series Units shown on page

- CPU Units

Model	Current consumption		External power supply24 VDC (See note 5 .)
	5 VDC	24 VDC	
CP1H-X40DR-A	0.42 A	0.07 A	0.3 A max. (0.9 A max.)
CP1H-X40DT-D	0.50 A	0.01 A	---
CP1H-X40DT1-D	0.50 A	0.02 A	---
CPIH-XA40DR-A	0.43 A	0.18 A	0.3 A max. (0.8 A max.)
CP1H-XA40DT-D	0.51 A	0.12 A	--
CP1H-XA40DT1-D	0.51 A	0.15 A	--
CP1H-Y20DT-D	0.55 A	---	---
CP1L-M60DR-A	0.25 A	0.14 A	0.3 A max. (0.5 A max.)
CP1L-M60DT-A	0.39 A	0.03 A	0.3 A max. (0.6 A max.)
CP1L-M60DR-D	0.25 A	0.14 A	---
CP1L-M60DT-D	0.39 A	0.03 A	---
CP1L-M60DT1-D	0.39 A	0.03 A	---
CP1L-M40DR-A	0.22 A	0.08 A	0.3 A max. (0.6 A max.)
CP1L-M40DT-A	0.31 A	0.03 A	0.3 A max. (0.6 A max.)
CP1L-M40DR-D	0.22 A	0.08 A	---
CP1L-M40DT-D	0.31 A	0.03 A	---
CP1L-M400T1-D	0.31 A	0.03 A	---
CP1L-M30DR-A	0.21 A	0.07 A	0.3 A max. (0.6 A max.)
CP1L-M30DT-A	0.28 A	0.03 A	0.3 A max. (0.6 A max.)
CP1L-M30DR-D	0.21 A	0.07 A	--
CP1L-M30DT-D	0.28 A	0.03 A	--
CP1L-M30DT1-D	0.28 A	0.03 A	---
CP1L-L20DR-A	0.20 A	0.05 A	0.2 A max.
CP1L-L20DT-A	0.24 A	0.03 A	0.2 A max.
CP1L-L20DR-D	0.20 A	0.05 A	---
CP1L-L20DT-D	0.24 A	0.03 A	---
CP1L-L20DT1-D	0.24 A	0.03 A	---
CP1L-L14DR-A	0.18 A	0.04 A	0.2 A max.
CP1L-L14DT-A	0.21 A	0.03 A	0.2 A max.
CP1L-L14DR-D	0.18 A	0.04 A	---
CP1L-L14DT-D	0.21 A	0.03 A	--
CP1L-L14DT1-D	0.21 A	0.03 A	---
CP1L-L10DR-A	0.16 A	0.03 A	0.2 A max.
CP1L-L100T-A	0.18 A	0.03 A	0.2 A max.
CP1L-L10DR-D	0.16 A	0.03 A	---
CP1L-L10DT-D	0.18 A	0.03 A	---
CP1L-L10DT1-D	0.18 A	0.03 A	---

Note: 1. The current
2. CPU Units with DC power do not provide an external power supply.
. The current consumptions given in the following table must be added to the current consumption of the CPU Unit if an Expansion Unit or Expansion //O Unit
is connected.
5. Values in parenthesescare the maximum external powers supply for a CPU Unit to which an Expenansion I/O Unit is not connected. Refer to the CP1L CPU Unit Values in parentheses are the maximum external power supply for a CPU Unit to which an Expansion
Operation Manual (Cat No. W462) or CP1H CP Unit Operation Manual (Cat No. W450) for details.

CPU Unit Specifications

- Expansion Units and Expansion I/O Units

Unit name		Model	Current consumption		
		5 VDC	24 VDC		
Expansion I/O Units	40 I/O points 24 inputs 16 output		CP1W-40EDR	0.080 A	0.090 A
		CP1W-40EDT	0.160 A	---	
		CP1W-40EDT1			
	32 outputs	CP1W-32ER	0.049 A	0.131 A	
		CP1W-32ET	0.113 A	---	
		CP1W-32ET1			
	20 I/O points 12 inputs 8 outputs	CP1W-20EDR1	0.103 A	0.044 A	
		CP1W-20EDT	0.130 A	---	
		CP1W-20EDT1			
	16 outputs	CP1W-16ER	0.042 A	0.090 A	
		CP1W-16ET	0.076 A	---	
		CP1W-16ET1			
	8 inputs	CP1W-8ED	0.018 A	---	
	8 outputs	CP1W-8ER	0.026 A	0.044 A	
		CP1W-8ET	0.075 A	---	
		CP1W-8ET1			
Analog Input Unit	4 inputs	CP1W-AD041	0.100 A	0.090 A	
Analog Output Unit	4 outputs	CP1W-DA041	0.080 A	0.124 A	
	2 outputs	CP1W-DA021	0.095 A	0.040 A	
Analog I/O Unit	2 inputs and 1 output	CP1W-MAD11	0.083 A	0.110 A	
Temperature Sensor Units	K or J thermocouple inputs	CP1W-TS001	0.040 A	0.059 A	
		CP1W-TS002			
	Pt or JPt platinum resistance thermometer inputs	CP1W-TS101	0.054 A	0.073 A	
		CP1W-TS102			
CompoBus/S IO Link Unit	8 inputs and 8 outputs	CP1W-SRT21	0.029 A	---	

Type		CP1H-XA CPU Units	CP1H-X CPU Units	CP1H-Y CPU Units
Item Models			CP1H-X	CP1H-YपIT-D
Control met		Stored program method		
$1 / 0$ control method		Cyclic scan with immediate refreshing		
Program language		Ladder diagram		
Function blocks		Maximum number of function block definitions: 128 Maximum number of instances: 256 Languages usable in function block definitions: Ladder diagrams, structured text (ST)		
Instruction length		1 to 7 steps per instruction		
Instructions		Approx. 500 (function codes: 3 digits)		
Instruction execution time		Basic instructions: $0.10 \mu \mathrm{~s}$ min. Special instructions: 0.15 us min.		
Common processing time		0.7 ms		
Program capacity		20 K steps		
Number of tasks		288 (32 cyclic tasks and 256 interrupt tasks)		
	Scheduled interrupt tasks	1 (interrupt task No. 2, fixed)		
	Input interrupt tasks	8 (interrupt task No. 140 to 147, fixed)		6 (interrupt task No. 140 to 145, fixed)
		(Interrupt tasks can also be speciified and executed for high-speed counter interrupts.)		
Maximum subroutine number		256		
Maximum jump number		256		
I/O areas(See note.)	Input bits	1,600 bits (100 words): ClO 0.00 to ClO 99.15 (The 24 built-in inputs are allocated in CIO 0.00 to CIO 0.11 and CIO 1.00 to ClO 1.11.)		
	Output bits	1,600 bits (100 words): CIO 100.00 to CIO 199.15 (The 16 built-in outputs are allocated in CIO 100.00 to CIO 100.07 and CIO 101.00 to CIO 101.07.)		
	$\begin{array}{\|l} \hline \text { Built-in Analog } \\ \text { Inputs } \end{array}$	CIO 200 to CIO 203		---
	Built-in Analog Out-uts	CIO 210 to ClO 211		---
	Serial PLC Link Area	1,440 bits (90 words): CIO 3100.00 to ClO 3189.15 (CIO 3100 to CIO 3189)		
Work bits		8,192 bits (512 words): W0.00 to W511.15 (W0 to W511) CIO Area: 37,504 bits (2,344 words): CIO 3800.00 to CIO 6143.15 (CIO 3800 to CIO 6143)		
TR Area		16 bits: TR0 to TR15		
Holding Area		8,192 bits (512 words): $\mathrm{H0} 0.00$ to H511.15 (H0 to H511)		
Area		Read-only (Write-prohibited): 7168 bits (448 words): A0.00 to A447.15 (A0 to A447) Read/Write: 8192 bits (512 words): A448.00 to A959.15 (A448 to A959)		
Timers		4,096 bits: T0 to T4095		
Counters		4,096 bits: C0 to C4095		
DM Area		32 Kwords: D0 to D32767		
Data Register Area		16 registers (16 bits): DR0 to DR15		
Index Register Area		16 registers (32 bits): : R00 to IR15		
Task Flag Area		32 flags (32 bits): TK0000 to TK0031		
Trace Memory		4,000 words (500 samples for the trace data maximum of 31 bits and 6 words.)		
Memory Cassette		A special Memory Cassette (CP1W-ME05M) can be mounted. Note: Can be used for program backups and auto-booting.		
Clock function		Supported. Accuracy (monthly deviation): -4.5 min to -0.5 min (ambient temperature: $55^{\circ} \mathrm{C}$), -2.0 min to +2.0 min (ambient temperature: $25^{\circ} \mathrm{C}$), -2.5 min to +1.5 min (ambient temperature: $0^{\circ} \mathrm{C}$)		
Communications functions		One built-in peripheral port (USB 1.1): For connecting Support Sotware only.		
		A maximum of two Serial Communications Option Boards can be mounted.		
		A maximum of two Ethernet Option Boards can be mounted. When using CP1W-CIF41 Ver.1.0, one Ethernet Option Board can be mounted.		
Memory backup		Flash memory: User programs, parameters (such as the PLC Setup), comment data, and the entire DM Area can be saved to flash memory as initial values. Battery backup: The Holding Area, DM Area, and counter values (flags, PV) are backed up by a battery.		
Battery service life		5 years at $25^{\circ} \mathrm{C}$. (Use the replacement battery within two years of manufacture.)		
Built-in input terminals		40 (24 inputs, 16 outputs)		20 (12 inputs, 8 outputs) Line-driver inputs: Two axes for phases A, B, and Z Line-driver outputs: Two axes for CW and CCW
Number of connectable Expansion (I/O) Units		CP Expansion I/O Units: 7 max.; CJ-series Special I/O Units or CPU Bus Units: 2 max.		
Max. number of I/O points		320 (40 built in +40 per Expansion (/IO) Unit $\times 7$ Units)		300 (20 built in +40 per Expansion (IVO) Unit $\times 7$ Units)
Interrupt inputs		8 inputs (Shared by the external interrupt inputs (counter mode) and the quick-response inputs.)		6 inputs (Shared by the external interrupt inputs (counter mode) and the quick-response inputs.)
Interrupt input counter mode		8 inputs (Response frequency: 5 kHz max. for all interrupt inputs), 16 bits Up or down counters		6 inputs (Response frequency: 5 kHz max. for all interrupt inputs), 16 bits Up or down counters
Quick-response inputs				6 points (Min. input pulse width: $50 \mu \mathrm{~s}$ max.)
Scheduled i	interrupts	$\begin{array}{\|l\|} \hline 8 \text { points (Min. input pulse width: } 50 \mu \mathrm{~s} \text { max.) } \\ \hline 1 \end{array}$		

CPU Unit Specifications

Item	$\begin{array}{r} \text { Type } \\ \text { Models } \end{array}$	CP1H－XA CPU Units	CP1H－X CPU Units	CP1H－Y CPU Units
		CP1H－XA	CP1H－X	CP1H－Y
High－speed counters		4 inputs：Differential phases（ 4 x ）， 50 kHz or Single－phase（pulse plus direction，up／down，increment）， 100 kHz Value range： 32 bits，Linear mode or ring mode interrupts：Target value comparison or range comparison		2 inputs：Differential phases（4x）， 500 kHz or Single－phase， 1 MHz and 2 inputs：Differential phases（ 4 x ）， 50 kHz or Single－phase （pulse plus direction，up／down，increment）， 100 kHz Value range： 32 bits，Linear mode or ring mode Interrupts：Target value comparison or range comparison
Pulse outputs （models with transistor out－ puts only）	Pulse out－ puts	Trapezoidal or S－curve acceleration and deceleration （Duty ratio： 50% fixed） 4 outputs， 1 Hz to 100 kHz （CCW／CW or pulse plus direction）		Trapezoidal or S－curve acceleration and deceleration （Duty ratio：50\％fixed） 2 outputs， 1 Hz to 1 MHz （CCW／CW or pulse plus direction） 2 outputs， 1 Hz to 100 kHz （CCW／CW or pulse plus direction）
	PWM out－ puts	Duty ratio：0．0\％to 100．0\％（Unit：0．1\％） 2 outputs， 0.1 to 6553.5 Hz （Accuracy：$\pm 5 \%$ at 1 kHz ）		
Built－in analog IO terminals		4 analog inputs and 2 analog outputs	None	
Analog control		1 （Setting range： 0 to 255）		
External analog input		1 input（Resolution： $1 / 256$ ，Input range： 0 to 10 V ，not isolated		

Note：The memory area．
（Cat．No．PO52）．

Item	Type	CP1L－M60	$\underset{\text {（40 LL－M40 }}{\text {（40 }}$	CP1L－M30	CP1L－L20	$\underset{\text {（14 p－Lints）}}{ }$	CP1L－L10
	Models	CP1L－M60T－ロ	CP1L－M40	CP1L－M300［－］	CP1L－L20］ロ－ロ	CP1L－L14 ${ }^{\text {ala－］}}$	CP1L－L10［－－
Control method		Stored program method					
$1 / 0$ control method		Cyclic scan with immediate refreshing					
Program language		Ladder diagram					
Function blocks		Maximum number of function block definitions： 128 Maximum number of instances： 256 Languages usable in function block definitions：Ladder diagrams，structured text（ST）					
Instruction length		1 to 7 steps per instruction					
Instructions		Approx． 500 （tunction codes： 3 digits）					
Instruction execution time		Basic instructions： 0.55 Hs min．Special instructions： 4.1 us min．					
Common processing time		0.4 ms					
Program capacity		10 K steps			5 K steps		
Number of tasks		288 （32 cyclic tasks and 256 interrupt tasks）					
	Scheduled inter－ rupt tasks	1 （interrupt task No．2，fixed）					
	Input interrupt tasks	6 （interrupt task No． 140 to 145，fixed）				$\begin{array}{\|l} \hline \begin{array}{l} 4 \text { (interrupt task No. } \\ 140 \text { to } 143, \text { fixed) } \end{array} \\ \hline \end{array}$	$\begin{aligned} & 2 \text { (interrupt task No. } \\ & 140 \text { to } 141, \text { fixed) } \\ & \hline \end{aligned}$
		（Interrupt tasks can also be specified and executed for high－speed counter interrupts and executed．）					
Maximum subroutine number		256					
Maximum jump number		256					
$\left\lvert\, \begin{aligned} & 1 / 0 \\ & \text { areas } \end{aligned}\right.$	Input bits	36：CIO 0.00 to CIO 0．11，CIO 1.00 to ClO 1．11，and CIO 2.00 to CIO 2.11	$\begin{aligned} & 24: \mathrm{ClO} 0.00 \text { to } \mathrm{ClO} \\ & 0.11 \text { and CIO } \\ & \text { to ClO } 1.11 .11 .00 \end{aligned}$	18： CIO 0.00 to ClO 0.11 and CIO 1.00 to CIO 1.05	12： ClO 0.00 to ClO 0.11	8： ClO 0.00 to ClO 0.07	6：${ }^{\text {Colo }} 0.00$ to ClO
	Output bits	$\begin{aligned} & \text { 24: CIO } 100.00 \text { to } \\ & \text { COO 100.07, } \\ & \text { CIO } 101.00 \text { to ClO } \\ & \text { 101.07, and CIO } \\ & \text { 102.00 to CIO } \\ & \text { 102.07 } \end{aligned}$	24：CIO 0.00 to CIO 0.11 and ClO 1.00 to ClO 1.11	12：CIO 100.00 to CIO 100.07 and CIO 101.00 to CIO 101.03	$\begin{aligned} & \text { 8: CIO } 100.00 \text { to } \\ & \text { CIO } 100.07 \end{aligned}$	$\begin{aligned} & \text { 6: CIO } 100.00 \text { to } \\ & \text { CIO } 100.05 \end{aligned}$	$\begin{aligned} & \text { 4: CIO } 100.00 \text { to } \\ & \text { CIO } 100.03 \end{aligned}$
	1：1 Link Area	1,024 bits（ 64 words）： ClO 3000.00 to ClO 3063.15 （ClO 3000 to ClO 3063 ）					
	Serial PLC Link Area	1，440 bits（90 words）：ClO 3100．00 to CIO 3189.15 （ClO 3100 to CIO 3189 ）					
Work bits		8,192 bits（ 512 words）：W000．00 to W511．15（W0 to W511） CIO Area： 37,504 bits（2，344 words）： CIO 3800.00 to CIO 6143.15 （CIO 3800 to CIO 6143 ）					
TR Area		16 bits：TRO to TR15					
Holding Area		8，192 bits（512 words）： H 0.00 to H 511.15 （H0 to H511）					
AR Area		Read－only（Write－prohibited）： 7168 bits（ 448 words）：A0．00 to A447．15（A0 to A447） Read／Write： 8192 bits（ 512 words）：A448．00 to A959．15（A448 to A959）					
Timers		4，096 bits：T0 to T4095					
Counters		4，096 bits：C0 to C4095					
DM Area		32 Kwords：D0 to D32767 ${ }^{\text {a }}$（10 Kwords：D0 to D9999，D32000 to D32767					
Data Register Area		16 registers（16 bits）：DR0 to DR15					
Index Register Area		16 registers（32 bits）：IR0 to R15					
$\begin{array}{\|l\|} \hline \text { Task Flag Area } \\ \hline \text { Trace Memory } \\ \hline \end{array}$		32 flags（32 bits）：Tk0000 to TK0031					
		4,000 words（ 500 samples for the trace data maximum of 31 bits and 6 words．）					
		A special Memory Cassette（CP1W－ME05M）can be mounted．Note：Can be used for program backups and auto－booting．					

Item	$\begin{array}{r} \text { Type } \\ \text { Models } \end{array}$	CP1L-M60 (60 points)	CP1L-M40 (40 points)	CP1L-M30 (30 points)	CP1L-L20 (20 points)	CP1L-L14 (14 points)	CP1L-L10 (10 points)
		CP1L-M60	CP1L-M40	CP1L-M30-7-7	CP1L-L20	CP1L-L14	CP1L-L10 ${ }^{\text {a }}$
Clock function		Supported. Accuracy (monthly deviation): -4.5 min to -0.5 min (ambient temperature: $55^{\circ} \mathrm{C}$), -2.0 min to +2.0 min (ambient temperature: $25^{\circ} \mathrm{C}$), -2.5 min to +1.5 min (ambient temperature: $0^{\circ} \mathrm{C}$)					
Communications functions		One built-in peripheral port (USB 1.1): For connecting Support Software only.					
		A maximum of two Serial Communications Option Boards can be mounted.			A maximum of one Serial Communications Option Board can be mounted.		Not supported.
		A maximum of two Ethernet Option Board can be mounted. When using CP1W-CIF41 Ver.1.0, one Ethernet Option Board can be mounted			A maximum of one Ethernet Option Board can be mounted.		Not supported.
Memory backup		Flash memory: User programs, parameters (such as the PLC Setup), comment data, and the entire DM Area can be saved to flash memory as initial values. Battery backup: The Holding Area, DM Area, and counter values (flags, PV) are backed up by a battery.					
Battery service life		5 years at $25^{\circ} \mathrm{C}$. (Use the replacement battery within two years of manufacture.)					
Built-in input terminals		60 (36 inputs, 24 outputs)	40 (24 inputs, 16 outputs)	30 (184 inputs, 12 outputs)	20 (12 inputs, 8 outputs)	14 (8 inputs, 6 outputs)	10 (6 inputs, 4 outputs)
Number of connectable Expansion Units and Expansion I/O Units		CP-series Expansion Unit and Expansion I/O Units: 3 max.			CP-series Expansion Units and Expansion I/O Units: 1 max.		Not supported.
Max. number of //O points		$\begin{array}{\|l\|l\|} \hline 180 \text { (60 built in }+40 \\ \text { per Expansion (1/0) } \\ \text { Unit } \times 3 \text { Units) } \end{array}$	$\begin{aligned} & 160 \text { (40 built in }+40 \\ & \text { per Expansion (I/O) } \\ & \text { Unit } \times 3 \text { Units) } \end{aligned}$	$\begin{aligned} & 150 \text { (30 built in }+40 \\ & \text { per Expansion (/VO) } \\ & \text { Unit } \times 3 \text { Units) } \end{aligned}$	$\begin{aligned} & 60 \text { (20 built in }+40 \\ & \text { per Expansion (I/O) } \\ & \text { Unit } \times 1 \text { Unit) } \end{aligned}$	$\begin{aligned} & 54 \text { (14 built in }+40 \\ & \text { per Expansion (I/O) } \\ & \text { Unit } \times 1 \text { Unit) } \end{aligned}$	10 (10 built in)
Interrupt		6 inputs (Response time: 0.3 ms				4 inputs (Response time: 0.3 ms)	$\begin{aligned} & \text { 2 inputs (Response } \\ & \text { time: } 0.3 \mathrm{~ms} \text {) } \end{aligned}$
Interrupt inputs counter mode		6 inputs (Response frequency: 5 kHz max. for all interrupt inputs), 16 bits Up or down counters				4 inputs (Response frequency: 5 kHz max. for all interrupt inputs), 16 bits Up or down counters	2 inputs (Response frequency: 5 kHz max. for all interrupt inputs), 16 bits Up or down counters
Quick-response inputs		6 points (Min. input pulse width: 50 us max.)				4 points (Min. input pulse width: $50 \mu \mathrm{~s}$ max.)	2 points (Min. input pulse width: $50 \mu \mathrm{~s}$ max.
Scheduled interrupts		1 lese					
High-speed counters		4 counters, 2 axes (24-VDC input) 4 inputs: Differential phases (4x), 50 kHz Single-phase (pulse plus direction, up/down, increment), 100 kHz Value range: 32 bits, Linear mode or ring mode Interrupts: Target value comparison or range comparison					
Pulse outputs (models with transistor out puts only)	Pulse outputs	Trapezoidal or S-curve acceleration and deceleration (Duty ratio: 50% fixed) 2 outputs, 1 Hz to 100 kHz (CCW/CW or pulse plus direction)					
	$\begin{aligned} & \text { PWM } \\ & \text { outputs } \end{aligned}$	Duty ratio: 0.0% to 100.0% (specified in increments of 0.1% or 1%) 2 outputs, 0.1 to 6553.5 Hz or 1 to $32,800 \mathrm{~Hz}$ (Accuracy: $+1 \% / 0 \%$ at 0.1 Hz to $10,000 \mathrm{~Hz}$ and $+5 \% / 0 \%$ at $10,000 \mathrm{~Hz}$ to $32,800 \mathrm{~Hz}$)					
Analog control		1 (Setting range: 0 to 255)					
External analog input		1 input (Resolution: 1/256, Input range: 0 to 10 V). Not isolated.					

CPU Unit Specifications

Terminal Block Arrangement

- CP1H-XA and X CPU Units with DC Power supply

Built-in Input Area

- CP1H-XA and X CPU Units

PLC Setup		Input operation			High-speed counter operation	Pulse output origin search function set to be used.
		Normal inputs	Interrupt inputs	Quick-response inputs	High-speed counters	Origin search
Clo 0	00	Normal input 0	Interrupt input 0	Quick-response input 0		Pulse 0: Origin input signal
	01	Normal input 1	Interrupt input 1	Quick-response input 1	High-speed counter 2 (phase-Z/reset)	Pulse 0: Origin proximity input signal
	02	Normal input 2	Interrupt input 2	Quick-response input 2	High-speed counter 1 (phase-Z/reset)	Pulse output 1: Origin input signal
	03	Normal input 3	Interrupt input 3	Quick-response input 3	High-speed counter 0 (phase-Z/reset)	Pulse output 1: Origin proximity input signal
	04	Normal input 4			High-speed counter 2 (phase-A, increment, or count input)	
	05	Normal input 5			High-speed counter 2 (phase-B, decrement, or direction input)	
	06	Normal input 6			High-speed counter 1 (phase-A, increment, or count input)	
	07	Normal input 7			High-speed counter 1 (phase-B, decrement, or direction input)	
	08	Normal input 8			High-speed counter 0 (phase-A, increment, or count input)	
	09	Normal input 9			High-speed counter 0 (phase-B, decrement, or direction input)	
	10	Normal input 10			High-speed counter 3 (phase-A, increment, or count input)	
	11	Normal input 11			High-speed counter 3 (phase-B, decrement, or direction input)	
ClO 1	00	Normal input 12	Interrupt input 4	Quick-response input 4	High-speed counter 3 (phase-Z/reset)	Pulse output 2: Origin input signal
	01	Normal input 13	Interrupt input 5	Quick-response input 5		Pulse output 2 : Origin proximity input signal
	02	Normal input 14	Interrupt input 6	Quick-response input 6		Pulse output 3: Origin input signal
	03	Normal input 15	Interrupt input 7	Quick-response input 7		Pulse output 3: Origin proximity input signal
	04	Normal input 16				
	05	Normal input 17				
	06	Normal input 18				
	07	Normal input 19				
	08	Normal input 20				
	09	Normal input 21				
	10	Normal input 22				
	11	Normal input 23				

- Built-in Output Area

- CP1H-XA and CP1H-X CPU Units

CPU Unit Specifications

Terminal Block Arrangemen

- CP1H-Y CPU Units

Note: Supply 24 VDC to the
Built-in Input Area
Lhedine

PLC Setup		Input operation setting			High-speed counter operation setting	Pulse output origin search function set to be used.
		Normal inputs	Interrupt inputs	Quick-response inputs	High-speed counters	Origin search
A0					High-speed counter 0 (phase-A. increment, or count input) fixed	
s0					High-speed counter 0 (phase-B, decrement, or direction input) fixed	
$z 0$					High-speed counter 0 (phase-Z/resel) fixed	Pulse 0: Orioin input signal (ine diviver)
A1					High-speed counter 1 (phase-A, increment, or count input) fixed	
B1					High-speed counter 1 (phase-B. decrement, or direction input) fixed	
Z1					High-speed counter 1 (phase-Z/resel) fixed	Puise 1: Origin input signal (line diviver)
C10 0	Bit 00	Normal input 0	Interrupt 0	Quick-esponse input 0		Pulse 2: Origin proximity input signal
	Bit 01	Normal input 1	Interrupt 1	Quick-esponse input 1	High-speed counter 2 (phase-Z/reset)	
	Bit 04	Normal input 2			High-speed counter 2 (phase-A, increment, or count input)	
	Bit 05	Normal input 3			High-speed counter 2 (phase-B, decrement, or direction input)	
	Bit 10	Normal input 4			High-speed counter 3 (phase-A, increment, or count input)	
	Bit 11	Normal input 5			High-speed counter 2 (phase-B, decrement, or direction input)	Pulse 3: Origin proximity input signal
C10 1	Bit 00	Normal input 6	Interrupt 2	Quick-esponse input 2	High-speed counter 2 (phase-Z/reset)	Pulse 3: Origin input signal
	Bit 01	Normal input 7	Interrupt 3	Quick-response input 3		Pulse 2: Origin input signal
	Bit 02	Normal input 8	Interrupt 4	Quick-esponse input 4		Pulse 1: Origin input signal (open collector)
	Bit 03	Normal input 9	Interrupt 5	Quick-esponse input 5		Pulse 0: Origin input signal (open collector)
	Bit 04	Normal input 10				Pulse 1: Origin proximity input signal
	Bit 05	Normal input 11				Pulse 0: Origin proximity input signal

These areas are for line-driver inputs, so they can be used only for high-speed counters (1 MHz) and not for other purposes, such as normal inputs.

CPU Unit Specifications

```
Input Terminal Block Arrangement (Top Block)
CP1L (60 Inputs)
**)
*)
DC Power Supop\s Models
```



```
*NC
CP1L (40 Inputs) - CP1L (20 Inputs)
*,
****|O0
```



```
- CP1L (30 inputs)
L4 L2N COM 01 03 05 05 07 07 09 11 年01 03 05 
```



```
.0. PC Powe Supply Models 
```

- CP1L (20 Inputs)

\Leftrightarrow	Θ	00	02	04	06	08	10

${ }_{\text {Inputs }(\text { ClO }}^{2}$ o)

Nc	©	00	02	04	06	08	10

CP1L (14 Inputs)

	Θ	00	02	04	06	NC	NC

- CP1L (10 Inputs)

A\|	官\|	00	02	04

DC Power Supply Models		
1	com 01	03

CPU Unit Specifications

$\begin{gathered} \text { Number of } \\ \text { inputs } \end{gathered}$	Input terminal block Input operation					High-speed counter operation Operation settings - High-speed counters enabled - Phase-Z signal reset		Origin search		
	Word	Bit	Normal inputs	Interrupt inputs	Quick-response inputs			Origin searches enabled for pulse outputs 0 and 1		
						Single-phase (increment pulse input)	Two-phase (differential phase x4, up/down, or pulse plus direction)	CPU Units with 20 to 60 points	CPU Units with 14 points	CPU Units with 10 points
14	CıO 0	00	$\begin{aligned} & \text { Normal } \\ & \text { input } 0 \end{aligned}$	---	---	High-speed counter 0 (increment)	High-speed counter 0 (phase-A, increment, or count input)	--	---	---
		01	$\begin{aligned} & \text { Normal } \\ & \text { input } 1 \end{aligned}$	---	---	High-speed counter 1 (increment)	High-speed counter 0 (phase-B, decrement, or count input)	---	---	---
		02	$\begin{aligned} & \text { Normal } \\ & \text { input } 2 \end{aligned}$	---	---	High-speed counter 2 (increment)	High-speed counter 1 (phase-A, increment or count input)	---	$\begin{gathered} \text { Pulse } \\ \text { output 0: } \\ \text { Origin } \\ \text { proximity } \\ \text { input } \\ \text { signal } \end{gathered}$	---
		03	Normal	---	---	High-speed counter 3 (incremen)	High-speed counter 1 (phase-B, decrement, or count input)	--	Pulse output Origin proximity input signal	Pulse output o: orin proxinity input ingnal
		04	$\begin{aligned} & \text { Normal } \\ & \text { inout } 4 \end{aligned}$	Interrupt input 0	Quick-response input 0	Counter 0, phaseZ/reset input	High-speed counter 0 (phase-Z/reset)	---	---	---
		05	$\begin{aligned} & \text { Normal } \\ & \text { input } 5 \end{aligned}$	Interrupt input 1	Quick-response input 1	Counter 1, phaseZ/reset inpu	High-speed counter 1 (phase-Z/reset)	---	--	Pulse output 0: Origin input signal-
		06	Normal input 6	Interrupt input 2	Quick-response input 2	Counter 2, phaseZ/reset input		Pulse output 0 Origin input signal		---
		07	Normal input 7	Interrupt input 3	Quick-response input 3	Counter 3, phase- Z /reset input Z/reset input		Pulse output 1: Origin input signal		---
20		08	Normal input 8	Interrupt input 4	Quick-response input 4	---		---	---	---
		09	Normal input 9	Interrupt input 5	Quick-response input 5	---		---	---	---
		10	$\begin{aligned} & \text { Normal } \\ & \text { input } 10 \end{aligned}$	---	---	---			--	---
		11	$\begin{gathered} \text { Normal } \\ \text { input } 11 \end{gathered}$	--	---	--		Pulse output 1: Origin proximity input signal	---	--
30	ClO 1	00	Normal input 12	---	---	---		---	---	---
		to								
		05	Normal input 17	---	---	---	---	---	---	---
40		06	Normal input 18	---	---	---	---	---	---	---
		to								
		11	Normal input 23	---	---	---	---	--	---	---
60	ClO 2	00	Normal input 24	---	---	---	---	---	---	---
		to								
		11	Normal input 35	--.	--	--.	---	--.	---	--.

CPU Unit Specifications

■ Output Terminal Block Arrangement (Bottom Block) - CP1L (60 Outputs)

DC Power Supply Modeds

- CP1L (40 Outputs)

an

NC	00	01	02	02	03	04	04	06	00	01	03
04	04	04									

- CP1L (30 Outputs)

AC Power Supply Models						
+	00	01	02	02	04	05

DC Power Supply Models

NC	00	01	02	04	05	07	00	02
		0						

NC	com	com	com	03	com	06	com	01	00

- CP1L (20 Outputs)

- CP1L (14 Outputs)

- CP1L (10 Outputs)

|compombom 03
colo 100

- Built-in Output Area

Number ofoutputs	Output Terminal Block		When the instructions to the right are not executed	When a pulse output instruction (SPED, ACC, PLS2, or ORG) is executed		When the origin search function is set to be used in the PLC Setup, and an origin search is executed by the ORG instruction		When the PWM instruction is executed
	Word	Bit	Normal output	Fixed duty ratio pulse output				Variable duty ratio
				cw/ccw	Pulse plus direction	When the origin search function is used		PWM output
						CPU Units with 14 to 60 points	CPU Units with 10 point	
10	C10 100	00	Normal output 0	Pulse output 0 (CW)	Pulse output 0 (pulse)	---	---	---
		01	Normal output 1	Pulse output ((CCW)	Pulse output 0 (direction)	---	---	PWM output 0
		02	Normal output 2	Pulse output 1 (CW)	Pulse output 1 (pulse)	---	---	---
		03	Normal output 3	Pulse output 1 (CCW)	Pulse output 1 (direction)	---	Origin search 0 (Error counter reset output)	PWM output 1
14		04	Normal output 4	---	---	Origin search 0 (Error counter reset output)	---	---
		05	Normal output 5	---	---	Origin search 1 (Error counter reset output)	---	---
20		06	Normal output 6	---	---	---	---	---
		07	Normal output 7	---	---	---	---	---
3040	CIO 101	00	Normal output 8	---	---	---	---	---
		to						
		03	Normal output 11	---	---	---		---
		04	Normal output 12	---	---	---		---
		to						
		07	Normal output 15	--	--	--	---	---
60	C10 102	01	Normal output 16	---	---	---	---	---
		to						
		07	Normal output 23	---	---	---	--	---

Input Specifications

ITEM	Specifications		
	High-speed counter inputs (phases A and B)	Interrupt inputs and quick-response inputs	Normal inputs
CP1L	ClO 0.00 to CIO 0.03	CIO 0.04 to ClO 0.09	$\begin{gathered} \mathrm{CIO} 0.10, \mathrm{CIO} 0.11, \\ \text { CIO } 1.00 \mathrm{ot}, \mathrm{CIO} 1.11, \text { and } \\ \mathrm{CIO} 2.00 \text { to } 2.11 \end{gathered}$
CPIH-XAX CPU Units	ClO 0.04 to ClO 0.11	$\begin{aligned} & \mathrm{CIO} 0.00 \text { to } \mathrm{CIO} 0.03 \text { and } \\ & \mathrm{CIO} 1.00 \text { to } \mathrm{ClO} 1.03 \end{aligned}$	CIO 1.04 to ClO 1.11
CP1H-Y CPU Units	Clo 0.04, Clo 0.05, Clo 0.10, Clo 0.11	$\begin{gathered} \text { CIO } 0.00, \mathrm{CIO} 0.01 \text { and } \\ \mathrm{CIO} 1.00 \text { to } \mathrm{COO} 1.03 \\ \hline \end{gathered}$	C10 1.04, C10 1.05
Input voltage	24 VDC +10\%/-15\%		
Applicable sensors	2 -wire sensors or 3 -wire sensors		
Input impedance	$3.0 \mathrm{k} \Omega$		$4.7 \mathrm{k} \Omega$
Input current	7.5 mA typical		5 mAtypical
ON voltage	17.0 VDC min.		14.4 VDC min.
OFF voltage/current	1 mA max . at 5.0 VDC		
ON delay	2.5 ¢ smax .	50 нs max.	$1 \mathrm{~ms} \mathrm{max}$.
OFF delay	2.5 ms max.	50 нs max.	$1 \mathrm{~ms} \mathrm{max}$.
Circuit configuration			

- High-speed Counter Function Input Specifications

CP1LCPU Units (Input bits: CIO 0.00 to ClO 0.03$)$
CP1H-XAX CPU Units (Input bits: ClO 0.04 to
CP1H-Y CPU Units (Input bits: ClO $0.04, \mathrm{ClO} 0.05, \mathrm{ClO} 0.10, \mathrm{ClO} 0.11$)

- Interrupt Input Counter Mode

CP1H-XAX CPU Units (Input bits: CIO 0.00 (to Colo 0.03 , CIO 1.00 to CIO 1.03)

- High-speed Counter Inputs (Line-driver Inputs)

CP1H-Y CPU Units

Item	Specifications	
High-speed counter inputs	Phases A and B	Phase Z
Input voltage	RS-422A line-driver, AM26LS31 or equivalent Note: The power supply voltage on the line-driver must be $5 \mathrm{~V} \pm 5 \%$ max	
Input type	Line-driver input	
Input current	10 mA typical	13 mA typical
Circuit configuration		

CPU Unit Specifications

Item	Specifications		
ONOFF delay	- Pulse plus direction input mode - Increment mode - Up/down input mode	- Differential phase input mode	

- CPU Units with Relay Outputs

Note: Under the worst conditions, the service life of output contacts is as showr | Under the wo |
| :--- |
| on the lt. |

The service life of relays is as shown in the following diagram as a guide.
line

- CPU Units with Transistor Outputs (Sinking/Sourcing)

Note: 1. Do not apply a voltage or connect a load to an output terminal exceeding the maximum switching capacity.
2. Fuses cannot be replaced by the user.
3. Also do not exceed 0.9 A for the total for CIO 100.00 to CIO 100.03. (CIO 100.00 to ClO 100.03 is diferent common.) 3. Also do not exceed 0.9 A for the total for ClO 100.00 10 C 10 10.03. (CIo $100.0015{ }^{\circ} \mathrm{C}$

- Pulse outputs
CPIL CPU Units: Output bits CIO 100.00 to CIO 100.03

Item	Specifications
Max. switching capacity	30 mA at 4.75 to 26.4 VD
Min. switching capacity	7 mA at 4.75 to 26.4 VDC
Max. output frequency	100 kHz
Output waveform	

Note: 1. The above values assume a resistive load and do not consider the in Pedance of the cable connecting the load
The pulse widths during actual use may be smaller than the ones show
above due to pulse distortion caused by connecting cabbe impedance.
3. The OFF and ON refer to the output transistor. The output transistor is O ON at evel "L".

- Pulse Outputs (Line-driver Outputs)

CPIH-Y CPU Units

Item	Specifications	
Pulse outputs	Line-driver outputs, Am26LS31 or equivalent	
Max. output current	20 mA	
Max. output frequency	1 MHz	
Circuit contiguration		

- Pulse outputs

CP1L CPU Units: Output bits ClO100.01, C1O 100.03
CP1H-XAXXY CPU Units: Output bits C10101.00, CIO 101.01

| Item | Specifications |
| :--- | :--- | Max. switching capait | Max. output frequency | CP1H: $1 \mathrm{kHz}, \mathrm{CP1L}: 32.8 \mathrm{kHz}$ |
| :--- | :--- |
| PW | | | PWM output precision | ON duty $+5 \%,-0 \%$ at output frequency of 1 kHz |
| :--- | :--- |

ON duty $=\frac{\text { ton }}{T} \times 100 \%$
Note: 1. The above values assume a resistive load and do not consider the in pedance of the cable concecting the load.
2. The pulse widths during actual use may be smaler than the ones show above due to pulse distortion caused by connecting cabbe impedance. at level "L"

Connect a load of 20 mA or less to the out
if a current of more than 20 mA is output.

Built-in Analog Input Switch (Factory Settings)
Built-in Analog I/O Terminal Block Arrangement

00000000
00000000

CPU Unit Specifications

■Serial Communications Specifications (CP1W-C1F01/-CIF11)

Transmission Distance		100 m (distance between hub and node)
Item		FINS Communications Service Specifications
Number of nodes		254
Message length		1016 bytes max.
Size of bufter		8k
Communications Function		FINS Communications Service (UDP/IP, TCP/IP)
FINS/UDP method	Protocol used	UDPIP
	Port number	9600 (defaut) Can be changed.
	Protection	No
FINS/TCP method	Protocol used	TCPIP
	Number of connections	Up to 2 simultaneous connections and only one connection can be set to client
	Port number	9600 (defaut) Can be changed.
	Protection	Yes (Specification of client IP addresses when unit is used as a server)

Note: 1. CX-Programmer version 8.1 or higher (CX-One version 3.1 or higher) is required.
2. Use CX-Integrator version 2.33 or higher (CX-One version 3.1 or higher) when the system needs to be set the routing tables. However, CX-Integrator does
not support the other functions, using CPIW-CIF41, such as transterring the parameers and network structure.
3. To connect the CP1H/CP1L CPUs with the NS-series Programmable Terminals via Ethernet using CPIW-CIF 41 , make sure that the system version of NS

LDC Option Board (CP1W-DAM01)

- Specifications

Item	Function
Mounting port	CP1H/CP1L: Option board slot 1 Note: The LCD Option Board cannot be used for the CP1L-L10.
Communications protocol	Peripheral bus (Turn ON DIP switch pin 4.)
Weight	30 g max.
Number of display characters	4 rows $\times 12$ characters: 48 characters max.
Display characters	5×7 dots (alphanumeric, Japanese kana, and symbolss). Display switchable between Japanese katakana and English.
Backlight	Electroluminescence (EL): Normal: Lit green; Error: Flashing red

Expansion I/O Unit Specifications

■ CP1W-40EDR/40EDT/40EDT1/32ER/32ET/32ET1/20EDR1/20EDT/20EDT1/16ER/16ET/16ET1/8ED/8ER/8ET/8ET1 Expansion I/O Units

- DC Inputs (CP1W-40EDR/40EDT/40EDT1/20EDR1/20EDT/20EDT1/8ED)

Item	Specifications
Input voltage	$24 \mathrm{VDC}+10 \% /-15 \%$
Input impedance	4.7 k ת
Input current	5 mAtypical
ON voltage	14.4 VDC min.
OFF voltage	5.0 VDC max.
ON delay	0 to $32 \mathrm{~ms} \mathrm{max}. \mathrm{(Default:} 8 \mathrm{~ms}$) (See note 1.)
OFF delay	0 to $32 \mathrm{~ms} \mathrm{max}. \mathrm{(Default:} 8 \mathrm{~ms}$) (See note 1.)
Circuit contiguration	

- Relay Outputs (CP1W-40EDR/32ER/20EDR1/16ER/8ER)

Expansion Unit Specifications

■CP1W-AD041/DA041/DA021/MAD11 Analog Units
Analog values that are input are converted to binary data and stored in the input area, or binary data is output as analog values.

Item	Model	CP1W-AD041	
		Input voltage	Input curr
Number of inputs		4	
Input signal range		0 to $5 \mathrm{~V}, 1$ to 5 V , 0 to $10 \mathrm{~V},-10$ to 10 V	0 to 20 mA 4 to 20 mA
Max. rated input		$\pm 15 \mathrm{~V}$	$\pm 30 \mathrm{~mA}$
External input impedance		$1 \mathrm{M} \Omega$ min.	Approx. 250Ω
Resolution		6000	
Overall accura- cy	$25^{\circ} \mathrm{C}$	$\pm 0.3 \%$ of full scale	$\pm 0.4 \%$ of full scale
	$\begin{aligned} & 0 \text { to } \\ & 55^{\circ} \mathrm{C} \end{aligned}$	$\pm 0.6 \%$ of full scale	$\pm 0.8 \%$ of full scale
Conversion time		$2.0 \mathrm{~ms} / \mathrm{point}$	
$\begin{aligned} & \text { A/D conversion } \\ & \text { data } \end{aligned}$		Binary data with resolution of 6,000 Full scale for -10 to 10 V : F448 to 0BB8 hex Full scale for other ranges: 0000 to 1770 hex	
Averaging		Supported.	
Open-circuit detection		Supported.	
Insulation resistance		$20 \mathrm{M} \Omega$ min. (at 250 VDC , between isolated circuits)	
Dielectric strength		500 VAC for 1 min (between isolated circuits)	
Isolation method		Photocoupler isolation (between analog inputs and secondary internal circuits). No isolation between input signals.	

Item	Model	CP1W-DA041/DA021	
		Input voltage	Input current
Number of outputs		DA041: 4, DA021: 2	
Output signal range		$\begin{array}{\|l\|l} 0 \text { oto } 5 \mathrm{~V}, 0 \text { to } 10 \mathrm{~V}, \\ \text { or }-10 \text { to } 10 \mathrm{~V} \end{array}$	0 to 20 mA or 4 to 20 mA
Allowable external output load resistance		$2 \mathrm{k} \Omega$ min.	350Ω max.
External output impedance		0.5Ω max.	---
Resolution		6000	
Overall accuracy	$25^{\circ} \mathrm{C}$	$\pm 0.4 \%$ of full scale	
	$\begin{aligned} & 0 \text { to } \\ & 55^{\circ} \mathrm{C} \end{aligned}$	$\pm 0.8 \%$ of full scale	
Conversion time		$2.0 \mathrm{~ms} / \mathrm{point}$	
D/A conversion data		Binary data with resolution of 6,000 Full scale for -10 to 10 V: F448 to OBB8 hex Full scale for other ranges: 0000 to 1770 hex	
Insulation resistance		$20 \mathrm{M} \Omega$ min. (at 250 VDC between isolated circuits)	
Dielectric strength		500 VAC for 1 min between isolated circuits	
Isolation method		Photocoupler isolation between analog inputs and secondary internal circuits. No isolation between analog input signals.	

■ Analog I/O Unit: CP1W-MAD11

Item	Model		CP1W-MAD11		
			Voltage //0	Current $1 / 0$	
Analog Section	Number of inputs		2 inputs		
	Input signal range		0 to $5 \mathrm{~V}, 1$ to $5 \mathrm{~V}, 0$ to 10 V , or -10 to 10 V	0 to $20 \mathrm{~mA}, 4$ to 20 mA	
	Max. rated input		$\pm 15 \mathrm{~V}$	$\pm 30 \mathrm{~mA}$	
	External input impedance		$1 \mathrm{M} \Omega$ min.	250Ω	
	Resolution		1/6000 (full scale)		
	Overall accuracy	$25^{\circ} \mathrm{C}$	$\pm 0.3 \%$ of full scale	$\pm 0.4 \%$ of full scale	
		0 to $55^{\circ} \mathrm{C}$	$\pm 0.6 \%$ of full scale	$\pm 0.8 \%$ of full scale	
	A/D conversion data		Binary data (hexadecimal, 4 digits) -10 to 10 V: F448 to OBB8 hex Full scale for other ranges: 0000 to 1770 hex		
AnalogOutputSectionSceinote 1.)	Averaging		Supported (Set for each input using a DIP switch.)		
	Disconnection detection		Supported		
	Number of outputs				
	External output max. current		1 to $5 \mathrm{~V}, 0$ to $10 \mathrm{~V},-10$ to 10 V	0 to $20 \mathrm{~mA}, 4$ to 20 mA	

	Allowable external output load resistance		$1 \mathrm{k} \Omega$ min.	600Ω max.	
	External input impedance		0.5Ω max.	---	
	Resolution		1/6000 (full scale)		
	Overall accuracy	$25^{\circ} \mathrm{C}$	$\pm 0.4 \%$ of full scale		
		0 to $55^{\circ} \mathrm{C}$	$\pm 0.8 \%$ of full scale		
	Data setting				
	D/A conversion data		Binary data (hexadecimal, 4 digits) -10 to 10 V: F448 to OBB8 hex Full scale for other ranges: 0000 to 1770 hex		
Conversion time (See note 2.) Isolation method			$2 \mathrm{ms/point}$ (6 ms for all points)		

[^2]2. The conversion time is the total time for 2 analog inputs and 1 analog output.

Expansion Unit Specifications

Temperature Sensor Units: CP1W-TS001/TS002/TS101/TS102

By mounting a Temperature Sensor Unit to the PLC, inputs can be obtained from thermocouples or platinum resistance thermometers, and tem perature measurements can be converted to binary data (4-digit hexadecimal) and stored in the input area of the CPU Unit.

- Specifications

Item Model	CP1W-TS001/002	CP1W-TS101/102
Number of inputs	2 (TS001), 4 (TS002)	2 (TS101), 4 (TS102)
Input types	K, J switchable (Note: Same for all inputs.)	Pt100, JPt100 switchable (Note: Same for all inputs.)
Indication accuracy	(The larger of the indicated value: $\pm 0.5 \%$ and $\pm 2^{\circ} \mathrm{C}$ (See note.)) ± 1 digit max. digit max.	(The larger of the indicated value: $\pm 0.5 \%$ and $\pm 1^{\circ} \mathrm{C}$) ± 1 digit max.
Conversion time	$250 \mathrm{~ms} / 2$ points (TS001, TS101); $250 \mathrm{~ms} / 4$ points (TS002, TS102)	
Converted temperature data	Binary (4-digit hexadecima)	
Isolation method	Photocoupler isolation between the temperature input signals.	

(The rotary switch can be used to make the following range and input type settings.)

Input type	Range ${ }^{\circ} \mathrm{C}$)	Range ($\left.{ }^{\circ} \mathrm{F}\right)$
K	-200 to 1300	-300 to 2300
	0.0 to 500.0	0.0 to 900.0
J	-100 to 850	-100 to 1500
	0.0 to 400.0	0.0 to 750.0

input Temperature Ranges for CP1W-TS101/102 (The rotary switch can be used to make the following range and input type settings.)

Input type	Range ${ }^{\circ}$ C)	Range $\left({ }^{\circ} \mathrm{F}\right)$
Pt100	-200.0 t 650.0	-300 to 1200.0
JPt100	-200.0 to 650.0	-300 to 1200.0

CP1W-SRT21 CompoBus/S I/O Link Unit
The CompoBus/S I/O Link Unit functions as a slave for a CompoBus/S Master Unit (or an SRM1 CompoBus/S Master Control Unit) to form an I/O Link with 8 inputs and 8 outputs between the CompoBus/S //O Link Unit and the Master Unit,

Item Model	CP1W-SRT21
Master/Slave	CompoBus/S Slave
Number of /O Dits	8 input bits, 8 output bits
Number of words occupied in CP1H/CP1L IO memory	1 input word, 1 output word (Allocated in the same way as for other Expansion Units)
Node number setting	Set using the DIP switch (before the CPU Unit is turned ON.)

SRM1 Series (or 8 Units for CQM1-SRM21-V1).

Dimensions

■CPU Units
CP1H CPU Un
CP1H CPU Units (X/XA/Y Types)

> Weight:
> $740 \mathrm{~g} \mathrm{max}. \mathrm{supply):}$
> $740 \mathrm{gmax}$. . DC power supply):
> 590 g max

CP1L CPU Units with 40 I/O Points

CP1L CPU Units with 30 I/O Points

Dimensions

CP1L CPU Units with 14 or 20 I/O Points

CP1L CPU Units with 10 I/O Points

Dimensions

■xpansion Units and Expansion I/O Units CP1W-20ED \square
CP1W-16ED
CP1W-AD041/CP1W-DA041/CP1W-DA021
CP1W-MAD11/CP1W-TS $\square \square \square$

■ CJ-series Special I/O Units and CPU Bus Units

■CJ Unit Adaptor
CP1W-EXT01

CP1H
Example: Two CJ-series Units (31-mm widths) Connected Using a CJ Unit Adapter

A Wealth of Instructions

Floating-point Decima

Instruction, and More
Just like the CS/CJ-series PLCs, the CP1H and CP1L have
-
Example: PID Instructions with Autotuning
Autotuning of PID constants is enabled using the PID CONTROL . The ilimit cycle method is used for tuning, so tuning is completed in a short time.

- Sequence Input Instructions

Instruction	Mnemonic	Function code
LOAD	LD	--
LOAD NOT	LD NOT	---
AND	AND	--
AND NOT	AND NOT	--
OR	OR	---
OR NOT	OR NOT	---
AND LOAD	AND LD	---
OR LOAD	ORLD	---
NOT	NOT	520
CONDITION ON	UP	521
CONDITION OFF	Down	522
LOAD BIT TEST	LD TST	350
LOAD BIT TEST NOT	LD TSTN	351
AND BIT TEST	AND TST	350
AND BIT TEST NOT	$\begin{array}{\|l\|l\|} \hline \text { AND } \\ \text { TSTN } \end{array}$	351
OR BIT TEST	OR TST	350
OR BIT TEST NOT	OR TSTN	351

- Sequence Output Instructions

Instruction	Mnemonic	Function				
code			$	$	OUTPUT	OUT
:---	:---					

- Sequence Control Instructions

Instruction		Mnemonic	Function
END		END	001
NO OPERATION		NOP	000
INTERLOCK		14	002
INTERLOCK CLEAR		ILC	003
MULTI-INTERLOCK DIFFERENTIATION HOLD		MLLH	517
MULTI-INTERLOCKDIFFERENTIATIONRELEASE		MLLR	518
MULT-INTERLOCKCLEAR		MLLC	519
JUMP		JMP	004
JUMP END		JME	005
CONDITIONAL JUMP		CJP	510
CONDITIONAL JUMP NOT		CJPN	511
MULTIPLE JUMP		JMP	515
MULTIPLE JUMP END		JME0	516
FOR LOOP		FOR	512
BREAK LOOP		BREAK	514
NEXT LOOPS		NEXT	513
- Timer and Counter Instructions			
Instruction		Mnemonic	$\begin{aligned} & \text { Function } \\ & \text { code } \end{aligned}$
TIMER	BCD	тIM	--
	BIN	timX	550
COUNTER	BCD	CNT	
	BIN	CNTX	546
$\begin{aligned} & \text { HIGH-SPEED } \\ & \text { TIMER } \end{aligned}$	BCD	TIMH	015
	BIN	tIMHX	551
$\begin{array}{\|l\|} \hline \text { ONE-MS } \\ \text { TIMER } \end{array}$	BCD	тМНН	540
	BIN	тМННХ	552
$\begin{array}{\|l} \hline \text { ACCUMULA- } \\ \text { TIVE TIMER } \\ \hline \end{array}$	BCD	тדוM	087
	BIN	TTIMX	555
LONG TIMER	BCD	TIML	542
	BIN	TIMLX	553
MULTI-OUT-PUT TIMER	BCD	мтім	543
	BIN	mTIMX	554
$\begin{aligned} & \text { REVERSIBLE } \\ & \text { COUNTER } \end{aligned}$	BCD	CNTR	012
	BIN	CNTRX	548
RESET TIMER/ COUNTER	BCD	CNR	545
	BIN	CNRX	547

Data Comparison Instruction

Instructions

Instruction	Mnemonic	Function code
MOVE	MOV	021
DOUBLE MOVE	MOVL	498
MOVE NOT	MVN	022
DOUBLE MOVE NOT	MVNL	499
MOVE BIT	MOVB	082
MOVE DIGIT	MOVD	083
MULTIPLE BIT TRANSFER	XFRB	062
BLOCK TRANSFER	XFER	070
BLOCK SET	BSET	071
DATA EXCHANGE	XCHG	073
DOUBLE DATA EXCHANGE	XCGL	562
SINGLE WORD DISTRIBUTE	DIST	080
DATA COLLECT	COLL	081
MOVE TO REGISTER	MOVR	560
MOVE TIMER/COUNTER PV TO REGISTER	MOVRW	561

- Data Shift Instructions

Instruction	Mnemonic	Function code
SHIFT REGISTER	SFT	010
REVERSIBLE SHIFT REGISTER	SFTR	084
ASYNCHRONOUS SHIFT REGISTER	ASFT	017
WORD SHIFT	WSFT	016
ARITHMETIC SHIFT LEFT	ASL	025
DOUBLE SHIFT LEFT	ASLL	570
ARITHMETIC SHIFT RIGHT	ASR	026
DOUBLE SHIFT RIGHT	ASRL	571
ROTATE LEFT	ROL	027
DOUBLE ROTATE LEFT	ROLL	572
ROTATE LEFT WITHOUT CARRY	RLNC	574
DOUBLE ROTATE LEFT WITHOUT CARRY	RLNL	576
ROTATE RIGHT	ROR	028
DOUBLE ROTATE RIGHT	RORL	573
ROTATE RIGHT WITHOUT CARRY	RRNC	575
DOUBLE ROTATE RIGHT WITHOUT CARRY	RRNL	577
ONE DIGIT SHIFT LEFT	SLD	074
ONE DIGIT SHIFT RIGHT	SRD	075
SHIFT N-BIT DATA LEFT	NSFL	578
SHIFT N-BIT DATA RIGHT	NSFR	579
SHIFT N-BITS LEFT	NASL	580
DOUBLE SHIFT NBITS LEFT	NSLL	582
SHIFT N-BITS RIGHT	NASR	581
DOUBLE SHIFT NBITS RIGHT	NSRL	583

Instruction	Mnemonic	Function code
INCREMENT BINARY	++	590
DOUBLE INCREMENT BINARY	+ +	591
DECREMENT BINARY	--	592
DOUBLE DECREMENT BINARY	--L	593
INCREMENT BCD	+ + B	594
DOUBLE INCREMENT BCD	+ +BL	595
DECREMENT BCD	--B	596
DOUBLE DECREMENT BCD	--BL	597

- Symbol Math Instructions

Instruction	Mnemonic	Function code
SIGNED BINARY ADD WITHOUT CARRY	+	400
DOUBLE SIGNED BINARY ADD WITHOUT CARRY	+L	401
SIGNED BINARY	+C	402
DOUBLE SIGNED BINARY ADD WITH CARRY	+CL	403
BCD ADD WITHOUT CARRY	+B	404
DOUBLE BCD ADD WITHOUT CARRY	+BL	405
BCD ADD WITH CARPY CARRY	+BC	406
DOUBLE BCD ADD WITH CARRY	+BCL	407
SIGNED BINARY SUBTRACT WITHOUT CARRY	-	410
DOUBLE SIGNED BINARY SUBTRACT WITHOUT CARRY	-L	411
SIGNED BINARY SUBTRACT WITH CARRY	-c	412
DOUBLE SIGNED BINARY WITH CARRY	-CL	413
BCD SUBTRACT WITHOUT CARRY	-B	414
DOUBLE BCD SUBTRACT WITHOUT CARRY	-BL	415
BCD SUBTRACT WITH CARRY	-BC	416
DOUBLE BCD SUBTRACT WITH CARRY	-BCL	417
SIGNED BINARY MULTIPLY	*	420
DOUBLE SIGNED BINARY MULTIPLY	*	421
UNSIGNED BINARY MULTIPLY	*	422
DOUBLE UNSIGNED BINARY MULTIPLY	*UL	423
BCD MULTIPLY	*B	424
DOUBLE BCD MULTIPLY	*BL	425
SIGNED BINARY	'	430

Instruction	Mnemonic	Function
code		

- Data Conversion Instructions

Instruction	Mnemonic	Function
BCD-TO-BINARY	BIN	023
DOUBLE BCD-TODOUBLE BINARY	BINL	058
BINARY-TO-BCD	BCD	024
DOUBLE BINARY-TODOUBLE BCD	BCDL	059
2'S COMPLEMENT	NEG	160
DOUBLE 2'S COMPLEMENT	NEGL	161
16-BIT TO 32-BIT SIGNED BINARY	SIGN	600
DATA DECODER	MLPX	076
DATA ENCODER	DMPX	077
ASCII CONVERT	ASC	086
ASCII TO HEX	HEX	162
COLUMN TO LINE	LINE	063
LINE TO COLUMN	COLM	064
SIGNED BCD-TOBINARY	BINS	470
DOUBLE SIGNED BCD-TO-BINARY	BISL	472
SIGNED BINARY-TOBCD	BCDS	471
DOUBLE SIGNED BINARY-TO-BCD	BDSL	473
GRAY CODE CONVERSION	GRY	474

- Special Math Instructions

Instruction	Mnemonic	Function
code		
BINARY ROOT	ROTB	620
BCD SQUARE ROOT	ROOT	072
ARITHMTII	APR	069
PROCESS	ARS	
FLLATTING POINT	FDIV	079
DIVIDE		
BIT COUNTER	BCNT	067

- Logic Instructions

Instruction	Mnemonic	Function code
LOGICAL AND	ANDW	034
DOUBLE LOGICAL	ANDL	610
AND		
LOGICAL OR	ORW	035
DOUBLE LOGICAL	ORWL	611
OR	EXCLSIVE OR	XORW
EXLULE	036	
DOUBLE EXCLUSIVE	XORL	612
OR		
EXCLUSIVE NOR	XNRW	037
DOUBLE EXCLUSIVE NOR	XNRL	613
COMPLEMENT	COM	029
DOUBLE COMPLEMENT	COML	614

- Floating-point Math Instructions
Instruction Mnemonic Function code
FLOATING TO 16-BIT
FIX

- Double-precision Floating-point

Instruction	Mnemonic	$\begin{aligned} & \text { Function } \\ & \text { code } \end{aligned}$
DOUBLE FLOATING TO 16-BIT BINARY	FIXD	841
DOUBLE FLOATING TO 32-BIT BINARY	FIXLD	842
16-BIT BINARY TO	DBL	843
32-BIT BINARY TO	DBLL	844
DOUBLE FLOATINGPOINT ADD	+D	845
DOUBLE FLOATING- POINT SUBTRACT	-D	846
DOUBLE FLOATING- POINT MUTIPIY	* ${ }^{\text {d }}$	847
DOUBLE FLOATING- POINT DIVIDE	ID	848
DOUBLE DEGREES	RADD	849
DOUBLE RADIANS TO DEGREES	DEGD	850
DOUBLE SIIE	SIND	851
DOUBLE COSIINE	COSD	852
DOUBLE TANGENT	TAND	853
DOUBLE ARC SIINE	ASIND	854
DOUBLE ARC	ACOSD	855

Instruction	Mnemonic	Function code
DOUBLE ARC TANGENT	ATAND	856
DOUBLE SQUARE ROOT	SQRTD	857
DOUBLE EXPONENT	EXPD	858
DOUBLE LOGARITHM	LOGD	859
DOUBLE EXPONENTIAL POWER	PWRD	860
double symbol COMPARISON	$\begin{aligned} & \mid \mathrm{LD,AND}, \\ & \mathrm{OR} \\ & +\quad \\ & =\mathrm{D},<>\mathrm{D}, \\ & <\mathrm{D},<=\mathrm{D}, \\ & >\mathrm{D},>=\mathrm{D} \end{aligned}$	$\begin{aligned} & 335(=\mathrm{D}) \\ & 336(<>\mathrm{D}) \\ & 337<(<\mathrm{D}) \\ & 338 \\ & \mathrm{D}) \\ & 339(>\mathrm{D}) \\ & 340 \\ & \mathrm{D}) \end{aligned}$

- Table Data Processing Instructions

Instruction	Mnemonic	Function			
code			$	$	Ond
:---	:---				

- Data Control Instructions

Instruction	Mnemonic	Function
PID CONTROL	PID	190
PID CONTROL WITH AUTO TUNING	PIDAT	191
LIMIT CONTROL	LMT	680
DEAD BAND CONTROL	BAND	681
DEAD ZONE CONTROL	ZONE	682
TIMEPROPORTIONAL OUTPUT	TPO	685
SCALING	SCL	194
SCALING 2	SCL2	486
SCALING 3	SCL3	487
AVERAGE	AVG	195

- Subroutine Instructions

Instruction	Mnemonic	Function code				
SUBROUTINE CALL	SBS	091				
SUBROUTINE ENTRY	SBN	092				
SUBOUTINE	RI					
:---	:---	:---				
SUBOUTIN CALL	SBS	091				
SUBROUTINE ENTRY	SBN	092		SUBROUTINE	RET	09
:---	:---	:---	:---			
RETURN	093		REACRO			

Instruction	Mnemonic	Function code
GLOBAL		
SUBROTINE CALL	GSBN	751
GLOBAL		
SUBROTINE ENTRY	GRET	752
GLOBAL SUBROUTINE RETURN	GSBS	750

- Interrupt Control Instructions

Instruction	Mnemonic	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Function } \\ \text { code } \end{array} \\ \hline \end{array}$
SET INTERRUPT MASK	MSKS	690
READ INTERRUPT MASK	MSKR	692
CLEAR INTERRUPT	CLI	691
DISABLE INTERRUPTS	D	693
ENABLE INTERRUPTS	EI	694

- High-speed Counter and Pulse

Output Instructions

Instruction	Mnemonic	Function code
MODE CONTROL	INI	880
HIGH-SPEED COUNTER PV READ	PRV	881
COUNTER FREQUENCY CONVERT	PRV2	883
COMPARISONTABLE LOAD	CTBL	882
SPEED OUTPUT	SPED	885
SET PULSES	PULS	886
PULSE OUTPUT	PLS2	887
ACCELERATION CONTROL	ACC	888
ORIGIN SEARCH	ORG	889
PULSE WITH VARIABLE DUTY FACTOR	PWM	891

- Step Instructions

Step Instructions

Instruction	Mnemonic	Function code
STEP DEFINE	STEP	008
STEP START	SNXT	009

- Basic I/O Unit Instructions

Instruction	Mnemonic	Function code
IO REFRESH	IORF	097
7-SEGMENT DECODER	SDEC	078
DIGITAL SWITCH INPUT	DSW	210
TEN KEY INPUT	TKY	211
HEXADECIMAL KEY INPUT	HKY	212
MATRIX INPUT	MTR	213
7-SEGMENT DISPLAY OUTPUT	7SEG	214
$\begin{aligned} & \text { INTELLIGENT I/O } \\ & \text { READ } \end{aligned}$	IORD	222
INTELLIGENT I/O WRITE	IOWR	223
CPU BUS I/O REFRESH	DLNK	226

Instructions

- Network Instructions
\(\begin{array}{l}- Network Instructions

\)| Instruction | Mnemonic | Function |
| :--- | :--- | :--- |
| code | | |

\hline NETWORK SEND\end{array} $\left.\begin{array}{l}\text { SEND }\end{array}\right) 090$

- Display Instructions

Instruction	Mnemonic	Function				
code			$	$	DISPLAY MESSAGE	MSG
:---	:---					
7-SEGMENT LED WORD DATA DISPLAY	SCH					
7-SEGMENT LED CONTROL	SCTRL					

Instruction	Mnemonic	Function
CALENDAR ADD	CADD	730
CALENDAR SUBTRACT	CSUB	731
HOURS TO SECONDS	SEC	065
SECONDS TO HOURS	HMS	066
CLOCK ADJUSTMENT	DATE	735

- Debugging Instructions

Instruction	Mnemonic	Function code
TRAAE MEMORY SAMPLING	TRSM	045

Failure Diagnosis Instructions

Instruction	Mnemonic	Function code
FAlLURE ALARM	FAL	006
SEVERE FAILURE	FALS	007
ALRM	0	
FALURE POINT	FPD	269
DETECTION		

\(\begin{array}{l}- Other Instructions

\)| Instruction | Mnemonic | Function |
| :--- | :--- | :--- |
| code | | |

\hline SET CARRY\end{array} STC $) 040$

- Block Programming Instructions

Instruction	Mnemonic	Function				
code			$	$	BLOCK PROGRAM	BPRG
:---	:---					
BEGIN		096				

LOOP	LOOP	809
Block Programming Instructions		

- Block Programming Instructions

Instruction	Mnemonic	Function code
LEND	CONDITI ON LEND	810
ONND	LEND Bit Operand	810
LEND NOT	LEND LET Bit OPerand	810

Instruction	Mnemonic	$\begin{aligned} & \text { Function } \\ & \text { code } \end{aligned}$
MOV STRING	MOV\$	664
CONCATENATE	+\$	656
GET STRING LEFT	LEFTS	652
GET STRING RIGHT	RGHTS	653
GET STRING MIDDLE	MID\$	654
FIND IN STRING	FIND\$	660
STRING LENGTH	LENS	650
REPLACE IN STRING	RPLC\$	661
DELETE STRING	DELS	658
EXCHANGE STRING	XCHG\$	665
CLEAR STRING	CLR\$	666
INSERT INTO STRING	INS\$	657
String Comparison	$\begin{aligned} & \text { LD, AND, } \\ & \text { OR+ } \\ & =\$, \\ & <\$, \\ & <\$ \$ \\ & <=\$ \\ & <=\$, \\ & >\$, \\ & >=\$ \end{aligned}$	

- Task Control Instructions

- Model Conversion Instructions
- Model Conversion Instructions

Instruction	Mnemonic	Function code
BLOCK TRANSFER	XFERC	565
SIIGLE WORD	DISTC	566
DISTRIBUTE	DATA COLECTT	COLLC
MOVE BIT	MOVBC	567
BIT COUNTER	BCNTC	621

$\begin{array}{llll} & \text { BPClial Instructions for Function }\end{array}$ Blocks

Instruction	Mnemonic	cunction code
VARIABLE ID	GETID	286

Ordering Information

■ CPU Units 56

- Options for CPU Units 57
- Programming Devices 58
- Expansion Units 59
- I/O Connecting Cable 59
- Optional Products, Maintenance Products and DIN Track Accessories 59
■CJ-series Special I/O Units and CPU Bus Units. 60

Standards and Directives

- International Standards
- The standards are abbreviated as follows: U: UL, U1:

UL (Class I Division 2 Products for Hazardous
Locations), C: CSA, UC: cULus, UC1: CULus (Class 1 Locations), C: CSAA, UC: cULLus, UC1: CULus (Class
Division 2 Products for Hzardous
Locations), CU: cUL, $\mathrm{N}: \mathrm{NK}$, L : Looyd, and CE: EC Directives. - Contact your OMRON representative for further
details and applicable conditions for these standards.

- EC Directives

The EC Directives applicable to PLCs include the EMC Directives and the Low Voltage Directive. OMRON
complies with these directives as described below.

- EMC Directives

EMC Directives
Applicable Standard
Applicabie Standard
EMI: EN61000-6-4
EMS:
EMS: EN61131-2 and EN61000-6-2 (See note.) LCS are electrical devices that are incorIntallations. OMRON PLLs contorm to
ne related EMC standards so that the de the related EMC standards so that the de-
vices and machines into which they are built can more easily conform to EMC
standards. The actual PLCs have been standards. The actual PLCS have been
checked to ensure conformity to EMC checked to ensure conformity to EMC
standards. Whether these standards are satisfied for the actual system, how
must be checked by the customer EMC-related performance will vary depending on the configuration, wiring, and
other conditions of the equipment or conother conalitions of the equipment or con-
trol panel in which the PLC is instaled. trol panel in which the PLC is instaled.
The customer must, therefore, perform fil nal checks to confirm that the overall ma-
chine or device conforms to EMC chine or
standards.
Note: The applicable EMS standards
depend on the product.

- Low Voltage Directive
Applicable Standard: EN61131-2

Devices that operate at voltages from 50
to 1,000 VAC or 75 to 150 VDC must sat-
r 75 to 150 VDC must sal
With PLCS, this applies to Power Supply Units and I/O Units that operate in these
Voltage ranges. form to EN6 $1131-2$, which is the applica
ble standard for PLCs.

Ordering Information

CPU Unit	Specifications					Model	Standards
	CPU type	$\begin{aligned} & \text { Power } \\ & \text { supply } \\ & \hline \end{aligned}$	Output method	Inputs	Outputs		
	Memory capacity: 20K steps High-speed counters: $100 \mathrm{kHz}, 4$ axes Pulse outputs: $100 \mathrm{kHz}, 4$ axes (Models with transistor outputs only)	$\begin{gathered} \text { AC power } \\ \text { supply } \end{gathered}$	Relay output	24	16	CP1H-X40DR-A	$\begin{aligned} & \mathrm{UC}, \mathrm{~N}, \mathrm{~N}, \\ & \mathrm{~L}, \mathrm{CE}, \end{aligned}$
		DC powersupply	Transistor output (sinking)			CP1H-X40DT-D	
			Transistor output (sourcing)			CP1H-X40DT1-D	
CP1H-XA CPU Units	Memory capacity: 20K steps High-speed counters: $100 \mathrm{kHz}, 4$ axes Pulse outputs: 100 kHz, 4 axes (Models with transistor outputs only) Analog inputs: 4 Analog outputs: 2	AC power supply	Relay output	24	16	CP1H-XA40DR-A	
		$\begin{array}{\|l\|l\|} \text { DC power } \\ \text { supply } \end{array}$	Transistor output (sinking)			CP1H-XA40DT-D	
			Transistor output (sourcing)			CP1H-XA40DT1-D	
	Memory capacity: 20K steps High-speed counters: $1 \mathrm{MHz}, 2$ axes 100 kHz , 2 axes Pulse outputs: $1 \mathrm{MHz}, 2$ axes 100 kHz, 2 axes	DC power supply	Transistor output (sinking)	$\begin{gathered} 12 \\ + \\ \text { line-driver } \\ \text { input, } \\ 2 \text { axes } \end{gathered}$	8 + line-driver output, 2 axes	CP1H-Y20DT-D	

Note: 1. CPIH PLCs are supported by CX-Programmer version 6.2 or higher.
2. Purchase a separately sold Option Unit if you will use RS-232C, RS-422A485, Ethernet, or LCD.

CPU Unit	Specifications					Model	Standards
	CPU type	Power supply	Output method	Inputs	Outputs		
CP1L-M CPU Units with 60Points	Memory capacity: 10 K steps High-speed counters: $100 \mathrm{kHz}, 4$ axes Pulse outputs: 100 kHz , 2 axes (Models with transistor outputs only)	$\begin{gathered} \text { AC power } \\ \text { supply } \end{gathered}$	Relay output	36	24	CP1L-M60DR-A	$\begin{aligned} & \mathrm{UC} 1, \mathrm{~N}, \\ & \mathrm{~L}, \mathrm{CE}, \end{aligned}$
			Transistor output (sinking)			CP1L-M60DT-A	
		$\begin{gathered} \text { DC power } \\ \text { supply } \end{gathered}$	Relay output			CP1L-M60DR-D	
			Transistor output (sinking)			CP1L-M60DT-D	
			Transistor output (sourcing)			CP1L-M60DT1-D	
CP1L-M CPU Units with 40 Points	Memory capacity: 10K steps High-speed counters: 100 kHz, 4 axes Pulse outputs: 100 kHz, 2 axes (Models with transistor outputs only)	$\begin{aligned} & \text { AC power } \\ & \text { supply } \end{aligned}$	Relay output	24	16	CP1L-M40DR-A	$\begin{aligned} & \text { UC1, } \mathrm{N}, \\ & \mathrm{~L}, \mathrm{CE}, \end{aligned}$
			Transistor output (sinking)			CPIL-M40DT-A	
		$\begin{gathered} \text { DC power } \\ \text { supply } \end{gathered}$	Relay output			CP1L-M40DR-D	
			Transistor output (sinking)			CPIL-M40DT-D	
			Transistor output (sourcing)			CP1L-M400T1-D	
CP1L-M CPU Units with 30Points	Memory capacity: 10K steps High-speed counters: $100 \mathrm{kHz}, 4$ axes Pulse outputs: 100 kHz, 2 axes (Models with transistor outputs only)	$\begin{array}{\|l} \hline \text { AC power } \\ \text { supply } \end{array}$	Relay output	18	12	CP1L-M30DR-A	$\begin{aligned} & \text { UC1, N, }, \\ & \mathrm{L}, \mathrm{CE}, \end{aligned}$
			Transistor output (sinking)			CP1L-M30DT-A	
		$\begin{aligned} & \text { DC power } \\ & \text { supply } \end{aligned}$	Relay output			CP1L-M30DR-D	
			Transistor output (sinking)			CP1L-M30DT-D	
			Transistor output sourcing)			CP1L-M30DT1-D	
CP1L-L CPU Units with 20Points	Memory capacity: 5K steps High-speed counters: $100 \mathrm{kHz}, 4$ axes Pulse outputs: $\mathbf{1 0 0} \mathbf{~ k H z}$, 2 axes (Models with transistor outputs only)	$\begin{aligned} & \text { AC power } \\ & \text { supply } \end{aligned}$	Relay output	12	8	CP1L-L20DR-A	$\begin{aligned} & \text { UC1,N, }, \\ & \mathrm{L}, \mathrm{CE}, \end{aligned}$
			Transistor output (sinking)			CP1L-L20DT-A	
		$\begin{aligned} & \text { DC power } \\ & \text { supply } \end{aligned}$	Relay output			CP1L-L20DR-D	
			Transistor output (sinking)			CP1L-L20DT-D	
			Transistor output (sourcing)			CP1L-L20DT1-D	

Ordering Information

CPU Unit	Specifications					Model	Standards
	CPU type	Power supply	Output method	Inputs	Outputs		
CP1L-L CPU Units with 14Points	Memory capacity: 5 K steps High-speed counters: $100 \mathrm{kHz}, 4$ axes Pulse outputs: $100 \mathrm{kHz}, 2$ axes (Models with transistor outputs only)	$\begin{aligned} & \text { AC power } \\ & \text { supply } \end{aligned}$	Relay output	8	6	CP1L-L14DR-A	$\begin{aligned} & \mathrm{UC1,N,} \\ & \mathrm{~L}, \mathrm{CE}, \end{aligned}$
			Transistor output (sinking)			CP1L-L14DT-A	
		$\begin{array}{\|l\|l\|} \hline \text { DC power } \\ \text { supply } \end{array}$	Relay output			CP1L-L14DR-D	
			Transistor output (sinking)			CP1L-L14DT-D	
			Transistor output (sourcing)			CP1L-L14DT1-D	
CP1L-L CPU Units with 10 Point	Memory capacity: 5K steps High-speed counters: $100 \mathrm{kHz}, 4$ axes Pulse outputs: $\mathbf{1 0 0} \mathbf{k H z}$, 2 axes (Models with transistor outputs only)	AC powersupply	Relay output	6	4	CP1L-L10DR-A	$\begin{aligned} & \mathrm{UC1,N,N,} \\ & \mathrm{~L}, \mathrm{CE} \end{aligned}$
			Transistor output (sinking)			CP1L-L100t-A	
		$\begin{gathered} \text { DC power pupply } \\ \text { supe } \end{gathered}$	Relay output			CP1L-L10DR-D	
			Transistor output (sinking)			CPIL-L10DT-D	
			Transistor output (sourcing)			CP1L-L10DT1-D	

2. Purchase an Option Unit (sold separataty) if you will use RS-232C, RS-422AA 485 , Ethemet, or LCD.
\square Options for CPU Units

Name		Specifications	Model	Standards
RS-232C Option Board		Can be mounted in either CPU Unit Option Board slot 1 or 2. Note: Cannot be used for the CP1L-L10.	CP1W-CIF01	$\begin{aligned} & \mathrm{UC1,N,} \begin{array}{l} \mathrm{L}, \mathrm{CE} \end{array}, ~ \end{aligned}$
RS-422A/485 Option Board			CP1W-CIF11	
RS-422A/485 (Isolated-type) Option Board			CP1W-CIF12	$\begin{aligned} & \mathrm{uc}, \mathrm{~N}, \mathrm{~N}, \\ & \mathrm{~L}, \mathrm{CE} \end{aligned}$
Ethernet Option Board		Can be mounted in either CPU Unit Option Board slot 1 or 2. Note: 1. Cannot be used for the CP1L-L10. 2. When using CP1W-CIF41 Ver. 1.0, one Ethernet port can be added	CP1W-CIF41	$\begin{aligned} & \text { UC1, N, } \\ & \text { L, CE } \end{aligned}$
LCD Option Board		Can be mounted only in the CPU Unit Option Board slot 1 . Note: Cannot be used for the CP1L-L10.	CP1W-DAMO1	$\begin{aligned} & u C 1, L, L, \\ & N, C E \end{aligned}$
Memory Cassette		Can be used for backing up programs or auto-booting.	CP1W-ME05M	UC1, N, L, CE

Ordering Information

Programming Devices

Name	Specifications			Model	Standards
		Number of licenses	Media		
FA Integrated Tool Package CX-One Lite Version 4.	CX-One Lite is a subset of the complete CX-One package that provides only the Support Software required for micro PLC applications. CX-One Lite runs on the following OS OS: Windows XP (Service Pack 3 or higher), Vista or 7 Note: Except for Windows XP 64-bit version. CX-One Lite Ver. 4. \square includes Micro PLC Edition CXProgrammer Ver. 9. C .	1 license	CD	CXONE-LT01C-v4	---
FA Integrated Tool Package CX-One Ver. 4.	CX-One is a package that integrates the Support Software for OMRON PLCs and components. CX-One runs on the following OS. OS: Windows XP (Service Pack 3 or higher), Vista or 7 Note: Except for Windows XP 64-bit version. CX-One Ver. $4 . \square$ includes CX-Programmer Ver. 9.■.	$\begin{array}{\|l\|} 1 \text { license } \\ \text { (See note 3.) } \end{array}$	DVD (See note 4.)	CXONE-ALO1D-V4	--
$\begin{aligned} & \text { Programming Device } \\ & \text { Connecting Cable for } \\ & \text { CP1W-CIFO1 RS-232C } \\ & \text { Option Board } \\ & \text { (See note 5.) } \end{aligned}$	Connects DOS computers, D-Sub 9-pin (Length: 2.0 m)	For anti-static connectors		xW2Z-200S-cv	--
	Connects DOS computers, D-Sub 9-pin (Length: 5.0 m)			xW2Z-500S-cv	
	Connects DOS computers, D-Sub 9-pin (Length: 2.0 m)			xW2Z-200s-v	
	Connects DOS computers, D-Sub 9-pin (Length: 5.0 m)			xW2z-500S-v	
USB-Serial Conversion Cable (See note 5.)	USB-RS-232C Conversion Cable (Length: 0.5 m) and PC driver (on a CD-ROM disc) are included. Complies with USB Specification 1.1 On personal computer side: USB (A plug connector, male) On PLC side: RS-232C (D-sub 9-pin, male) Driver: Supported by Windows 98 , Me, 2000, and XP			CS1w-CIF31	N

Note: 1. CP1H PLCS are supported by CX-Programmer version 6.2 or higher.
CP1LPLCS are supported by CX-Programmer version 7.2 or ingher, except for 10 -point and 60 -point CPU Units.
The 10 -point and 60 -point CPU Units are supported by CX-Programmer version 7.3 or higher.
Update The CX-Programmer version automatically from the website using CX-Programmer version 7.0 (included with CX-One version 2.0).
Update The CX-Programmer version automatically from the website using CX-Programme
2. The CX-One and CX-One Lite cannot be simultaneously installed on
3. Mult licenses are available for the CX-One ($3,10,30$ or 50 licenses).
4. The CX-One is also available on $C D$ (CXON
5. Cannot be used with a peripheral USB port.
5. Cannot be used with a peripheral USB port.
To connect to a personal computer via a peripheral USB port, use commercially-available USB cable (A or B type, male).

Support Software in CX-One		Cx-One Lite Ver.4.	$\begin{aligned} & \text { Cx-One } \\ & \text { Ver.4. } \end{aligned}$	Support Software in CX-One		CX-One Lite Ver.4. \square	$\begin{aligned} & \text { Cx-One } \\ & \text { Ver.4. } \end{aligned}$
Micro PLC Edition CX-Programmer	Ver.9.]	Yes	No	CX-Drive	Ver.2.	Yes	Yes
CX-Programmer	Ver.9.]	No	Yes	CX-Process Tool	Ver.5.]	No	Yes
CX-Integrator	Ver.2.]	Yes	Yes	Faceplate Auto-Builder for NS	ver.3. \square	No	Yes
Switch Box Utility	Ver.1.]	Yes	Yes	CX-Designer	Ver.3. \square	Yes	Yes
CX-Protocol	Ver.1.]	No	Yes	NV-Designer	Ver. $1 . \square$	Yes	Yes
Cx-Simulator	Ver.1.]	Yes	Yes	CX-Thermo	Ver.4.	Yes	Yes
CX-Position	Ver.2.]	No	Yes	CX-ConfiguratorFDT	Ver. $1 . \square$	Yes	Yes
CX-Motion-NCF	Ver.1.]	No	Yes	CX-FLnet	Ver. $1 . \square$	No	Yes
CX-Motion-MCH	Ver.2.]	No	Yes	Network Configurator	Ver.3. \square	Yes	Yes
CX-Motion	Ver.2.]	No	Yes	CX-Server	Ver.4.]	Yes	Yes

Ordering Information

Name	Output method	Inputs	Outputs	Model	Standards
Expansion I/O Units	Relay	24	16	CP1W-40EDR	N, L, CE
	Transistor (sinking)			CP1W-40EDT	
	Transistor (sourcing)			CP1W-40EDT1	
	Relay	---	32	CP1W-32ER	N, L, CE
	Transistor (sinking)			CP1W-32ET	
	Transistor (sourcing)			CP1W-32ET1	
	Relay	12	8	CP1W-20EDR1	U, C, N, L, CE
	Transistor (sinking)			CP1W-20EDT	
	Transistor (sourcing)			CP1W-20EDT1	
	Relay	---	16	CP1W-16ER	N, L, CE
	Transistor (sinking)			CP1W-16ET	
	Transistor (sourcing)			CP1W-16ET1	
	---	8	---	CP1W-8ED	U, C, N, L, CE
	Relay	---	8	CP1W-8ER	
	Transistor (sinking)		8	CP1W-8ET	
	Transistor (sourcing)			CP1W-8ET1	
Analog Input Unit	Analog (resolution: 1/6000)	4	---	CP1W-AD041	UC1, N, L, CE
Analog Output Unit	Analog (resolution: 1/6000)	--	4	CP1W-DA041	
			2	$\text { CP1W-DA02 } \frac{\text { NEW }}{1}$	UC1, CE
Analog I/O Unit	Analog (resolution: 1/6000)	2	1	CP1W-MAD11	U, C, N, L, CE
CompoBus/S I/O Link Unit	---	$\begin{gathered} 8 \\ \text { (//O link input bits) } \end{gathered}$	$\begin{gathered} 8 \\ \text { (//O link input bits) } \end{gathered}$	CP1W-SRT21	U, C, N, L, CE
Temperature SensorUnit	2 thermocouple inputs			CP1W-TS001	
	4 thermocouple inputs			CP1W-TS002	
	2 platinum resistance thermometer inputs			CP1W-TS101	
	4 platinum resistance thermometer inputs			CP1W-TS102	

CP1L (L Type) CPU Units with 10 points do not support Expansion Units.
■I/O Connecting Cable

Name	Specifications	Model	Standards
IO Connecting Cable	80 cm (for CP1W/CPM1A Expansion Units)	CP1W-CN811	UC1, N, L, CE

Note: An I/O Connecting Cable (approx. 6 cm) for horizontal connection is provided with CP1W/CPM1A Expansion Units.
■Optional Products, Maintenance Products and DIN Track Accessories

Name	Specifications	Model	Standards
Battery Set	For CP1H CPU Units (Use batteries within two years of manufacture.)	CJIW-batoi	---
DIN Track	Length: 0.5 m ; Height: 7.3 mm	PFP-50N	
	Length: 1 m ; Height: 7.3 mm	PFP-100N	
	Length: 1 m ; Height: 16 mm	PFP-100N2	
End Plate	There are 2 stoppers provided with CPU Units and I/O Interface Units as standard accessories to secure the Units on the DIN Track.	PFP-M	

Ordering Information

■CJ-series Special I/O Units and CPU Bus Units

Category	Name	Specifications	Model	Standards
$\begin{array}{\|l\|} \hline \text { CP1H CPU } \\ \text { Unit options } \\ \hline \end{array}$	CJ Unit Adapter	Adapter for connecting CJ-series Special I/O Units and CPU Bus Units (includes CJ -series End Cover)	CP1W-EXT01	$\begin{aligned} & \mathrm{UC} 1, \mathrm{~N}, \mathrm{~L}, \\ & \mathrm{CE} \end{aligned}$
CJ1 Special I/O Units	Analog Input Units	4 inputs (1 to $5 \mathrm{~V}(1 / 10,000), 0$ to $10 \mathrm{~V}(1 / 20,000),-5$ to $5 \mathrm{~V}(1 / 20,000)$, -10 to $10 \mathrm{~V}(1 / 40,000)$, and 4 to $20 \mathrm{~mA}(1 / 10,000)$) Conversion Period: $20 \mu \mathrm{~s} / 1$ point, $25 \mu \mathrm{~s} / 2$ points, $30 \mu \mathrm{~s} / 3$ points, $35 \mu \mathrm{~s} / 4$ points	CJIW-AD042	UC1, CE
		8 inputs (1 to $5 \mathrm{~V}, 0$ to $5 \mathrm{~V}, 0$ to $10 \mathrm{~V},-10$ to $10 \mathrm{~V}, 4$ to 20 mA) Resolution: 1/8,000, Conversion speed: 250μ s/input max. (Can be set to $1 / 4,000$ resolution and $1 \mathrm{~ms} / \mathrm{m}_{\text {input.) }}$	CJ1W-AD081-V1	UC1, N, L, CE
		4 inputs (1 to $5 \mathrm{~V}, 0$ to $5 \mathrm{~V}, 0$ to $10 \mathrm{~V},-10$ to $10 \mathrm{~V}, 4$ to 20 mA) Resolution: 18,000, Conversion speed: $250 \mu \mathrm{~S}$ /input max. (Can be set to $1 / 4,000$ resolution and $1 \mathrm{~ms} / \mathrm{m}_{\text {input.) }}$	CJIW-AD041-V1	
	Analog Output Units	4 outputs (1 to $5 \mathrm{~V}(1 / 10,000), 0$ to $10 \mathrm{~V}(1 / 20,000)$, and -10 to $10 \mathrm{~V}(1 / 40,000)$ Conversion Period: $20 \mu \mathrm{~s} / 1$ point, $25 \mu \mathrm{~s} / 2$ points, $30 \mu \mathrm{~s} / 3$ points, $35 \mu \mathrm{~s} / 4$ points	CJiW-DA042V	UC1, CE
		8 outputs (1 to $5 \mathrm{~V}, 0$ to $5 \mathrm{~V}, 0$ to $10 \mathrm{~V},-10$ to 10 V) Resolution: 1/4,000; Conversion speed: $1 \mathrm{~ms} /$ output max (Can be set to $1 / 8000,250 \mu \mathrm{~s} /$ output.)	CJIW-DA08V	$\begin{aligned} & \mathrm{UC} 1, \mathrm{~N}, \mathrm{~L}, \\ & \mathrm{CE} \end{aligned}$
		8 outputs (4 to 20 mA) Resolution: 1/4,000; Conversion speed: $1 \mathrm{~ms} / 0 u t p u t$ max. (Can be set to $18,000,250 \mu \mathrm{~s} /$ output.)	CJIW-DA08C	UC1, N, CE
		4 outputs (1 to $5 \mathrm{~V}, 0$ to $5 \mathrm{~V}, 0$ to $10 \mathrm{~V},-10$ to $10 \mathrm{~V}, 4$ to 20 mA) Resolution: $1 / 4,000$, Conversion speed: $1 \mathrm{~ms} /$ point max.	CJIW-DA041	$\operatorname{ucE}_{\mathrm{CE}, \mathrm{~N}, \mathrm{~L},}$
		2 outputs (1 to $5 \mathrm{~V}, 0$ to $5 \mathrm{~V}, 0$ to $10 \mathrm{~V},-10$ to $10 \mathrm{~V}, 4$ to 20 mA) Resolution: 1/4,000, Conversion speed: $1 \mathrm{~ms} /$ point max.	CJ1w-DA021	
	Analog I/O Unit	4 inputs, 2 outputs (1 to $5 \mathrm{~V}, 0$ to $5 \mathrm{~V}, 0$ to $10 \mathrm{~V},-10$ to $10 \mathrm{~V}, 4$ to 20 mA) Resolution: 1/4000; Conversion speed: $1 \mathrm{~ms} /$ point max (Can be set to $1 / 8,000,500 \mu \mathrm{~s} / \mathrm{point}$.)	CJ1W-MAD42	
	Process Input Units	4 fully universal inputs: Pt100 (3-wire), JPt100 (3-wire), Pt1000 (3-wire), Pt100 (4 wire), K, J, T, E, L, U, N, R, S, B, WRe5-26, PLII, 4 to 20 mA , 0 to $20 \mathrm{~mA}, 1$ to $5 \mathrm{~V}, 0$ to $1.25 \mathrm{~V}, 0$ to $5 \mathrm{~V}, 0$ to $10 \mathrm{~V}, \pm 100-\mathrm{mV}$ selectable range, -1.25 to $1.25 \mathrm{~V},-5$ to $5 \mathrm{~V},-10$ to $10 \mathrm{~V}, \pm 10-\mathrm{V}$ selectable range Potentiometer resolution/conversion speed: 1/256,000 (conversion cycle: $60 \mathrm{~ms} / 4$ points), $1 / 64,000$ (conversion cycle: $10 \mathrm{~ms} / 4$ points), 1/16,000 (conversion cycle: $5 \mathrm{~ms} / 4$ points)	CJ1W-PH41U (See note 1.)	UC1, CE
		4 fully universal inputs: Pt100, JPt100, Pt1000, K, J, T, L, R, S, B, 4 to $20 \mathrm{~mA}, 0$ to $20 \mathrm{~mA}, 1$ to $5 \mathrm{~V}, 0$ to $5 \mathrm{~V}, 0$ to 10 V Conversion speed: $250 \mathrm{~ms} / 4$ points	CJIW-AD04U	UC1, L, CE
		4 inputs, B, J, K, L, R, S, T; Conversion speed: $250 \mathrm{~ms} / 4$ inputs	CJ1W-PTS51	UC1, CE
		4 inputs, Pt100 Ω (JIS, IEC), JPt100 Ω, Conversion speed: $250 \mathrm{~ms} / 4$ inputs	CJIW-PTS52	
		2 inputs, B, E, J, K, L, N, R, S, T, U, W, Re5-26, PL $\pm 100 \mathrm{mV}$, Resolution: 1/64,000; Conversion speed: $10 \mathrm{~ms} / 2$ inputs	CJ1W-PTS15	
		2 inputs, Pt100, JPt100, Pt50, Ni508.4; Resolution: $1 / 64,000$; Conversion speed: $10 \mathrm{~ms} / 2$ inputs	CJ1W-PTS16	
		2 inputs, 0 to $1.25 \mathrm{~V},-1.25$ to $1.25 \mathrm{~V}, 0$ to $5 \mathrm{~V}, 1$ to $5 \mathrm{~V},-5$ to $5 \mathrm{~V}, 0$ to 10 V , -10 to $10 \mathrm{~V}, \pm 10-\mathrm{V}$ selectable range, 0 to $20 \mathrm{~mA}, 4$ to 20 mA	CJ1W-PDC15	
	Temperature ControlUnits	4 loops, thermocouple input, NPN output	CJIW-TC001	$\operatorname{uct}_{\mathrm{CE}} \mathrm{C}, \mathrm{~N}, \mathrm{~L},$
		4 loops, thermocouple input, PNP output	CJ1W-TC002	
		2 loops, thermocouple input, NPN output, heater burnout detection function	CJ1W-TC003	
		2 loops, thermocouple input, PNP output, heater burnout detection function	CJIW-TC004	
		4 loops, platinum resistance thermometer input, NPN output	CJ1W-TC101	
		4 loops, platinum resistance thermometer input, PNP output	CJ1W-TC102	
		2 loops, platinum resistance thermometer input, NPN output, heater burnout detection function	CJ1W-TC103	
		2 loops, platinum resistance thermometer input, PNP output, heater burnout detection detection function	CJIW-TC104	
	$\underset{\substack{\text { High-speed Counter } \\ \text { Unit }}}{ }$	2 inputs, max. input frequency: 500 kpps	CJ1W-CT021	$\begin{aligned} & \mathrm{UC} 1, \mathrm{~N}, \mathrm{~L}, \\ & \mathrm{CE} \end{aligned}$
	Position Control Units	Pulse train, open collector output, 1 axis	CJIW-NC113	UC1, CE
		Pulse train, open collector output, 2 axes	CJ1W-NC213	
		Pulse train, open collector output, 4 axes	CJIW-NC413	
		Pulse train, line driver output, 1 axis	CJ1W-NC133	
		Pulse train, line driver output, 2 axes	CJ1W-NC233	
		Pulse train, line driver output, 4 axes	CJIW-NC433	
	Space Unit	---	CJ1W-SP001	
	ID Sensor Units	For V680 Series, 1 RW Head	CJ1W-V680C11	Uc, CE
		For V680 Series, 2 RW Heads	CJ1W-V680C12	
		For V600 Series, 1 RW Head	CJ1W-V600C11	
		For V600 Series, 2 RW Heads	CJ1W-V600C12	
	CompoNet Master Unit	Word slaves: 2,048 points, Bit slaves: 512 points	CJ1W-CRM21	$\begin{aligned} & \mathrm{U}, \mathrm{U} 1, \mathrm{~N}, \mathrm{~L}, \\ & \mathrm{CE} \end{aligned}$
	CompoBus/S Master Unit	CompoBus/S remote I/O, 256 points max.	CJ1W-SRM21	$\begin{aligned} & \mathrm{UC} 1, \mathrm{~N}, \mathrm{~L}, \\ & \mathrm{CE} \end{aligned}$

Note: 1. If a CJ1W-PH41U is used, do not use a CP1H CPU Unit with relay contact outputs or Expansion Units with relay contact outputs.
2. Refer to the CJ1 catalog (Cat. No. P052) for information on the CJ1 Special IO Units.

Ordering Information

Category	Name	Specifications		Model	Standards
CJ1 CPUBus Units Bus Units	Controller Link Units	Wired (shielded twisted-pair cable)		CJ1W-CLK23	$\begin{aligned} & \hline \text { UC1, N, L, } \\ & \text { CE } \end{aligned}$
	Serial Communications Units	1 RS-232C port and 1 RS-422A485 port		CJ1W-SCU42	UC1, N, CE
		2 RS -232C ports		CJ1W-SCU22	
		2 RS-422AA485 ports		CJ1W-SCU32	
		1 RS-232C port and 1 RS-422A/485 port		CJ1W-SCU41-V1	$\mathrm{UCE}_{\mathrm{CE}}^{\mathrm{UE}, \mathrm{~N}, \mathrm{~L},}$
		2 RS -232C ports		CJ1W-SCU21-V1	
		2 RS-422A/485 ports		CJ1W-SCU31-V1	
	EtherNetIP Unit	Shielded twisted-pair cable (STP), category 5 or 5 e or higher Tag data links and message communications supported		CJ1W-EIP21	
	Ethernet Unit	100Base-TX		CJ1W-ETN21	
	DeviceNet Unit	Functions as master and/or slave; allows control of 32,000 points max. per master		CJ1W-DRM21	
	MECHATROLINK-II Position Control Unit	Control commands sent using MECHATROLINK-II synchronized communications 6 axes max., direct operation from ladder diagram, control modes: position/ speed/torque	2 axes	CJ1W-NC271	UC1, CE
			4 axes	CJ1W-NC471	
			16 axes	CJ1W-NCF71	
			16 axes	CJIW-NCF71-MA	
	MECHATROLINK-II Motion Control Unit	Position, speed, and torque commands sent via MECHATROLINK-II Special motion control language	32 axes max. (Real axes: 20, Virtual axes: 2)	CJ1w-mCH71	
	F-net Unit	100Base-TX		CJ1W-FLN22	
	SYSMAC SPU	High-speed data collection unit		CJ1W-SPU01-V2	

- Industrial Switching Hubs

Product name	Appearance	Specifications			Accesories	$\begin{gathered} \text { Current } \\ \text { consumption (A) } \end{gathered}$	Model	Standards
		Functions	No. of pors	Failure detection				
Industrial Switching Hubs	部	Quality of Service (QOS): EtherNet/IP control data priority Failure detection: Broadcast storm and LSI error detection 10/100BASE-TX Auto-Negotiation	3	No	- Power supply connector	0.22	W4S1-03B	Uc, CE
	\%		5	No		0.22	W4S1-05B	
			5	Yes	- Power supply connector - Connector for informing error	0.22	W4S1-05C	CE

OMRON Function Block Library

OMn using the CP1H use the CP1H OMRON Function Block for positioning
When using the CP1L, use the CP1M-CPU21/22/23 OMRON Function Block for positioning.

OMRON Function Block Library
OMRON Function Block Library for E5CN and E5CN-U-series Temperature Controller Serial Communications

FB name	Function name	ptio
E5xx003_St	Stop	Stops operation for Temperature Controller channel.
E5xN004_ExecuteAT	Execute AT	Starts AT for Temperature Controller channel.
E5xN005_Cancelat	Cancel AT	Cancels AT for Temperature Controller channel.
E5xx200_ReadVariable	Read variable	Reads one item from specified variable area.
E5xx201_ReadStatus	Read status	Reads status of specified Temperature Controller channel.
-E5xx202_ReadPV	Read PV	Reads PV of specified Temperature Controller channel.
E5xx203_ReadSP	Read SP	Reads SP f specified Temperature Controller channel.
-E5xx204_ReadCoolingMV	Read cooling MV	Reads cooling MV of specified Temperature Controler channel.
-55xx205_ReadHeatingMV	Read heating MV	Reads heating MV of specified Temperature Controller channel.
E5xx400_WriteVariable	Write variable	Writes one data item to specified variable area.
-E5xx403_WriteSP	Write SP	Sets SP for specified Temperature Controller channel.
E55x600_SetComm	Set communications	Sets PLC serial port to default communications settings of Temperature Controller.

Note: These OMRON Function Block can be used for only serial port 2 (the eort on the right) for CP1H and CP1L-M30-M40-M60 CPU Units
They can be used for serial port 1 only on CPILL-L114-1/20 CPI Units (which have only one serial port)
OMRON Function Block Library for E5AR and E5ER-series Temperature Controller Serial Communications

FB name	Function name	Description
E5xx003_Stop	Stop	Stops operation for Temperature Controller channels.
-E5xN004_ExecuteAT	Execute AT	Starts AT for Temperature Controller channels.
E5xN005_Cancelat	Cancel AT	Cancels AT for Temperature Controller channels.
E5xx200_ReadVariable	Read variable	Reads one item in specified variable area.
EE5xx201_ReadStatus	Read status	Reads status of specified Temperature Controller channel.
E5xx202_ReadPV	Read PV	Reads PV of specified Temperature Controller channel.
E5xx203_ReadSP	Read SP	Reads SP of specified Temperature Controller channel.
-E5xx204_ReadCoolingMV	Read cooling MV	Reads cooling MV of specified Temperature Controller channel.
-E5xx205_ReadHeatingMV	Read heating MV	Reads heating MV of specified Temperature Controller channel.
E5xxR206_ReadValveOpening	Read valve opening	Reads valve opening monitor value of specified Temperature Controller channel.
E5xx400_WriteVariable	Write variable	Writes one data item to specified variable area.
-E5xx403_WriteSP	Write SP	Sets SP for specified Temperature Controller channel.
E5x $\times 600$ SetComm	Set communications	Sets PLC serial port to initial communications settings of Temperature Controller.

Note: These OMRON Function Block can be used for only serial port 2 (hhe port on the right) for CP1H and CP1L-M30/-M40/-M60 CPU Units.
They can beed for serial port 1 only on CP1L-L14/-L20 CPU Units (which have only one serial port).
Cannot be used for the CP1L-L10.

- OMRON Function Block Library for E5ZN-series Temperature Controller Serial

Communications

FB name	Function name	Description
E5xx001_ExeOperation	Execute command	Executes specified command.
-E5xx002_Run	Run	Starts operation for specified Temperature Controller channel.
-E5xx003_Stop	Stop	Stops operation for specitied Temperature Controller channel.
-E5xN004_ExecuteAT	Execute AT	Starts AT for Temperature Controller channels.
-E5xN005_Cancelat	Cancel AT	Cancels AT for Temperature Controller channels.
E5xx200_ReadVariab	Read variab	Reads one item in spec
EE5xx201_ReadStatus	Read status	Reads status of specified Temperature Controller channel.
-E5xx202_ReadPV	Read PV	Reads PV of specified Temperature Controller channel.
EE5xx203_ReadSP	Read SP	Reads SP of specified Temperature Controller channel.
E5xx204_ReadCoolingMV	Read cooling MV	Reads cooling MV of specified Temperature Controler channel.
EE5xx20_ReadHeatingMV	Read heating MV	Reads heating MV of specified Temperature Controller channel.
E5xx400_WriteVariable	Write variable	Writes one data item to specified variable area.
-E5xx403_WriteSP	Write SP	Sets SP for speciified Temperature Controller channel.
E5xx600_SetComm	Set communications	Sets PLC serial port to default communications settings of Temperature Controlle

Note: These OMRON Function Block can be used for only serial port 2 (the port on the right) for CP1H and CP1L-M30-M40-M60 CPU Units.
hey can be used for serial port 1 only on CP1L-L14-L20 CPU Units (which have only one serial port)
Cannot be used for the CP1L-L10.

SMARTSTEP 2 AC Servo Drivers with Pulse String Inputs R88M-G/R7D-BP

Advanced Functionality and Performance Packed into a

 Super-compact Body- Compact AC Servo Drives

Compared to the SNA
Suppressing Vibration of Low-rigidity Mechanisms during Acceleration/Deceleration
The damping control function can suppress vibration of low-rigidity mechanisms or devices whose ends tend to vibrate,

- Easy Adjustment

The realtime autotuning function automatically estimates the load inertia of the machine in realtime and sets the optimal gain.
The adaptive filter automatically suppresses vibration caused by resonance.

- Compatible with Command Pulse of 90° Phase Difference Inputs

In addition to conventional CW/CCW inputs (2 pulse inputs) and SIGN/PULS inputs (1 pulse input), the SMARTSTEP 2 supports 90° phase difference inputs. This makes it possible to input encoder output signals directly into the Servo Drive for simplified synchronization control.
A Wide Range of Pulse Setting Functions
A wide range of pulse setting functions, such as the command pulse multiplying, electronic gear, and encoder dividing, enable you to perform pulse settings suitable for your device or system.

- Simplified Speed Control with Internal Speed Settings

Four internal speed settings allow the speed to be easily switched by using external signals.

The number of motor encoder pulses output by the Servo Drive can be freely set in
the range of 1 to 2,500 pulses per rotation. A parameter can also be set to change the phase.

Servo Drive-Servomotor Combinations

- Combinations of Cylinder-type 3,000-r/min Servomotors and Servo Drivers

Voltage	Servo Driver	Servomotor		
	Pulse-string input	Rated output	Without brake	With brake
Single-phase 100-V	R7D-BPA5L	50 W	R88M-G05030H	R88M-G05030H-B
	R7D-BP01L	100 W	R88M-G10030L	R88M-G10030L-B
	R7D-BP02L	200 W	R88M-G20030L	R88M-G20030L-B
Single-phase 200-V	R7D-BP01H	50 W	R88M-G05030H	R88M-G05030H-B
		100 W	R88M-G10030H	R88M-G10030H-B
	R7D-BP02HH	200 W	R88M-G20030H	R88M-G20030H-B
	R7D-BP-04H	400 W	R88M-G40030H	R88M-G40030H-B
Three-phase 200-V	R7D-BP01H	50 W	R88M-G05030H	R88M-G05030H-B
		100 w	R88M-G10030H	R88M-G10030H-B
	R7D-BPO2H	200 W	R88M-G20030H	R88M-G20030H-B
	R7D-BP04H	400 W	R88M-G40030H	R88M-G40030H-B

- Combinations of Flat-type $3,000-\mathrm{r} / \mathrm{min}$ Servomotors and Servo Drivers

Voltage	Servo Driver	Servomotor		
	Pulse-string input	Rated output	Without brake	With brake
Single-phase 100-v	R7D-BP01L	100 W	R88M-G10030L	R88M-G10030L-B
	R7D-BP02L	200 W	R88M-G20030L	R88M-G20030L-B
Single-phase 200-V	R7D-BP01H	100 W	R88M-G10030H	R88M-G10030H-B
	R7D-BP02HH	200 W	R88M-G20030H	R88M-G20030H-B
	R7D-BP-04H	400 W	R88M-G40030H	R88M-G40030H-B
Three-phase 200-V	R7D-BP01H	100 W	R88M-G10030H	R88M-G10030H-B
	R7D-BPO2H	200 W	R88M-G20030H	R88M-G20030H-B
	R7D-BP04H	400 W	R88M-G40030H	R88M-G40030H-B

Note: For information on SMARTSTEP 2, refer to the SMARTSTEP 2 Catalog (Cat. No. 1813).

Read and Understand this Catalog

lease read and understand this catalog before purchasing the product. Please consult your OMRON representative if you have any questions or comments.

Warranty and Limitations of Liability

WARRANTY

OMRON's exclusive warranty is that the products are free from defects in materials and workmanship for a period of one year (or other period if specified) from date of sale by OMRON.
OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, REGARDING NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR PARTICULAR PURPOSE OF THE PRODUCTS. ANY BUYER OR USER ACKNOWLEDGES THAT THE BUYER OR USER ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. OMRON DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED.

LIMITATIONS OF LIABILITY

OMRON SHALL NOT BE RESPONSIBLE FOR SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED ON CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT LIABILITY.
In no event shall the responsibility of OMRON for any act exceed the individual price of the product on which liability is asserted. NO EVENT SHALL OMRON BE RESPONSIBLE FOR WARRANTY, REPAIR, OR OTHER CLAIMS REGARDING TH PRODUCTS UNLESS OMRON'S ANALYSIS CONFIRMS THAT THE PRODUCTS WERE PROPERLY HANDLED, STORED, NSTALLED, AND MAINTAINED AND NOT SUBJECT TO CONTAMINATION, ABUSE, MISUSE, OR INAPPROPRIATE MODIFICATION OR REPAIR.

Application Considerations
SUITABILITY FOR USE
OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the combination of the product in the customer's application or use of the product.
Take all necessary steps to determine the suitability of the product for the systems, machines, and equipment with which it will be used.
Know and observe all prohibitions of use applicable to this product.
NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY WITHOU NSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRO RRODUCT IS PROPERLY RATED AND INSTALIED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

PROGRAMMABLE PRODUCTS

OMRON shall not be responsible for the user's programming of a programmable product, or any consequence thereof

Disclaimers

CHANGE IN SPECIFICATIONS

Product specifications and accessories may be changed at any time based on improvements and other reasons. Consult with your OMRON representative at any time to confirm actual specifications of purchased product.

DIMENSIONS AND WEIGHTS

Dimensions and weights are nominal and are not to be used for manufacturing purposes, even when tolerances are shown

PERFORMANCE DATA

Performance data given in this catalog is provided as a guide for the user in determining suitability and does not constitute warranty. It may represent the result of OMRON's test conditions, and the users must correlate it to actual application requirements. Actual performance is subject to the OMRON Warranty and Limitations of Liability.

SYSMAC

CP1H/CP1L

Note: Do not use this document to operate the Unit

Wide Lineup of CPU Units with USB Port on All Models.
Multi-functionality Condensed into One-package PLCs
 Pscksg
realǐzing

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Controllers category:
Click to view products by Omron manufacturer:

Other Similar products are found below :
61FGPN8DAC120 CV500SLK21 70177-1011 F03-03 HAS C F03-31 81550401 FT1A-C12RA-W 88981106 H2CAC24A H2CRSAC110B R88A-CRGB003CR-E R88ARR080100S R88A-TK01K DCN1-1 DRT2ID08C DTB4896VRE DTB9696CVE DTB9696LVE E53-AZ01 E53E01 E53E8C E5C4Q40J999FAC120 E5CWLQ1TCAC100240 E5GNQ03PFLKACDC24 B300LKL21 NSCXDC1V3 NSH5-232CW-3M NT20SST122BV1 NV-CN001 OAS-160-N C40PEDRA K31S6 K33-L1B K3MA-F 100-240VAC K3TX-AD31A 89750101 L595020 SRM1-C02 SRS2-1 FT1A-C14SA-S G32X-V2K 26546803 26546805 PWRA440A CPM1AETL03CH CV500SLK11 3G2A5BI081 3G2A5IA122 3G2A5LK010E 3G2A5OA223

[^0]: For positioning or communications, simply enter the set values for the instructions. Even complicated functions can be easily programmed using the OMRON Function Block (FB) Library.

[^1]: Four analog input words Two analog output words

[^2]: the can be used at the same time for analog outputs, but the total output current must not exceed 21 mA

